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Abstract: The goal of this research is to computationally identify candidate modifiers for retinitis
pigmentosa (RP), a group of rare genetic disorders that trigger the cellular degeneration of retinal
tissue. RP being subject to phenotypic variation complicates diagnosis and treatment of the disease.
In a previous study, modifiers of RP were identified by an association between genetic variation in the
DNA sequence and variation in eye size in a well-characterized Drosophila model of RP. This study
will instead focus on RNA expression data to identify candidate modifier genes whose expression is
correlated with phenotypic variation in eye size. The proposed approach uses the K-Means algorithm
to cluster 171 Drosophila strains based on their expression profiles for 18,140 genes in adult females.
This algorithm is designed to investigate the correlation between Drosophila eye size and genetic
expression and gather suspect genes from clusters with abnormally large or small eyes. The clustering
algorithm was implemented using the R scripting language and successfully identified 10 suspected
candidate modifiers for RP. This analysis was followed by a validation study that tested seven
candidate modifiers and found that the loss of five of them significantly altered the degeneration
phenotype and thus can be labeled as a bona fide modifier of disease.

Keywords: retinal apoptosis; Endoplasmic reticulum (ER) stress; K-Means clustering; modifier genes;
gene expression; phenotypic variation; degenerative models

1. Introduction

Retinitis pigmentosa (RP) is a degenerative disease resulting in the death of cells in
the retina—the light-sensitive tissue that lines the back of the eye [1]. The disorder affects
1 in 4000 people worldwide, beginning with night blindness and tunnel vision and often
leading to a complete loss of vision [2]. Approximately 15–35% of RP cases are inherited in
an autosomal-dominant (AD) manner, meaning that a single copy of the causative mutation
triggers the disease [2]. In addition, approximately 25–30% of the AD-inherited RP cases
are found in the gene rhodopsin (RHO) [3]. These mutations commonly lead to misfiling
proteins, endoplasmic reticulum stress and apoptosis [4].

Chow et al. analyzed the genetic factors that influence RP progression using the
Drosophila Genetic Reference Panel (DGRP) [5]. The DGRP is a collection of ~200 inbred
Drosophila strains that capture natural variation that exists in a wild population [6]. All
strains are whole genome sequenced so that the identity of every base of the genome in
each strain is known. This tool enables the exploration of how diseases and pathways are
impacted by genetic variations, as well as whether these findings can be applied to humans.

Chow et al.’s study used the DGRP genomic sequence data to identify correlations
between genetic and phenotypic variation in Drosophila eye size for Ryoo et al.’s model
of RP, in which a mutated version of rhodopsin is overexpressed in the eye, leading to
the accumulation of misfolded proteins and ultimately cell death [7]. As part of their
experiment, Chow et al. highlighted the overexpression of a mutated version of the RHO
gene, Rh1G69D. To determine the impact of variation on retinal degeneration, Chow et al.
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crossed this model to 173 DGRP strains and measured their mean eye sizes as a proxy for the
degree of cell death [5]. They then performed an association analysis to link existing genetic
variation in the DGRP to eye size variation. More than 100 candidate genes were identified,
nearly 80% of which have a conserved human orthologue [5]. Several of these have already
been shown to influence the degree of degeneration in the RP model, validating this
approach [5,8,9].

However, this method cannot account for potential modifiers whose expression is
regulated in trans to the variation in the DNA sequence. These modifiers may be differ-
entially regulated several steps downstream of the associated gene or be too far from the
regulatory element to have been identified in the original study. They would thus require
an examination of their differential expression on the strains of the DGRP.

This kind of datum was collected by Huang et al. when they examined the widespread
sexual dimorphism and modularized expression patterns for Drosophila to characterize its
level of transcriptome diversity [10]. Using the DGRP as a basis for quantitative trait loci
(QTL) mapping, their research produced gene expression data for adult male and female
Drosophila. Interestingly, at least one of the genes identified as a modifier of RP in the
previous study was shown to have differential expression that correlated with the degree
of degeneration in the Rh1G69D protein [8]. This suggests that a subset of modifier genes
may be identifiable by observing differences in gene expression that can be correlated with
eye size.

The objective of the research reported in this paper is to computationally identify
candidate modifiers for RP using the DGRP expression data. Our foundational datasets
are the eye sizes associated with the Rh1G69D model in the DGRP strains, as identified
in Chow et al. 2016 [5], and the RNA expression values in Huang et al. 2015 [10]. With
these datasets, we analyze the phenotypic outcomes of RP and find what genes from the
collection vary in their expression in relation to eye size. A K-Means clustering algorithm is
used to gather candidate genes that influence RP by investigating the correlation between
the RNA expression values and eye sizes of diseased Drosophila strains.

