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Abstract: Germline disruptive variants in Protection of Telomeres 1 (POT1) predispose to a wide variety
of cancers, including melanoma, chronic lymphocytic leukemia (CLL), Hodgkin lymphoma, myelo-
proliferative neoplasms, and glioma. We report the first case of splenic marginal zone lymphoma
(SMZL) arising in a patient with a germline POT1 variant: a 65-year-old male with an extensive his-
tory of cancer, including melanoma and papillary thyroid carcinoma, who presented with circulating
atypical lymphocytosis. Bone marrow biopsy revealed 20% involvement by a CD5−CD10− B-cell
lymphoma that was difficult to classify. During the clinical workup of his low-grade lymphoma,
targeted next-generation sequencing (NGS) identified POT1 p.I49Mfs*7 (NM_015450:c. 147delT) at
a variant allele frequency (VAF) of 51%. NGS of skin fibroblasts confirmed the POT1 variant was
germline. This likely pathogenic POT1 loss-of-function variant has only been reported once before as
a germline variant in a patient with glioma and likely represents one of the most deleterious germline
POT1 variants ever linked to familial cancer. The spectrum of cancers associated with germline
pathogenic POT1 variants (i.e., autosomal dominant POT1 tumor predisposition syndrome) should
potentially be expanded to include SMZL, a disease often associated with the loss of chromosome 7q:
the location of the POT1 genetic locus (7q31.33).

Keywords: hereditary cancer predisposition; germline POT1 alteration; splenic marginal zone
lymphoma; cancer genetics

1. Introduction

Utilization of targeted NGS in the clinical evaluation of lymphoid disorders is gaining
traction. Genes that are somatically mutated in lymphoid malignancies, and rightfully
included in clinical NGS panels, may also be mutated in familial cancer predisposition
syndromes. POT1 alterations occur in < 10% of sporadic CLL [1], but also in familial malig-
nancies, including CLL [2], melanoma [3], Hodgkin lymphoma [4], colorectal carcinoma [5],
and angiosarcoma [6]. We report the incidental discovery of a germline POT1 variant
during the diagnostic evaluation of a low-grade B-cell lymphoma that was difficult to
classify by conventional morphologic and immunophenotypic studies.
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2. Materials and Methods
2.1. Lymphoid NGS of Bone Marrow

Genomic DNA was extracted from the fresh diagnostic bone marrow aspirate using the
MagNA Pure Compact Nucleic Acid Isolation Kit I and MagNA Pure Compact Instrument
(Roche, Basel, Switzerland). The NGS library was prepared from 20 ng genomic DNA
using the Ion Ampliseq Library Kit 2.0 (Thermo Fisher Scientific, Waltham, MA, USA).
Template amplification and enrichment were performed using the Ion Chef and HiQ View
sequencing kits (Thermo Fisher Scientific). NGS was performed on the Ion Torrent PGM
(9 samples per v318 chip) sequencer (Thermo Fisher Scientific) using a custom in-house
panel designed to detect single nucleotide variants and small insertions and deletions
within 31 genes recurrently mutated in low-grade lymphoproliferative disorders: ATM,
BIRC3, BRAF, BTK, CARD11, CCND1, CD79B, CXCR4, EGR2, FBXW7, IKBKB, KLF2, KRAS,
MAP2K1, MAP3K14, MYD88, NFKBIE, NOTCH1, NOTCH2, NRAS, PLCG2, POT1, RPS15,
SF3B1, STAT3, STAT5B, TNFAIP3, TP53, TRAF2, TRAF3, and XPO1. Reads were aligned to
hg19. Variant calling was performed using the Torrent Variant Caller (v5.10) under somatic
settings and a custom hotspot bed file containing all COSMIC (v87) entries spanning the
targeted amplicons. All pathogenic and likely pathogenic variants with VAFs ≥ 2% were
reported. A board-certified molecular pathologist interpreted variants according to the
American College of Medical Genetics and Genomics (ACMG), Association for Molecular
Pathology (AMP), American Society of Clinical Oncology (ASCO), and College of American
Pathologists (CAP) guidelines.

