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Abstract: Shift work is associated with increased alcohol drinking, more so in males than females,
and is thought to be a coping mechanism for disrupted sleep cycles. However, little is presently
known about the causal influence of circadian rhythm disruptions on sex differences in alcohol
consumption. In this study, we disrupted circadian rhythms in female and male mice using both
environmental (i.e., shifting diurnal cycles) and genetic (i.e., Clock∆19/∆19 mutation) manipulations,
and measured changes in alcohol consumption and preference using a two-bottle choice paradigm.
Alcohol consumption and preference, as well as food and water consumption, total caloric intake,
and weight were assessed in adult female and male Clock∆19/∆19 mutant mice or wild-type (WT)
litter-mates, housed under a 12-hour:12-hour light:dark (L:D) cycle or a shortened 10-hour:10-hour
L:D cycle. Female WT mice (under both light cycles) increased their alcohol consumption and
preference over time, a pattern not observed in male WT mice. Compared to WT mice, Clock∆19/∆19

mice displayed increased alcohol consumption and preference. Sex differences were not apparent
in Clock∆19/∆19 mice, with or without shifting diurnal cycles. In conclusion, sex differences in
alcohol consumption patterns are evident and increase with prolonged access to alcohol. Disrupting
circadian rhythms by mutating the Clock gene greatly increases alcohol consumption and abolishes
sex differences present in WT animals.

Keywords: shiftwork; sex differences; alcohol use disorder; chronobiology; chronicity

1. Introduction

Increases in problematic alcohol use are associated with shift work. Thought to de-
velop as a coping mechanism for the loss of quality sleep that shift workers experience [1],
the odds of short-term alcohol consumption are increased in shift workers while the odds
of daily drinking are reduced, possibly reflecting a pattern of increased binge drinking
behaviour; female shift workers reportedly consumed less alcohol than male shift work-
ers, although studied cohorts were biased toward male subjects [2,3]. Increased alcohol
consumption is reported in Tunisian and Japanese shift workers compared to workers
on standard schedules, and these reports further implicate poor sleep as a contributing
factor [4,5]. Contrary evidence also exists, however, from a population of Norwegian
nurses demonstrating that shift work is associated with lower self-reported scores on
the Alcohol Use Disorders Identification Test—Consumption [6] and from a population
of Finnish nurses demonstrating that shift work is not associated with altered alcohol
consumption [7]. Although alcohol consumption may be a sleep-loss coping mechanism
that leads to problematic, binge drinking behaviour, divergent circadian biology may also
contribute to alcohol consumption and alcohol use disorder [8]. To reconcile the contradic-
tory findings and understand the biological mechanisms linking shift work and alcohol
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consumption, rodent models are often used to investigate the individual and combined
effects of environmental and biological circadian rhythm disruptions.

Produced in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus, the
circadian rhythm programs neuronal, hormonal, and physiological processes for optimal
temporal efficiency, and receives input from sensory systems to update internal processes
against external diurnal cycling [9]. This internal rhythm entrains to a light:dark (L:D)
period of 24-hours (12:12 L:D). Disruptions in diurnal cycling desynchronize our internal
circadian rhythm from the external environment, altering circadian gene expression and
producing negative health consequences such as disrupted sleep [10–12]. Comparing male
C57Bl/6 mice entrained to either a shortened (6:18) or lengthened (18:6) L:D cycle with
continuous access to 10% ethanol via a two-bottle choice paradigm reveals that mice on the
shortened diurnal cycle have increased alcohol consumption and preference, compared to
those on the lengthened diurnal cycle [13]. However, in female and male high- and low-
alcohol preferring mice entrained to a shortened (11:11), lengthened (13:13), or standard
(12:12) L:D cycle, with continuous access to 10% ethanol via the two-bottle choice paradigm,
mice on the shifted diurnal cycles showed decreased alcohol consumption compared to
12:12 L:D mice; however, this failed to achieve statistical significance [14]. Decreased
alcohol consumption is also apparent in female and male inbred Fischer and Lewis rats
with continuous access to 10% ethanol via the two-bottle choice paradigm and entrained
to a standard (12:12) or shortened (6:6) L:D cycle. All 6:6 L:D rats displayed statistically
significant reductions in alcohol consumption, while only the 6:6 L:D Fischer rats had
reduced alcohol preferences [15]. Although this evidence demonstrates that shifting diurnal
cycles produces measurable effects on alcohol consumption and preference, genetically
modifying mice to disrupt biological mechanisms involved in circadian rhythmicity also
produces a reliable model for investigating the association between circadian disruptions
and alcohol consumption.