The rest of this paper is dedicated to the background, methodology, results and
conclusions drawn for a proposed K-Means-based clustering algorithm to identify RP
candidate genes. First, related work on RNA sequencing, differential gene expression
(DGE) analysis and clustering will be discussed. The structure of the Rh1G69D and the
DGRP datasets and the steps taken to calculate their correlation coefficients will also be
detailed alongside the algorithm’s filtering method. Next, the resulting list of suspected
candidate modifier genes will be presented, analyzed and validated to determine which
genes have the strongest ties to RP. Finally, future directions that could expand the short
and long-term scope of this research are discussed.

2. Gene Expression Data Analysis

Differential gene expression (DGE) analysis is an important step in the RNA-seq
pipeline. DGE analysis identifies which genes are expressed at different levels between
conditions, providing insight into the biological processes affected by changes in such
condition(s) [11]. A comparative study by Soneson and Delorenzi highlights several algo-
rithmic approaches to identify phenotypic variation [12]. They developed eleven methods
of DGE analysis in the R scripting language using simulated and real RNA sequences to
determine which ones best identify genes whose change in expression values is statisti-
cally significant. These methods were implemented and evaluated on 12,500 synthetic and
11,870 real genes from their respective two datasets. The results show that voom + limma
and vst + limma are computationally fast and transformation based. DESeq, on the other
hand, proved to be the most conservative of the methods providing nominal p-values,
while TSPM and EBSeq had the strongest sample size. Soneson and Delorenzi concluded
that there were pros and cons to each of these methods, with an overarching negative being
the small sample size of RNA sequences, but the voom + limma and vst + limma methods
performed best in gathering genes under multiple conditions. A more recent comparative
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study by Wang et al. [13] discussed eight methods for DGE analysis of single-cell RNA-seq
(scRNAseq) data.

Clustering is also an important tool for analyzing gene expression data. The goal of
clustering is to identify groups that are aggregated together because of certain similarity,
where members of the same clusters are more similar in some way to each other than
to members of other clusters. Applying this to RNA-seq data means identifying clusters
of genes that exhibit similar expression profiles across samples indicating a particular
macroscopic phenotype, such as cancer [14,15].

3. Materials and Methods
3.1. Data Description

The dataset contributions from Chow et al. [5] and Huang et al. [10] are formatted as
text files. Table 1 shows the first fifteen rows of the Rh1G69D file. The data are organized in
two columns, one for strain names and the other for mean eye sizes. The range of mean
eye sizes is from 14,254.60 to 27,349.11 and are measured in pixels × 103. The Rh1G69D file
contains 173 strains. On the other hand, the DGRP file stores the gene expression data for
184 strains over 18,140 genes. Table 2 shows only the first ten rows and first five columns of
the dataset. It is a matrix where the rows represent gene IDs and the columns represent the
Drosophila strains/lines. The values stored in the cells of the matrix represent the genetic
expression values of each strain for each gene. It is worth noting that the expression values
were originally measured and collected for two replicates of each strain. For example, the
gene FBgn0000014 has two columns annotated as line_21:1 and line_21:2 with expression
values of 4.245 and 4.216, respectively. There is also a distinction between gene ID prefixes
in the DGRP data; those with the FBgn prefix are typically annotated online, whereas little
is known about those with the XLOC prefix. Furthermore, the DGRP dataset contains
184 strains, of which only 171 intersect with the strains represented in the Rh1G69D dataset.
Therefore, those 171 strains will be the focus of our analysis.

Table 1. Rh1G69D data excerpt.

Strain Mean_Eye_Size

RAL021 19,976.8
RAL026 21,473.22222
RAL038 19,981.5
RAL040 16,992.9
RAL042 21,481.4
RAL045 18,578.88889
RAL049 16,939
RAL057 17,144.4
RAL059 20,975.36364
RAL069 21,309.9
RAL073 21,332.4
RAL075 18,672.2
RAL083 21,022.9
RAL085 20,442.5