2.2. NGS of Skin Fibroblasts for Confirmatory Germline Testing

Skin fibroblasts cultured from a left medial forearm biopsy were sent to Invitae for con-
firmatory germline testing using a targeted Multi-Cancer NGS panel (Test Code: 01101) that
examines sequence changes and/or exonic deletions/duplications within 83 genes impli-
cated in hereditary cancers: ALK, APC, ATM, AXIN2, BAP1, BARD1, BLM, BMPR1A, BRCA1,
BRCA2, BRIP1, CASR, CDC73, CDH1, CDK4, CDKN1B, CDKN1C, CDKN2A (p14ARF),
CDKN2A (p16INK4a), CEBPA, CHEK2, CTNNA1, DICER1, DIS3L2, EGFR, EPCAM, FH,
FLCN, GATA2, GPC3, GREM1, HOXB13, HRAS, KIT, MAX, MEN1, MET, MITF, MLH1,
MSH2, MSH3, MSH6, MUTYH, NBN, NF1, NF2, NTHL1, PALB2, PDGFRA, PHOX2B, PMS2,
POLD1, POLE, POT1, PRKAR1A, PTCH1, PTEN, RAD50, RAD51C, RAD51D, RB1, RECQL4,
RET, RUNX1, SDHA, SDHAF2, SDHB, SDHC, SDHD, SMAD4, SMARCA4, SMARCB1,
SMARCE1, STK11, SUFU, TERC, TERT, TMEM127, TP53, TSC1, TSC2, VHL, WRN, and
WT1. Genomic DNA was enriched for targeted regions using a hybridization-based proto-
col and sequenced using Ilumina technology.

2.3. Fluorescence In Situ Hybridization (FISH) Analysis of Bone Marrow Aspirate

Interphase FISH for trisomy 12 as well as deletions of 17p13.1 (TP53), 11q22.3 (ATM),
13q14.3, and 13q34 was performed on the bone marrow aspirate. A total of 250 nuclei were
analyzed per probe.

3. Results

A 65-year-old man with a history of multiple primary tumors beginning in his 40s—
including melanoma, prostatic adenocarcinoma, and papillary thyroid carcinoma—was
found to have lymphocytosis during a routine medical visit. Peripheral blood showed
abnormal small- to medium-sized lymphoid cells with moderately abundant cytoplasm,
inconspicuous nucleoli and no overt hairy cytoplasmic projections (Figure 1A). A bone
marrow biopsy revealed nodular non-paratrabecular lymphoid aggregates, of cells with a
similar morphology, comprising 15–20% of total cells (Figure 1B). Based on immunophe-
notyping by flow cytometry and immunohistochemistry, the lymphoid cells were found
to be lambda light chain-restricted B cells (CD20 bright) that expressed CD11c and partial
CD103, but lacked CD5, CD10, CD23, CD200, CD123, CD25, Lef1, Cyclin D1, and Sox11.
There was no identifiable plasmacytic differentiation. FISH identified a 17p (TP53) deletion
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in 20% of the bone marrow cells (Figure 1C). Lymphoid cells showed somatic mutation of
the immunoglobulin heavy chain variable (IGHV) region (93.3% similarity to germline) and
usage of the IGHV3-53*04 allele. Clinical staging demonstrated new mild splenomegaly;
no definite lymphadenopathy was reported.
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Figure 1. Blood and bone marrow involvement by SMZL with 17p deletion. Circulating atypical
lymphocytes displayed condensed chromatin and moderately abundant pale blue cytoplasm (A).
Lymphocytes lacked prominent cell surface projections and showed no evidence of plasmacytic
differentiation. The bone marrow showed 20% involvement by a B-cell lymphoma that formed
multiple ill-defined nodular aggregates (B). FISH demonstrated 17p (TP53) deletion in 20% of bone
marrow cells (C).

The main differential diagnosis for this hard-to-classify, low-grade B-cell lymphoma
was SMZL versus hairy cell leukemia variant (HCL-v). Both can be challenging to diagnose
because of a lack of disease-defining markers and reluctancy to biopsy the spleen, the
primary site of disease, due to the associated morbidity. Molecular profiling, however,
can aid in the diagnosis by identifying characteristic genetic differences. For example,
unlike HCL-v [7,8], SMZL frequently harbors NOTCH2 variants and mutations affecting
the NF-κB signaling pathway [9].