The transcriptional activator gene Circadian Locomotor Output Cycles Kaput (CLOCK
or Clock) is essential for circadian rhythms, as it is responsible for generating down-stream
transcription factors that self-regulate to produce a biochemical rhythmicity [16]. Thus,
mutating the Clock gene in mice permits the study of causal contributions to circadian
rhythms and their synchronization with external factors [17], and is commonly performed
via the Clock∆19/∆19 point mutation, an adenine-to-thymine transversion that results in
the deletion of 51 amino acids from the Clock protein [18]. Mice with the Clock∆19/∆19

mutation sleep less than wild-type (WT) mice and have extended circadian periodicity
that becomes arrhythmic over time, which is thought to be reflective of circadian mis-
alignment resulting from shift work schedules [19–22]. While various studies show that
alcohol exposure disrupts circadian biology in mice [23–26], to date only one study has
directly investigated alcohol consumption in Clock∆19/∆19 mice. Providing female and
male Clock∆19/∆19 mice and WT controls with continuous access to 10% ethanol via the
two-bottle choice paradigm reveals that Clock∆19/∆19 mice consume more alcohol than
WT controls, with female Clock∆19/∆19 mice demonstrating a statistically significant effect.
Knocking down Clock expression in WT mice using RNA interference increased alcohol
consumption to levels observed in Clock∆19/∆19 mice [27]. Unfortunately, this study did not
compare the sexes, even though male Clock∆19/∆19 mice did not demonstrate a statistically
significant difference in alcohol consumption from WT controls.

Although not fully understood, sex differences in circadian biology are apparent in
the divergent morphology of the rodent SCN, and in differential responses to sleep/wake
or rest/active cycle disturbances [28], including shifting diurnal cycles. Female and male
high alcohol-drinking rats with continuous access to 10% ethanol via the two-bottle choice
paradigm were entrained to either a standard (12:12) L:D cycle or shortened 6-hour (6:6)
L:D cycle. Female 12:12 L:D rats decreased, whereas female 6:6 L:D rats increased, their
alcohol consumption. Opposingly, male 12:12 L:D rats increased, while male 6:6 L:D rats
decreased, their alcohol consumption [29]. This is contrary to the evidence highlighted
above that mice and rats of both sexes experience the same effects of shifting diurnal cycles
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on alcohol consumption. Conflicting reports are not surprising, however, as sex differences
in alcohol consumption are sensitive to the rodent strain used [30,31]. Herein, the purpose
of this study was to investigate for the first time whether circadian rhythm disruptions that
are produced through genetic manipulations (i.e., Clock∆19/∆19 mutation) interacting with
the environment (i.e., shifting diurnal cycles) produce sex-dependent changes in alcohol
drinking behaviour in C57Bl/6 mice. Based on past literature, we expect that modifying the
Clock gene to disrupt circadian rhythms will increase alcohol consumption and preference,
and that females will drink more than males. We further hypothesize that a moderate
shortening of diurnal cycles (12:12 to 10:10) will increase alcohol consumption and that
additional sex differences in this effect will not be observed.

2. Materials and Methods
2.1. Animals

Litter- and age-matched female and male WT (N = 10 per sex) and homozygous
Clock∆19/∆19 mutant (Females: N = 10; Males: N = 8) C57Bl/6J mice were obtained from a
breeding colony maintained at the University of Guelph [32,33]. WT and Clock∆19/∆19 mice
were pair-housed in cages with perforated dividers to avoid the confounding effects of
social isolation [34] while ensuring mice accessed only their own food, water, and alcohol.
Animals were maintained in a constant environment with an ambient temperature of
21 ± 2 ◦C, circulating air, and constant humidity of 50 ± 10%. Once the mice were seven
weeks old, daily handling and data collection started. Following the 24-day study period,
mice were euthanized using CO2. All experiments were approved by the University of
Guelph Institutional Animal Care and Use Committee and performed in accordance with
the guidelines set forth by the Canadian Council on Animal Care (1993).

2.2. Diurnal Cycles

Mouse cages were housed in custom-built cabinets with regulated house lights to
maintain mice on either a standard (12:12) L:D or a disrupted (10:10) L:D cycle (N = 8 or
10 per group, Figure 1A,B). All mice were habituated to a 12:12 L:D cycle for one week
prior to the start of the study period. House lights for the 12:12 L:D mice turned on at
10 a.m. (Zeitgeber time 0, ZT0) and off at 10 p.m. (ZT12) each day. The on/off times for the
10:10 L:D group were manually programmed each day using a timer switch controlling the
house lights (Figure 1A).