3.2. Data Clustering Methodology

K-Means clustering is a typical clustering method used in the field of DGE analysis.
K-Means belongs to a category of unsupervised learning algorithms since it can group
multidimensional datasets without referring to a known outcome. The algorithm attempts
to divide m points in n dimensions into k clusters to minimize the sum of the squares within
the clusters [16]. This means that the number of clusters k needs to be defined a priori.
The algorithm proceeds by finding a centroid for each cluster that m points groups around
according to the distance between the other centroids [17]. Once all points have been
assigned to a cluster, the positions of the k centroids are recalculated until they exhibit little
to no change. Let x = {x1, x2, . . . , xm} be the set of data points and v = {v1, v2, . . . , vk} be the
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set of centers. The pseudocode for K-Means clustering is as follows, where ci refers to the
number of data points in the ith cluster and k represents the number of cluster centers [18]:

1. Randomly select k cluster centers;
2. Calculate the distance between each data point and all cluster centers;
3. Assign the data point to the cluster whose distance from the center is minimum of all

cluster centers;
4. Recalculate the new cluster centers using

vi = (
1
ci
)

ci

∑
j=1

xj (1)

5. Recalculate the distance between each data point and new obtained cluster centers;
6. If no data point was reassigned, stop; otherwise, repeat from step 3.

Table 2. Drosophila Genetic Reference Panel (DGRP) expression data excerpt.

Gene line_21:1 line_21:2 line_26:1 line_26:2

FBgn0000014 4.244723137096 4.216353087773 4.028685457103 3.965513773625
FBgn0000015 3.234859699465 3.199773952148 3.266073854988 3.514853683793
FBgn0000017 8.066864661954 7.962031504804 8.016965852717 8.081375653861
FBgn0000018 5.317033087996 5.268665082586 5.583749673928 4.949218486350
FBgn0000022 3.000683083262 3.000127343072 4.033542617316 3.364429304288
FBgn0000024 6.120670812586 6.023183171389 6.363472660596 6.839307459595
FBgn0000028 4.101309577739 4.050933403680 4.581349625692 4.276622648091
FBgn0000032 7.460913282329 7.686897989778 7.782455553083 7.635495635919
FBgn0000036 3.988090417266 3.789139102527 3.979189512126 3.953967140263

Figure 1 illustrates a color-coded result for three clusters of 2D points using the
steps above.
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Figure 1. K-Means clustering example for three clusters.

Since the K-Means algorithm specializes in iteratively categorizing data, it can be used
to guide the process of discovering candidate modifiers for RP. So, the main objective of the
clustering process in this study is to group the strains according to their expression values
of different genes. The main steps of the proposed algorithm are illustrated in Figure 2.
The algorithm starts with reading the datasets of the Rh1G69D and the DGRP expression
from the files. The datasets are loaded into two matrices that next undergo a filtering step
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to make sure that only those strains featured in both datasets are kept. Considering only
the filtered strains, the expression values of the two annotated DGRP lines are averaged.
For example, line_21:1 and line_21:2 for the gene FBgn0000014 from Table 2 are averaged
into one expression value of 4.231. Then, the K-Means clustering step works on the average
genetic expressions of all filtered strains. The averaged expressions can optionally be
tested with silhouette analysis prior to undergoing K-Means clustering. Silhouette analysis
measures the tightness and separation of a given cluster compared to its neighbors and
evaluates the appropriate number of clusters based on proximity [19].
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Figure 2. The proposed K-Means clustering algorithm based on gene expression data.

The identified clusters actually group the strains based on their genetic expression pro-
file. In other words, one of the clusters is expected to contain a high number of exclusively
minimum expression values over some specific genes and vice versa. The two clusters
exhibiting minimum or maximum gene expression profiles are categorized, in this research,
as outlier clusters. The matrix of averaged expressions for the outlier clusters are carried
over the next step and merged with the filtered eye size strains based on strain numbers. In
fact, this will help further categorize the outlier clusters based on their average eye sizes.
More specifically, to determine the clusters representing outlier eye size grouping, the range
of eye sizes is partitioned into 4 quadrants by subtracting the maximum and minimum eye
size values and dividing the result by 4. The upper threshold is set one quadrant less than
the maximum eye size, while the lower threshold is set one quadrant from the minimum
eye size. Hence, the strains of the outlier clusters will have their mean eye sizes compared
against these thresholds to see how many strains per cluster go above or below the upper
and lower threshold values. The cluster with more strains with eye sizes exceeding the
upper threshold or less than the lower threshold will be considered an outlier cluster with
the highest or lowest mean eye sizes, respectively. With this done, the next step will be
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focusing on analyzing the correlation between the mean eye size and the genes for the
outlier clusters.