To help classify the lymphoma, targeted Ion Torrent NGS was performed on the bone
marrow aspirate using a custom 31-gene panel designed to evaluate low-grade lympho-
proliferative disorders [10]. NGS identified two likely pathogenic variants: (1) TRAF3
p.Lys168Glyfs*3 (NM_145725: c.501_502delGA) at a VAF of 8% and (2) POT1 p.Ile49Metfs*7
(NM_015450: c.147delT) at a VAF of 51% (Table 1). Notably, MAP2K1, BRAF, MYD88,
and TP53 variants were not detected. TRAF3 is a negative regulator of the NF-κB signal-
ing pathway, and the TRAF3 VAF of 8% was consistent with the degree of bone marrow
involvement by lymphoma. The overall clinical, morphologic, immunophenotypic, and
molecular findings favored a diagnosis of SMZL.

Table 1. NGS results and variant details.

Variant VAF Tissue Tested Origin
COSMIC
Database

Frequency

ClinVar ID, gnomAD
Population Frequency

Pathogenicity
(ACMG
Criteria)

TRAF3
c.501_502delGA,
p.Lys168Glyfs*3

8% bone marrow presumed
somatic absent absent from ClinVar

and gnomAD
likely

pathogenic

POT1 c.147delT,
p.Ile49Metfs*7 51% bone marrow and

skin fibroblasts
confirmed
germline absent

ClinVar Variation ID:
420174; 0.007%

(gnomAD)

likely
pathogenic
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In contrast to TRAF3, the POT1 VAF of 51% was discordant with the frequency of
lymphoma cells and suggestive of a potential heterozygous germline variant. Based on
his strong history of cancer and discovery of the POT1 variant, the patient was referred to
a clinical geneticist by his oncologist for counseling and further evaluation. NGS of skin
fibroblasts, performed using an orthogonal (Illumina) sequencing chemistry, confirmed
the POT1 p.Ile49Metfs*7 variant to be of germline origin. His family history revealed
that many relatives—across multiple generations—developed lung, skin, and hematologic
malignancies, including Hodgkin lymphoma and multiple myeloma (Figure 2A). Two of his
relatives died from cancer at a young age: his father from mesothelioma at age 54 and his
brother from lung cancer at age 44 (Figure 2A). Unfortunately, samples from relatives were
not available for familial co-segregation studies. The overall findings, however, suggest that
this germline early truncating POT1 variant likely explains this individual’s remarkable
personal and family history of cancer.
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Figure 2. Family pedigree illustrating an extensive history of cancer and location of the POT1
p.Ile49Metfs*7 variant. To date, the proband (arrow) has developed six primary tumors: melanoma
(diagnosed at age 48), cutaneous squamous cell carcinoma (diagnosed at age 52), papillary thyroid
carcinoma (diagnosed at age 55), cutaneous basal cell carcinoma (diagnosed at age 62), SMZL
(diagnosed at age 65), and prostatic adenocarcinoma (diagnosed at age 66) (A). By patient report,
almost all of the proband’s paternal relatives have developed cancer (A). A paternal aunt developed
cervical cancer in her 50s and melanoma in her late 50s/early 60s; she also had two sons who
developed leukemia in their 50s. An additional five paternal aunts and uncles, all of whom were
smokers, developed lung cancer (ages at diagnosis unknown). Notably, the proband’s father died
from mesothelioma at age 54 (age at diagnosis unknown), and his brother died from lung cancer at
age 44 (diagnosed at age 42). The proband’s sister was diagnosed with multiple myeloma at age 54,
and his daughter was diagnosed with Hodgkin lymphoma at age 27. (A). Only the proband’s son,
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who is unaffected by cancer, has been tested for the germline POT1 p.Ile49Metfs*7 and found to be
negative. (B). POT1 binds to the single-stranded G-rich telomeric overhang via its two N-terminal
oligonucleotide/oligosaccharide binding (OB)-folds. The C-terminus contains another OB-fold and a
Holliday junction resolvase-like (HJRL) domain which binds to telomere protection protein 1 (TTP1),
anchoring POT1 to the shelterin complex. POT1 p.Ile49Metfs*7 (red arrow) is the most upstream (5′)
germline frameshift variant ever reported and leads to a premature stop codon in the seventh codon
of the new reading frame (B).