2.3. Two-Bottle Choice Paradigm

Alcohol drinking was assessed using the two-bottle choice paradigm as previously
described [35,36]. Each mouse accessed two 50 mL graduated plastic bottles topped with
stainless-steel drinking spouts. One bottle contained 10% alcohol (v/v) and the other
contained tap water. The position of each bottle was rotated daily to avoid the confounding
effects of spatial preference. Alcohol and water, as well as food, was provided ad libitum
throughout the 24-day study period.

2.4. Daily Measures

The mass of the alcohol, water, food, and mice was measured daily (in grams [g]).
The first two to four days of the 24-day study period constituted baseline measurements
of water consumption, without alcohol present. Alcohol was available to mice after the
second day of baseline measurements. Daily changes were calculated as the difference
between the mass of the alcohol, water, food, and mice present at the time of measurement
and the corresponding measurement from the day before. Individual consumption rates
were computed as proportional to the kilogram (kg) mass of the mouse (e.g., g/kg of
body mass) to correct for the baseline differences in body weights between the groups.
The amount of alcohol consumed was calculated as 10% of the daily change in mass for
the bottle containing ethanol. Caloric intake was calculated knowing standard mouse
chow contains 13,816 J/kg (3.3 Cal/g) of digestible energy with 20% protein, 3% fat,



Genes 2022, 13, 701 4 of 17

and 77% carbohydrates, and a bottle of 10% ethanol has a caloric value of 2931 J/kg
(0.7 Cal/g). Alcohol preference (P) was represented as a percentage and calculated using
the following formula:

P =
alcohol consumed

[
g

kg

]
− water consumed

[
g

kg

]
total fluids consumed

[
g

kg

] × 100%Genes 2022, 12, x FOR PEER REVIEW 4 of 20 
 

 

 
Figure 1. (A) Schematic illustrating induced diurnal disruptions through differential light:dark 
(L:D) cycles in the two study groups. Clear light bulbs signify periods of darkness and yellow light 
bulbs represent periods of light exposure. After the initial 2.5 days, the two groups are in complete 
desynchrony (light phase in the 10:10 L:D group, and dark phase in the 12:12 L:D phase; illustrated 
by the leftmost red double-ended arrow). After the subsequent 2.5 days, the two groups are back in 
complete synchrony (both begin their light phase; illustrated by the rightmost red double-ended 
arrow). (B) Overview of Study Design; WT (N = 20M, N = 20F) and ClockΔ19/Δ19 mice (N = 16M, N = 
20F) were pair-housed with a divider in between. Alcohol drinking, food consumption, and body 
weight were assessed in male and female WT and ClockΔ19/Δ19 mice under either a normal 12 h:12 h 
L:D cycle or a 10 h:10 h L:D cycle. 

2.3. Two-Bottle Choice Paradigm 
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Figure 1. (A) Schematic illustrating induced diurnal disruptions through differential light:dark
(L:D) cycles in the two study groups. Clear light bulbs signify periods of darkness and yellow light
bulbs represent periods of light exposure. After the initial 2.5 days, the two groups are in complete
desynchrony (light phase in the 10:10 L:D group, and dark phase in the 12:12 L:D phase; illustrated
by the leftmost red double-ended arrow). After the subsequent 2.5 days, the two groups are back
in complete synchrony (both begin their light phase; illustrated by the rightmost red double-ended
arrow). (B) Overview of Study Design; WT (N = 20M, N = 20F) and Clock∆19/∆19 mice (N = 16M,
N = 20F) were pair-housed with a divider in between. Alcohol drinking, food consumption, and
body weight were assessed in male and female WT and Clock∆19/∆19 mice under either a normal
12 h:12 h L:D cycle or a 10 h:10 h L:D cycle.

2.5. Statistical Analysis

Statistical analysis was performed using Jeffrey’s Amazing Statistics Program v0.14.1.0
(JASP, University of Amsterdam, Amsterdam, The Netherlands). Within- (days) and
between- (sex, genotype, L:D cycle) group comparisons (Figure 1B) were assessed using a
two-way repeated measures ANOVA with Tukey’s Honestly Significant Difference post hoc
test. Correlational analyses were performed using a one-way Pearson’s r correlation coeffi-
cient and shuffled water consumption data were produced by ordered list randomization
(using random.org/lists). A significance level of p ≤ 0.05 was used. Greenhouse–Geisser
corrections were used when Mauchly’s test of sphericity indicated the assumption of
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sphericity was violated. Data are expressed as mean ± standard error of the mean (SEM).
Erroneous raw data points were removed and replaced with an average of the adjacent
datapoints. Figures depict the 20-day period during which alcohol was available to mice
out of the 24-day study period.