3.3. Correlation Analysis

Correlation coefficients statistically assess the correlation between two quantitative
variable datasets by calculating their covariance. We will be primarily using Pearson’s
correlation coefficient r, whose value lies between −1 and 1. With these variables denoted
as zx and zy, the two can be considered correlated if some values associated with one
variable tend to occur more often with some values of the second [20]. So, if r’s value is
close to zero zx and zy have a weak correlation, and if close to −1 or 1 they have a strong
negative or positive relationship, respectively [21]. The formula for r is:

r =
∑ zxzy

n− 1
(2)

where n is the number of observations [22]. In this research, zx and zy represent the filtered
mean eye sizes and averaged expression values for a specific gene, respectively. Therefore,
if a gene gathered from the outlier K-Means clusters exhibits a strong association, it can be
considered a possible candidate modifier for RP. The p-values of these genes will also be
calculated to assess any correlation’s significance against the null hypothesis, a suggestion
that no statistical relationship exists between the two sets of data. The null hypothesis tested
in this research is that the average gene expression is equal across all groups (i.e., the gene
is not differentially expressed), and this hypothesis will be rejected if zx and zy demonstrate
significant different expression distributions (i.e., the gene is differentially expressed).
Hence, any gene exhibiting a correlation coefficient value nearing −1 or 1 and having a
p-value below 5% (0.05) will be considered statistically significant.

Although Pearson’s formula is the most commonly used correlation method, Kendall
and Spearman’s coefficients will also factor into the post-clustering analysis for this research.
Kendall’s formula for τ analyzes the concordance and discordance of its paired observations.
It is computed as follows [23]:

τ =
nc − nd

n0
(3)

where n is the sample size, n0 the unique unordered pairs of observations, nc the number of
concordant pairs and nd the number of discordant pairs, or n(n − 1)/2. Concordant pairs
are sets of data that increase and decrease in a way that signifies a relationship whereas
discordant pairs demonstrate no such patterns. A value of 1 for Kendall’s τ means a perfect
relationship for the dataset exists and 0 means no relationship exists. Negative values
approaching −1 can also exist for τ, but unlike the other Pearson’s correlation, this is no
different from a positive value approaching 1.

On the other hand, Spearman’s coefficient, rs, tests the strength of a linear relationship
between two quantitative variables by emphasizing ordinal associations and direction [23].
The formula for rs analyzes the ranked data for Xi and Yi as follows:

rs =
∑n

i=1{(xi − x)(yi − y)}√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

(4)

where n is the sample size, xi is the rank of the measurement of X taken on the ith individual,
and yi is the same for Y. x and y can be further defined as:

x =
1
n ∑n

i=1 xi, y =
1
n ∑n

i=1 yi, (5)

The value of Spearman’s rs ranges identically from −1 to 1. Furthermore, both
Kendall’s coefficient τ and Spearman’s coefficient rs focus on broader monotonic rela-
tionships [23].
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As an example of Pearson’s correlation coefficient, to calculate r for the gene FBgn0026250
n, zx and zy need to be known. n is the number of strains being observed for this iteration
of calculating r, which in this case will be 171. zx is a vector of the 171 mean eye sizes
being observed, and zy represents the expression values of the gene FBgn26250 for the
171 observed strains. The first three values in zx are 19,976.8, 21,473.2 and 19,981.5 pixels
for strains 21, 26 and 38, respectively, as listed in Table 1, while the first three values in zy
are 10.825, 10.867 and 11.000 for strains 21, 26 and 28, respectively. Applying Pearson’s
formula for r on the values of n, zx and zy above, the correlation coefficient of FBgn0026250
is estimated to be−0.080. Since the value approaches 0, we can conclude that the expression
of this gene is not strongly correlated with the degeneracy of the eye size. To contrast
this, the correlation coefficient computed between the eye sizes and gene expression of
the gene FBgn0026084 was found to be −0.229, indicating a stronger negative correlation.
Furthermore, the gene FBgn0026064 showed a stronger positive correlation with r estimated
to be 0.136. Notice that, for this study, zx is comparatively static and only changes based
on the number of strains being correlated, whereas zy changes as each of the 18,170 genes
are considered.