4. Discussion

POT1 encodes one of six protein subunits of the shelterin complex that regulates
telomere length and shields single-stranded telomeric DNA from being recognized as
double-strand breaks. POT1 (Figure 2B) includes an N-terminal single-stranded DNA
(ssDNA)-binding domain and a C-terminal protein-binding domain that anchors POT1 to
the rest of the shelterin complex via telomere protection protein 1. Cancer-associated POT1
alterations include diverse heterozygous loss-of-function variants believed to promote
tumorigenesis in telomerase-expressing cells via telomere elongation, thereby extending
the proliferative capacity and preventing senescence of cells [11]. In contrast, heterozygous
POT1 variants did not cause telomere deprotection, activation of a DNA-damage response,
or genomic instability [11]. Therefore, oncogenic POT1 variants predominantly appear
to drive cancer through telomere lengthening that enhances the proliferative capacity of
incipient tumor cells and enables acquisition of cooperating mutations required for cancer
progression rather than through telomere deprotection and fragility [11]. In individuals
with germline POT1 variants, accumulation of distinct patterns of somatic alterations within
tissue-specific progenitor cells likely underlies development of the vast array of cancers
associated with the Li-Fraumeni-like POT1 tumor predisposition syndrome. Identification
of both telomeric and non-telomeric DNA-binding motifs within the N-terminal ssDNA-
binding domain (specifically the OB-1 fold) of POT1 raises the possibility of a role beyond
protection and maintenance of telomeres [12].

POT1 p.Ile49Metfs*7 occurs within a region encoding the N-terminal OB-1 fold, cre-
ating a premature stop codon upstream of all functional domains (Figure 2B) that likely
results in POT1 haploinsufficiency through protein truncation or nonsense-mediated mes-
senger RNA decay. This alteration was previously identified as a germline variant in a
patient with glioma [13]; however, this patient’s personal and family history of cancer
are unknown, and no functional studies were performed to characterize the variant’s
pathogenicity (communication with Dr. Victor Velculescu). The extensive personal and
family history of cancer in this individual with six tumors, including SMZL, supports a
likely oncogenic role for this POT1 variant. Across the spectrum of germline POT1 variants
associated with cancer predisposition [14], p.Ile49Metfs*7 is the earliest frameshift mutation
ever reported.

Recent studies implicate germline POT1 alterations in predisposition to a wide variety
of hematologic malignancies, including myeloproliferative neoplasms [15] and pediatric
acute myeloid leukemia [16]. To our knowledge, this is the first reported case of SMZL
arising in a patient with a germline POT1 variant. Recurrent POT1 alterations have not
been described in multiple large-scale sequencing studies of SMZL, and we are not aware
of any familial SMZL syndrome. Interestingly, POT1 is located on 7q31.33, and hemizygous
deletion of this chromosomal region, including POT1, represents the most common cytoge-
netic abnormality in SMZL, occurring in up to 40% of cases [17,18]. TP53 (17p) deletion
occurs in about 20–30% of SMZL cases [13]. Whether POT1 haploinsufficiency or telomere
maintenance play a role in the pathogenesis of SMZL remains to be elucidated.

In summary, we: (1) utilized NGS to help classify a SMZL, (2) incidentally identified a
germline POT1 p.Ile49Metfs* variant, and (3) suggest this disruptive POT1 variant underlies
this individual’s extensive personal and family cancer history. As clinical tumor sequencing
expands, germline variants in cancer susceptibility genes may be unexpectedly identi-
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fied. Collaboration between pathologists, oncologists, and clinical geneticists is needed to
optimally care for families affected by diverse forms of hereditary cancer predisposition.
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