3. Results
3.1. Alcohol Consumption

A significant main effect of genotype on alcohol consumption was observed (F (1,68)
= 16.139, p = 0.000, ηp

2 = 0.192) and post hoc comparisons revealed that Clock∆19/∆19 mice
consumed more alcohol than WT mice. A significant sex by genotype interaction was
observed (F (1, 68) = 6.481, p = 0.013, ηp

2 = 0.087) and post hoc comparisons revealed
that, while a statistically significant difference between female WT and Clock∆19/∆19 mice
was not observed (Figure 2A), male Clock∆19/∆19 mice drank significantly more than male
WT mice (Figure 2B). A significant sex by genotype by day interaction was also observed
(F (4.083, 277.651) = 5.313, p = 0.000, ηp

2 = 0.072) with post hoc comparisons revealing that
alcohol consumption by female WT mice diverged from male WT mice toward the end
of the study (Figure 2C) whereas female and male Clock∆19/∆19 mice consumed similar
amounts of alcohol throughout the study (Figure 2D).

3.2. Alcohol Preference

A significant main effect of genotype on alcohol preference was observed (F (1, 67) = 126.056,
p < 0.001, ηp

2 = 0.653) and post hoc comparisons revealed that Clock∆19/∆19 mice exhibited
greater alcohol preferences compared to WT mice (Figure 3A,B). A significant sex by genotype
interaction was also observed (F (1, 67) = 8.818, p = 0.004, ηp

2 = 0.116) and post hoc comparisons
revealed that, whereas both sexes of Clock∆19/∆19 mice had greater alcohol preferences than
their WT counterparts, female WT mice exhibited significantly greater alcohol preferences
compared to male WT mice (Figure 3C) while female and male Clock∆19/∆19 mice exhibited
similar alcohol preferences (Figure 3D). A main effect of day was also observed (F (7.835, 524.959)
= 12.706, p < 0.001, ηp

2 = 0.159). A significant sex by genotype by day interaction was found
(F (7.835, 524.959) = 5.496, p < 0.001, ηp

2 = 0.076) and post hoc comparisons revealed that,
over the study period, the differences decreased between female WT and Clock∆19/∆19 mice
(Figure 3A), increased between male WT and Clock∆19/∆19 mice (Figure 3B), and increased
between female and male WT mice (Figure 3C). Differences were not observed between female
and male Clock∆19/∆19 mice (Figure 3D).

3.3. Water Consumption

A significant main effect of genotype on water consumption was observed (F (1, 68) = 121.934,
p < 0.001, ηp

2 = 0.642) and post hoc comparisons revealed that WT mice consumed much more
water than Clock∆19/∆19 mice (Figure 4A,B). A significant main effect of day on water consump-
tion was also observed (F (7.203, 489.824) = 4.524, p < 0.001, ηp

2 = 0.062). A significant sex by
genotype by day interaction was found (F (7.203, 489.824) = 2.605, p = 0.011, ηp

2 = 0.037) and
post hoc comparisons revealed that female Clock∆19/∆19 mice began consuming significantly less
water than female WT mice on the first day of alcohol consumption, a difference that disappeared
toward the end of the study as female WT mice drank less water throughout; male Clock∆19/∆19