Using these same examples, Kendall’s correlation coefficient τ will be calculated for
FBgn0026250, FBgn0026084 and FBgn0026064. The number of concordant pairs nc for
FBgn0026250 is determined to be 6718 and the number of discordant pairs nd is 7817 after
considering the vector for mean eye sizes and the gene’s expression values. In addition,
the number of unordered pairs n0 is 14,535 if n remains 171, which results in τ’s value of
−0.090. Applying the same steps for FBgn0026084 and FBgn0026064, τ is calculated as
−0.169 and 0.094, respectively. Since FBgn0026084′s value of −0.169 is the farthest of the
three sample genes from 0, it has the strongest correlation among them.

In the case of Spearman’s correlation coefficient rs, x represents the vector of mean eye
sizes, y the expression for a given gene and n the sample size of 171. With x estimated to be
21,532.34 and y as 10.96146, Spearman’s correlation coefficient for FBgn0026250 is −0.094.
When Spearman’s method is run for FBgn0026084 and FBgn0026064, rs is approximately
−0.248 and 0.141, respectively. These three coefficient values are similar to Pearson’s
−0.080, −0.229 and 0.136 for the same set of genes and thus suggest the same pattern of
correlation. The primary difference between Pearson and Spearman’s correlation values for
these examples is that the latter is less affected by outlier values in x and y.

3.4. Fly Stocks and Maintenance

Flies were raised at room temperature on a diet based on the Bloomington Stock
Center standard medium with malt. The GMR > Rh1G69D strain, which serves as the model
of eye degeneration in this study, has been previously described [5]. Briefly, the GMR-
GAL4 transgenic driver promotes expression of a mutant, misfolded rhodopsin protein
(Rh1G69D) through a second transgene (UAS-Rh1G69D) [5,7]. The following RNAi and
control strains were crossed to the GMR > Rh1G69D model for validation experiments and
are from the Bloomington Stock Center: Gycalpha99B (64,009 and 28,748), CG33177 (61,839),
Mnn1 (51,862, 31,220, and 35,150), Ipk2 (60,081 and 35,255), CG4558 (58,225), Nedd8 (33,881),
CG4306 (65,890), control attP40 (36,304), and control attP2 (36,303).

3.5. Eye Imaging

For eye images, adult females were collected under CO2 anesthesia and aged to
2–7 days, then frozen. Eyes were imaged at 20× magnification using a Leica EZ4W
stereo microscope and camera. Camera settings were as follows: Brightness 70%, γ 0.7,
Saturation 106, Capture Format 2592 × 1944 pixels, Shading None, Sharpening Low. Flies
were positioned to capture the left eye for all flies for consistency. In total, 10–15 images
from individual flies were captured for each strain. Eye area was measured in ImageJ as
previously described [5,8,9]. Briefly, the outlines of the eyes were carefully traced using
the freeform drawing tool on ImageJ. Then, the two-dimensional area in pixels for the
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selection was calculated using ImageJ. This two-dimensional area is used as a proxy for
three-dimensional eye size.

3.6. Statistics for Biological Validation

Statistics for comparisons between eye sizes of control versus RNAi strains were
calculated using R software. p-values were determined using ANOVA with Dunnett’s
multiple testing correction for eye size. A cutoff of p = 0.05 was used for significance.

4. Results
4.1. Experimental Setup

The proposed algorithm, shown in Figure 2, was implemented using the R scripting
language. RStudio alongside external libraries were utilized to analyze the data from the
aforementioned text files [24]. For example, ggplot2 and its subsidiary ggrepel package
were used for creating data visualization. In addition, factoextra was used for developing
K-Means plots [25,26].

The Rh1G69D data, partly listed in Table 1, have 173 strains (e.g., RAL021, or s21) and
just as many mean eye sizes. Figure 3 shows the distribution of the eye sizes for each strain,
where the x-axis shows the strain numbers and the eye sizes (measured in pixels × 103)
are represented on the y-axis. The strain numbers are attached to the y-axis in the same
order listed in the Rh1G69D file. The DGRP expression data, partly listed in Table 2, have
369 columns documenting the names and annotated strains/lines for 18,140 genes. To
show the complexity of the data, Figure 4 demonstrates the average expression values for
the two strains and nine genes listed in Table 2. The x-axis represents the gene IDs in an
incremental order and the y-axis represents the average expression values. Using s21 as
an example, the mean expression values are calculated by averaging the gene expression
values of line_21:1 and line_21:2 for every instance of these paired gene sets. It is worth
noting that the strain numbers are used solely for the purpose of identification, and thus
do not reflect any information about their respective eye sizes. For example, the final entry
in the Rh1G69D data, s913, does not have the highest or lowest mean eye size.
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Figure 4. A Sample of averaged DGRP gene expression values for strains s21 and s26.