mice also drank significantly less water compared to male WT mice toward the end of the study
(Figure 4A,B). Within each genotype group, female and male mice consumed similar amounts of
water throughout the study (Figure 4C,D).
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Figure 2. The amount of alcohol consumed by mice is influenced by sex, genotype, and number
of drinking days, but not L:D cycles. (A). Female WT and Clock∆19/∆19 mice, regardless of L:D
cycles, showed no differences in the amount of alcohol consumed over time. (B). Over time, the
amount of alcohol consumed by male Clock∆19/∆19 mice increased such that they were consuming
more than the male WT mice for most of the study period. (C). The amount of alcohol consumed
by female mice diverged from that of male WT mice across the 20-day testing period. (D). Female
and male Clock∆19/∆19 mice demonstrated similar amounts of alcohol consumed across the 20-day
testing period. F = females, M = males; 12 = 12:12 L:D cycle, 10 = 10:10 L:D cycle; WT = wild-type.
Darker tones are WT mice and lighter tones are Clock∆19/∆19 mice. Black = female 12:12 L:D group,
blue = female 10:10 L:D group, purple = male 12:12 L:D group, orange = male 10:10 L:D group.
* = p < 0.05, *** = p < 0.001.
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Figure 3. Alcohol preference in mice is influenced by sex, genotype, and number of drinking days, but
not L:D cycle. (A). Compared to female WT mice, female Clock∆19/∆19 mice demonstrated enhanced
alcohol preference. Over time, female WT alcohol preference increased such that by day 20 they were
no longer different from their Clock∆19/∆19 counterparts. (B). Male Clock∆19/∆19 mice demonstrated
enhanced alcohol preference compared to male WT mice, a difference that was maintained across
the 20-day testing period. (C). Compared to male WT mice, female WT mice demonstrated alcohol
preferences that increased over time such that by day 20 the difference between male and female
mice was statistically significant. (D). Clock∆19/∆19 mice exhibited alcohol preferences that were not
influenced by sex or L:D cycle. F = females, M = males; 12 = 12:12 L:D cycle, 10 = 10:10 L:D cycle; WT
= wild-type. Darker tones are WT mice and lighter tones are Clock∆19/∆19 mice. Black = female 12:12
L:D group, blue = female 10:10 L:D group, purple = male 12:12 L:D group, orange = male 10:10 L:D
group. ** = p < 0.01, *** = p < 0.001.
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of drinking days, but not L:D cycle. (A). Female Clock∆19/∆19 mice demonstrated reduced water
consumption compared to female WT mice, which demonstrated a decrease in the amount of water
consumed across the 20-day testing period such that by the end of the study they were no longer
different from female Clock∆19/∆19 mice. (B). Compared to male WT mice, male Clock∆19/∆19 mice
demonstrated reduced amounts of water consumed, an effect that was maintained throughout the
duration of the study. (C). Female and male WT mice initially demonstrated similar amounts of
water consumed, whereas toward the end of the study the female WT mice were consuming slightly
less than male WT mice. (D). Female and male Clock∆19/∆19 mice demonstrated similar amounts
of water consumed across the 20-day testing period. F = females, M = males; 12 = 12:12 L:D cycle,
10 = 10:10 L:D cycle; WT = wild-type. Darker tones are WT mice and lighter tones are Clock∆19/∆19

mice. Black = female 12:12 L:D group, blue = female 10:10 L:D group, purple = male 12:12 L:D group,
orange = male 10:10 L:D group. * = p < 0.05.

3.4. Total Fluid Consumption

A significant main effect of genotype was observed (F (1, 68) = 96.094, p < 0.001,
ηp

2 = 0.586) and post hoc comparisons revealed that WT mice consumed more fluids
overall than Clock∆19/∆19 mice (Figure 5A,B). A significant main effect of day was also
observed (F (7.651, 520.284) = 4.421, p < 0.001, ηp

2 = 0.057). A significant sex by day
interaction was found (F (7.651, 520.284) = 2.221, p = 0.027, ηp

2 = 0.032) and post hoc
comparisons revealed that female mice were drinking significantly less toward the end of
the study than they were at the start of the study; an effect that was largely only observed
for female mice (Figure 5A). A significant sex by genotype by day interaction was also
observed (F (7.651, 520.284) = 2.654, p = 0.008, ηp

2 = 0.038) and post hoc comparisons
revealed that female WT mice drank significantly greater amounts compared to female
Clock∆19/∆19 mice in the first 10 days of the study, with these differences disappearing in
the second 10 days, while male WT mice drank significantly greater amounts consistently
throughout the study (Figure 5A,B). Within each genotype group, female and male mice
consumed similar amounts of fluid throughout the study (Figure 5C,D).
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ber of drinking days, but not L:D cycle. (A). Female Clock∆19/∆19 mice consumed less fluids in
total compared to female WT mice, which demonstrated a decrease in the quantity of total fluids
consumed across the 20-day testing period such that by the end of the study they were no longer
different from female Clock∆19/∆19 mice. (B). Compared to male WT mice, male Clock∆19/∆19 mice
demonstrated reduced amounts of total fluids consumed, an effect that was maintained throughout
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3.5. Food Consumption

A significant main effect of genotype on food consumption was observed (F (1,68) = 45.435,
p < 0.001, ηp

2 = 0.401) and post hoc comparisons revealed that WT mice consumed more food
than Clock∆19/∆19 mice (Figure 6A,B). A significant main effect of sex on food consumption was
found (F (1,68) = 27.334, p < 0.001, ηp

2 = 0.287) and post hoc comparisons revealed that female
mice consumed more food than male mice throughout the study (Figure 6C,D). Significant
interaction effects were not observed.

3.6. Caloric Intake

A significant main effect of genotype on caloric intake was observed (F (1,39) = 29.510,
p < 0.001, ηp

2 = 0.431) and post hoc comparisons revealed that, overall, WT mice consumed
fewer calories than Clock∆19/∆19 mice (Figure 7A,B). A significant main effect of sex was
observed (F (1,39) = 21.171, p < 0.001, ηp

2 = 0.352) and post hoc comparisons revealed that
overall male mice consumed fewer calories than female mice (Figure 7A,B). Differences in
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caloric intake were not observed between females and males within each genotype group
(Figure 7C,D).
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3.7. Body Weight

A significant main effect of genotype on body weight was found (F (1,68) = 39.940,
p < 0.001, ηp

2 = 0.370) with post hoc comparisons revealing that WT mice gained more
weight than Clock∆19/∆19 mice throughout the study (Figure 8A,B). A significant main
effect of sex on body weight was found (F (1, 68) = 245.930, p < 0.001, ηp

2 = 0.783) with
post hoc comparisons revealing that male mice gained more weight than female mice
(Figure 8C,D). A significant sex by genotype interaction was observed (F (1, 68) = 4.031,
p = 0.049, ηp

2 = 0.056) and post hoc comparisons showed that female and male Clock∆19/∆19

mice gained more weight than female and male WT mice, while male WT mice gained
more weight than female WT mice (Figure 8A–C). A significant main effect of day (F (2.419,
164.504) = 121.377, p < 0.001, ηp

2 = 0.641) was also observed. A significant genotype by L:D
cycle by day interaction was also observed (F (2.419, 164.504) = 3.399, p = 0.028, ηp

2 = 0.048);
post hoc comparisons revealed that differences were most apparent between WT 12:12 L:D
mice and Clock∆19/∆19 10:10 L:D mice after day 10 of testing, but only for comparisons
with subsequent testing days, likely reflective of the increase in body weight reported in
WT mice (Figure 8A,B). It is interesting to note that body weight seems to be the only
measure in this study that demonstrated a compounding effect of genotype and diurnal
cycle circadian rhythm disruption.
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Figure 8. Changes in mouse body weight over time are influenced by sex, genotype, number of drinking
days, and L:D cycle. (A). Female WT mice demonstrated greater body weights compared to female
Clock∆19/∆19 mice; an effect most prominent in female 12:12 WT mice. (B). Male WT mice demonstrated
greater body weights compared to male Clock∆19/∆19 mice; an effect most prominent in male 12:12 WT
mice. (C). Female and male WT mice demonstrated similar body weights, with the greatest observable
differences being in the female 12:12 mice and male 10:10 mice. (D). Female and male Clock∆19/∆19 mice
demonstrated similar body weights, with the greatest observable differences being in the male 12:12 and
10:10 mice. F = females, M = males; 12 = 12:12 L:D cycle, 10 = 10:10 L:D cycle; WT = wild-type. Darker
tones are WT mice and lighter tones are Clock∆19/∆19 mice. Black = female 12:12 L:D group, blue = female
10:10 L:D group, purple = male 12:12 L:D group, orange = male 10:10 L:D group. * = p < 0.05.
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4. Discussion

This study aimed to investigate the effect of possible gene and environment interac-
tions on alcohol consumption and preference in female and male mice, and found that
genetic, but not environmental, circadian rhythm disruptions sex-dependently influence
alcohol consumption and preference in mice (results summarized in Table 1). Female WT
mice developed increased alcohol consumption compared to male WT mice approximately
one week after the initiation of alcohol drinking. Clock∆19/∆19 mice, on the other hand,
did not display these sex differences and consistently consumed more alcohol than WT
mice. Alcohol consumption and preference in female WT mice increased until they were
no longer different from female Clock∆19/∆19 mice. Male WT mice, however, consistently
consumed smaller amounts of alcohol and exhibited reduced alcohol preference compared
to male Clock∆19/∆19 mice. Shifting diurnal cycles did not alter alcohol consumption or
preference in our study.