Furthermore, the data retrieved from the Rh1G69D file needed to be filtered for multiple
reasons. For example, strain s513 was removed due to it missing line_513:1 in the DGRP
expression file and its respective expression values, preventing it from being averaged. In
addition, several strains were found to be exclusive to the Rh1G69D or DGRP expression
data, so they were excluded from the analysis as well. After all sets are cross-referenced
with the list of 368 annotated DGRP lines, 171 strains are ultimately used.

4.2. Clustering Results

When used as a guide, silhouette analysis recommended producing two clusters due
to the relatively low number of available strains. However, we found that two clusters
are insufficient for identifying the outlier eye-size grouping. Therefore, the algorithm
was tested for two to eight clusters, and we chose six clusters after noticing that a higher
number of clusters reduced the coherence of the identified clusters. Figure 5 shows the
K-Means clustering result for the 171 filtered strains based on their averaged genetic
expressions. Cluster 1 and Cluster 3 were identified as the outlier clusters including 38 and
37 strains, respectively.
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So, for the six clusters displayed in Figure 5, each node is labeled with its strain
number, and the unlabeled larger nodes are the centroids of their clusters. The nodes
in Figure 5 represent how closely matched each strain’s averaged expression values are
to one another, and the x and y-axes are a measurement of this correlation instead of
them being directly associated with eye size. In fact, the x-axis is given numerical values
attributed to principal component analysis (PCA) that represent how a node’s average
genetic expression compares to the others of its cluster. For example, s38 and s810 on the
right edge of Cluster 4 nearly overlap, so they have similar expression values across all
18,140 genes. However, the outliers with the highest and lowest average eye sizes are
difficult to identify here because PCA accounts for 18,140 dimensions (as many as there are
genes), reducing linearity.

Therefore, to determine the clusters representing outlier eye size grouping, the upper
threshold was selected as 24,075.48 (in pixels × 103) and the lower threshold as 17,528.23.
The partition value of 3273.628 was calculated based on the maximum and minimum eye
size values of 27,349.11 and 14,254.6, respectively. The strains in Figure 5 then have their
mean eye sizes compared against quadrants to see how many strains per cluster go above
or below the upper and lower threshold values. Having more strains with eye sizes greater
than 24,075.48, Cluster 1 was considered a representation of the highest eye size grouping.
The opposite is true for Cluster 3, having more strains below 17,528.23 for the eye size,
making it the probable outlier for the lowest eye size grouping. Figure 6 illustrates Cluster
1 and 3′s overlapping mean eye size measurements. The x axis represents the IDs of the
strains as index positions.
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4.3. Correlation Results

Once the strains of Cluster 1 and Cluster 3 (from Figure 5) are identified as the
outlier clusters, the next step involves calculating their correlation coefficients and p-values
based on each individual gene’s expression. Notice that this analysis does not include all
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171 filtered stains. Instead, it focuses only on the strains of the identified outlier clusters and
how their eye sizes are correlated with the expression values of the 18,140 genes. The result
of this analysis highlighted the top 20 genes with the highest absolute coefficient values
and their p-values. This approach is repeated using the Pearson, Kendall and Spearman
correlation tests, respectively.

The 20 genes gathered in each of Clusters 1 and 3 with the highest and lowest Pearson
coefficient values are illustrated in Figure 7, with the plot’s values averaging ±0.4. Figure 7
also contains genes that represent a few of the highest and lowest coefficient values (and
p-values) simultaneously. Figures 8 and 9 differ from Figure 7 in that the Kendall and
Spearman correlation methods were used, respectively, to calculate the coefficient values
of suspected genes. According to these three Figures, the selected genes not only surpass
the p-value significance percentage of <5% (0.05) but have correlation coefficients that
average ±0.5. This indicates a strong association between the highest/lowest mean eye
sizes and averaged expressions values of the gathered genes. We found that 10 genes were
shared among all three tests (Table 3) and thus considered the top candidate genes; hence,
they were run through the candidate validation study.
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Table 3. Candidate modifiers of retinitis pigmentosa (RP). Top modifiers shared among all three
correlation analyses. Closest human orthologues are listed.