Table 1. A summary table highlighting the reported results across all groups and measures in-
vestigated. All female and male values are compared to female or male WT mice on a 12:12 L:D
cycle (indicated with “N/A”). F = females, M = males; 12 = 12:12 L:D cycle, 10 = 10:10 L:D cycle;
WT = wild-type. Up arrow = increase, down arrow = decrease, horizontal line = no change.
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Our findings are consistent with previous studies demonstrating that female rodents
consistently consume more alcohol than male rodents [31,37–41]. Sex-dependent differences
in alcohol consumption and preference are expected given reported sex differences in
ethanol metabolism and pharmacokinetics [42], taste reactivity [43], as well as sexually
dimorphic mechanisms in the dopaminergic reward pathways through which ethanol
has an effect [44,45]. Moreover, sex-dependent differences between Clock∆19/∆19 and
WT mice are likely, given that the SCN innervates and regulates the circadian release of
glucocorticoids from brain regions associated with neuroendocrine function; moreover,
glucocorticoids reciprocally regulate the circadian rhythm [28,46,47]. However, changes in
alcohol consumption can also occur independent of gonadal hormones [31].

The lack of any observable sex differences in the Clock∆19/∆19 mice used in our study
contradicts results by Ozburn et al. which demonstrated that, while Clock∆19/∆19 mice
consumed more alcohol, the female Clock∆19/∆19 mice exhibited a greater magnitude of
increase compared to males [27]. These contradictory findings may be attributed to dif-
ferences between the mouse strains used as the background strain by the two studies:
we used mice maintained on a C57BL/6J background, whereas Ozburn et al. used mice
maintained on a BALB/c background. Comparing voluntary alcohol drinking via the
two-bottle choice paradigm across 10–20 inbred mouse strains repeatedly demonstrates
that C57BL/6J mice consume the greatest amount of alcohol compared to all other strains
investigated, which might have also impacted our ability to detect the additional impact
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of genetics and sex on this phenotype [48,49]. The high levels of drinking in our female
mice may have contributed to a ceiling effect that could obscure any additional impact of
the Clock∆19/∆19 mutation on alcohol drinking; testing a range of alcohol concentrations
would help to mitigate this potential confound, like the range of escalating ethanol con-
centrations used by Ozburn et al. (from 3% up to a maximum of 21% ethanol [v/v]) [31].
We did, however, observe that the difference in alcohol preference between female WT
and Clock∆19/∆19 mice lessened throughout the study, whereas the difference between
male WT and Clock∆19/∆19 mice remained consistent. These observations warrant future
investigations of sex differences in Clock∆19/∆19 mice, possibly using a wider dose range of
ethanol. The Clock∆19/∆19 mice in our study also had markedly higher alcohol preference
at the start of the study, and this magnitude of effect was maintained throughout the study
period. This likely reflects the increased reward sensitivity and drug-seeking behaviours
commonly observed in Clock∆19/∆19 mice [50,51] and further supports the Clock protein as
an influential factor in driving problematic alcohol consumption, as is surmised from the
clinical literature [8,52]. Indeed, mutating the Clock gene in mice increases dopamine release
and turnover in the striatum, increasing dopaminergic tone and altering dopamine receptor
expression [53], likely leading to the enhanced reward sensitivity commonly reported. With
widespread changes in dopamine-receptor expression occurring during adolescence, and
evidence that modelling adolescent “binge drinking” in mice sex-dependently increases
alcohol consumption in adulthood, it may be worthwhile to investigate changes in Clock
expression during adolescence in relation to alcohol drinking [39,54,55]; especially since
shifting diurnal cycles in male adolescent mice also increases alcohol consumption [56].

Our finding that housing mice on a shortened (10:10) L:D cycle did not affect alcohol
consumption and preference is surprising, and somewhat inconsistent with existing evi-
dence of increased or decreased alcohol consumption resulting from the various models
of disrupted diurnal cycling mentioned above [13,14,29,57]. While our decision to use the
10:10 L:D model of shifting diurnal cycles was based on past evidence of resulting circadian
desynchrony and concomitant changes in physiological processes [58], this disruption may
be insufficient to produce robust changes in alcohol drinking. Future studies may benefit
from using a model with a greater degree of disruption (e.g., 6:6 instead of 10:10 L:D) to
produce a more robust effect on alcohol drinking [59]. However, this moderate disruption
is more akin to disruptions that might happen due to travel or daylight savings and may
suggest that moderate circadian disruptions do not impact alcohol drinking, especially
compared to more drastic disruptions. Thus, the results of our genetic and environmental
investigation reveal that it may be the genetic, and not environmental, disruption that is
largely influencing alcohol drinking behaviour. Since our environmental manipulation did
not alter alcohol drinking significantly by itself, it is possible that our design prevents us
from detecting any gene–environment interactions. Furthermore, the extent of effect of the
gene mutation on alcohol drinking may also preclude the detection of such an interaction
due to a possible ceiling effect on alcohol drinking. Therefore, it might be important for
future studies to investigate whether such an interaction can be observed at a molecular
level by characterizing Clock protein expression levels over time as a possible confounding
factor, especially given evidence from Ozburn et al. that ethanol exposure reduces Clock
expression [27]. Clinical investigations report reduced baseline Clock mRNA levels in
patients with alcohol use disorder, as well reduced baseline mRNA levels of circadian
proteins BMAL1, Per1, Per2, Cry1, and Cry2 [60]. Per2 mutation-induced circadian rhythm
disruptions are also linked to increased alcohol intake in both mice and humans [61–64]
and Per1, Per2 and Bmal1 expression levels are disrupted in participants undergoing a
simulated night shift work schedule [65]. Recently, selective ablation of Bmal1 and Per2
from medium spiny neurons in the mouse striatum enhanced alcohol consumption in
males and reduced alcohol consumption in females, while only the effect in males was
observed after ablation of Per2 [66].

Comparing measures of alcohol, food, and water consumption, as well as total fluid
and caloric intake, reciprocal patterns to those described for alcohol consumption were first
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noted in the amount of water consumed by female WT mice throughout the study. Female
WT mice initially drank much more water than male WT mice but, with a concomitant
increase in alcohol consumption, ended the study drinking no more water than the minimal
amount consumed by female and male Clock∆19 mice; a finding that is supported by
existing evidence of rats maintaining a constant quantity of fluids consumed daily and
an inverse relationship between water and alcohol during free-access choice paradigm
testing [35,36]. Male WT mice consistently drank more water than male Clock∆19 mice
throughout the study. Undisrupted water consumption after shifting diurnal cycles in
males is previously reported in C57BL/6J mice that demonstrated increased intermittent
alcohol consumption after being exposed to alternating standard and lengthened diurnal
cycle [67]. Second, we noted that the amount of food consumed by female WT mice
decreased while alcohol consumption increased, while their total caloric intake remained
relatively constant throughout the study. This seems to indicate that female mice were
altering their food intake to maintain a constant caloric intake as they consumed additional
calories from alcohol. This observation is supported by previous evidence of sex-dependent
differences in the maintenance of mouse feeding behaviour related to meal size and by
proxy, caloric intake [68].

Although our findings contribute to our understanding of how sex and circadian biol-
ogy influence alcohol consumption and preference, additional investigations are required
to relate the sex differences reported herein with estrous cycle fluctuations of estrogen and
progesterone. For example, estrogen, when endogenously applied, shortens the period
of circadian rhythmicity evident in the locomotor behaviour of mice [69]. Investigating
the role of the estrous cycle may reveal additional patterns in consumptive behaviour.
Relatedly, future studies should also examine the minutiae of alcohol consumption (i.e.,
number of bouts, bout frequency and volume) to relate features of consumptive behaviour
with measures of alcohol consumption and preference [70]. We intend to use automated
lickometers in a subsequent investigation of Clock∆19/∆19 mouse drinking behaviour [71].
Further assessing the temporality of alcohol consumption and preference in female and
male mice may provide additional knowledge, including whether epochs of increased
vulnerability toward alcohol consumption exist; this is especially crucial when considered
together with estrous cycle fluctuations of estrogen and progesterone. Finally, the effect of
age on sex differences in alcohol consumption and preference changes produced by circa-
dian rhythm disruptions warrants further investigation, because adolescence is period of
increased sensitivity to the initiation of alcohol drinking [55], and adolescents demonstrate
shifted sleep/wake cycles compared to adult populations [24,72].

5. Conclusions

In conclusion, the findings from this study demonstrate that circadian rhythm dis-
ruptions influence alcohol consumption and preference in a sex-dependent manner. Fu-
ture studies will investigate the mechanisms underlying these sex-dependent effects and
whether targeting these mechanisms will reduce the impact of circadian rhythm disruptions
on alcohol consumption patterns. This is particularly important as much of the workforce
engages in shiftwork and reportedly uses problematic alcohol consumption as a mechanism
for improving sleep and quality of life.
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