FBGN_ID Gene Symbol Gene Name Human Ortho. Link to RP

FBgn0013972 CG1912 Gycalpha99B GUCY1A1; GUCY1A2 Involved in phototaxis mediated
by rhodopsin

FBgn0029914 CG4558 CG4558 C6orf89 Interacts with GPCR
FBgn0031176 FBgn0031176 CG1678 WHE
FBgn0031267 CG13688 lpk2 IPMK

FBgn0031885 CG13778 Mnn1 MEN1 Tumor suppressor involved in the
stress response

FBgn0032040 CG13386 CG13386

FBgn0032725 CG10679 Nedd8 NEDD8 Involved in protein ubiquitination
and degradation

FBgn0036787 CG4306 CG4306 GGCT
Regulates apoptosis through the

release of cytochrome c from
the mitochondria

FBgn0053177 CG33177 CG33177 MGST1 Protects from oxidative stress at the
ER membrane

FBgn0065057 CR33726 scaRNA:MeU2-C28 snoRNA

One of the top candidates is the gene CG4306 (FBgn0036787), which is plotted in
Figure 10 using Pearson’s correlation method. It has a statistically significant p-value of
0.00307 due to it being <5%, or 0.05. The x-axis represents the average eye size of the
strains (zx) and the y-axis FBgn0036787′s averaged genetic expression of the strains (zy).
Although FBgn0036787 only features the 38 strains of Cluster 1, the gradients of the nodes
shift between Figure 5′s six clusters due to zy factoring in all 171 strains into the calculation
of r. Another candidate gene, CG33177 (FBgn0053177), is depicted in Figure 11 and the
37 strains from Cluster 3 associated with it. It also has a statistically significant p-value
of 0.00079.

4.4. Candidate Validation

To validate the candidate genes identified through this analysis (Table 3), we elected
to test the impact of loss of modifier expression for seven candidate genes for which we
were able to obtain transgenic RNAi lines. The RNAi transgene targets the candidate
gene of interest, reducing or eliminating its expression in the target tissue, in this case the
developing eye [27]. We crossed the RNAi strains targeting each of these modifiers into
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the GMR > RH1G69D line, then measured the eye area in offspring carrying both the RNAi
construct and the RP model, as shown in Figure 12.
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Remarkably, we found that loss of five out of seven candidate modifiers significantly
impacted eye size in the GMR > Rh1G69D model of RP. Knockdown of either CG33177
(13,153 ± 955 pixels, N = 14) or Gycalpha99B expression (13,259 ± 2385 pixels, N = 10)
resulted in enhancement of the degenerative phenotype, showing a significant decrease
in eye size compared to controls expressing only GMR > Rh1G69D (15,136 ± 1347 pix-
els, N = 14) (Figure 12). Knockdown of CG4558 (16,811 ± 1466 pixels, N = 15), Nedd8
(19,439 ± 2286 pixels, N = 14), or CG4306 (22,507 ± 916 pixels, N = 10) resulted in a par-
tial rescue, with a significant increase in eye size compared to controls expressing only
GMR > Rh1G69D (Figure 12). No significant change in eye size was observed upon knock-
down of Mnn1 (13,967 ± 1612 pixels, N = 14) or Ipk2 (16,066 ± 1694 pixels, N = 13)
(Figure 12). These results were confirmed by independent RNAi lines for Gycalpha99B,
Mnn1, and Ipk2, validating the ability of the proposed gene expression correlation analyses
to identify bona fide modifiers of RP.
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5. Discussion
5.1. Suspected Candidate Modifiers

A total of 89 genes are featured in Figures 7–9 after using this study’s K-Means
algorithm to cluster for genetic expression and calculate any suspected gene’s Pearson,
Kendall and Spearman correlation coefficients. Table 3 displays the 10 identified genes of
these 89 that were run through candidate validation for being the most likely modifiers
for RP. It lists a given gene’s annotated data, which includes their gene ID, symbol, name,
human orthologue(s) and potential link to RP. We then validated the results of these ten
genes and their significance in potentially contributing to RP. Several of these suspected
genes (such as FBgn0032040 and FBgn0065057) also exhibited two sets of coefficient/p-
values simultaneously across Figures 7–9. This was likely made possible by this study’s
algorithm keeping the strains of the outlier clusters separate without filtering out the
expression values unassociated with these clusters.

5.2. Gene Annotation

Ultimately, the genes identified through this study are only candidate modifiers of the
degeneration phenotype observed in these flies. They require validation and characteriza-
tion of their impact on the RP model before they can be labeled as a bona fide modifier of
disease. It is remarkable that of the seven tested candidate genes, five significantly altered
the degeneration phenotype both quantitatively and qualitatively (Figure 12). The high
positive percentage for these genes is likely due to the selection of only candidates shared
across all three correlation analyses, and to the specificity of the eye size phenotype as a
readout for ER stress and degeneration.

These candidates are also interesting for their roles in pathways and processes related
to RP. Two of the validated candidates (CG33177 and CG4558) have links to oxidative stress,
which activates several of the same pathways as ER stress. CG33177 encodes a glutathione
peroxidase that is orthologous to MGST1 in humans [28]. The MGST1 enzyme localizes to
the ER membrane, where it acts to protect from oxidative stress. Its reduced expression with
age in the retinal pigment epithelium is thought to be linked to macular degeneration [29].
Loss of this gene in the fly RP model would likely be associated with increased sensitivity
to stress, including the ER stress induced by accumulation of the misfolded Rh1G69D

protein. The result is the observed reduction in eye size that is suggestive of increased
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degeneration and cell death. CG4558 is largely uncharacterized, but its closest human
orthologue (C6orf89) encodes bombesin receptor-activated protein (BRAP), which interacts
with the G-protein-coupled receptor bombesin receptor and appears to be involved in the
response to oxidative stress [30]. As rhodopsin is also a GPCR, it is possible that the product
of CG4558 may be involved in facilitating the signaling through or impacting the stability
of rhodopsin in the eye. This hypothesis is supported by another candidate, Gycalpha99B,
which encodes a guanalyl cyclase enzyme most closely related to GUCY1A1 and GUCY1A2
in humans. Known to be important in the rhodopsin photoreceptor signaling pathway,
mutation of Gycalpha99B results in disorganization of the ommatidia on its own [31]. Loss of
this enzyme when rhodopsin signaling is already disrupted in the presence of the misfolding
Rh1G69D protein is, therefore, consistent with our observation of increased degeneration.

Nedd8 and CG4306 may be linked to the ultimate cell fate decisions after activation
of the unfolded protein response by mis-folding rhodopsin. Nedd8 encodes a ubiquitin-like
polypeptide important for protein degradation that is conserved in humans (NEDD8).
Neddylation of proteins is linked to several processes, including signal transduction,
cell cycle regulation, and protein ubiquitination and degradation [32]. ER-associated
degradation of proteins (ERAD) is upregulated under conditions of ER stress similar to
that induced by expression of the mis-folding Rh1G69D protein [33]. Previous studies have
demonstrated that other genes in the ERAD pathway can also modify this exact model
of RP [34]. When ERAD and other recovery mechanisms for the cell fail, it will instead
undergo apoptosis [33]. CG4306 (GGCT) encodes a γ-glutamylcylotransferase that induces
apoptosis by stimulating the release of cytochrome c from the mitochondria [35,36]. This is
achieved downstream of the JNK signaling pathway, which is itself stimulated downstream
of the ER stress response [33,35]. Blocking the pathway at this point by reducing the
expression of GGCT could prevent activation of cell death and prevent degeneration, as we
observe in the correlation analysis (Figure 7) and in the model (Figure 12).

In all cases, it is possible that the modifiers may be acting independently of the Rh1G69D

model to alter eye size. For example, Nedd8 is required for the appropriate regulation of the
Drosophila B-catenin gene armadillo, and mis-regulation of this process leads to abnormal
eye development [37]. Future characterization of these modifier genes will explore whether
the mechanism by which eye size is affected is specific to an interaction with RP disease
pathways or whether it impacts eye development independently of these pathways.

6. Conclusions and Future Works

The clustering algorithm used in this study was able to identify 89 statistically sig-
nificant genes with a notable correlation between mean eye size and genetic expression.
Among the identified genes, seven of the top ten suspected genes with probable ties to RP
were run through a validation study.

There are several ways this study can continue to expand from both computational
and biological perspectives. Short-term examples include annotating suspected genes
based on other variations of clustering attributes, such as eye size. Another example would
be expanding the pool of shared strains and mean eye sizes beyond the Rh1G69D and
DGRP files. With more available data, silhouette analysis can be used more effectively to
determine the recommended number of clusters to use rather than function as a guide for
the algorithm.

More long-term goals include incorporating other clustering algorithms, such as
DBSCAN and Gaussian mixtures. The process can also be modified to account for genetic
mutations and fitness computations in the cluster outlier selection process [38]. This would
require obtaining information on any DGRP chromosomes associated with an increase or
decrease in eye size when mutated. Lastly, with a larger pool of data to be fed into an
autonomous analytic model, supervised machine learning would become a viable option
for gathering candidate modifiers for RP.
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