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Abstract: It is unknown what determines genetic diversity and how genetic diversity is associated
with various biological traits. In this work, we provide insight into these issues. By comparing
genetic variation of 14,671 mammalian gene trees with thousands of individual human, chimpanzee,
gorilla, mouse, and dog/wolf genomes, we found that intraspecific genetic diversity can be predicted
by long-term molecular evolutionary rates rather than de novo mutation rates. This relationship
was established during the early stage of mammalian evolution. Moreover, we developed a method
to detect fluctuations of species-specific selection on genes based on the deviations of intraspecific
genetic diversity predicted from long-term rates. We showed that the evolution of epithelial cells,
rather than connective tissue, mainly contributed to morphological evolution of different species. For
humans, evolution of the immune system and selective sweeps caused by infectious diseases are the
most representative examples of adaptive evolution.

Keywords: long-term molecular evolutionary rates; genetic diversity; human-specific evolution;
species-specific evolution; gene-specific molecular evolutionary rates; gene effect; locus effect

1. Introduction

What determines genetic diversity and how genetic polymorphism is shaped within
species are core questions in evolutionary biology. It is generally accepted that replication
errors in genomes of germline cells, known as de novo mutations, are the source of genetic
diversity, and that demographic history (population history and effective population size)
and selection shape genetic polymorphisms within species [1-3]. In particular background
selection, which describes reduction in genetic diversity in non-deleterious loci caused by
selection against linked deleterious mutations, largely explains the patterns of genome-
wide distribution of polymorphic sites [1,4,5]. Furthermore, a longstanding enigmatic
issue known as Lewontin’s paradox has also been mostly resolved by our enhanced un-
derstanding of background selection in the last decade [6]. This paradox tells us that the
distribution of nucleotide diversity, which is generally considered to be determined by the
effective population size (Ne), and variation in actual population size differ by many orders
of magnitude [7]. When a gene variant, or an allele, is fixed in the species, it becomes a
substitution and contributes to interspecific genetic diversity. However, the connections
between genetic polymorphisms within species and species-level substitutions are still
controversial issue.

As pointed out by R. A. Fisher, the majority of mutations in a population are lost by
chance [8]. According to Motoo Kimura’s neutral theory of molecular evolution, most
mutations are either deleterious or selectively neutral [9,10]. Therefore, the molecular
evolutionary rate of a gene is the product of the mutation rate and the proportion of
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neutral mutations [11]. In contrast, intraspecific genetic diversity is generated by mutations
occurring along genealogies in a population that have neither reached fixation nor been lost.
The shape of a genealogy depends on demographic history, and the lifespan of a mutation
also depends on the selection intensity [12,13]. Here, we note that all genes in a genome
share the same demographic history. Among-gene variation in genetic diversity thus
largely reflects among-gene variation in the proportion of neutral mutations, as lineages
originating from deleterious mutations are too short-lived to substantially contribute to
present genetic diversity. Because among-gene variation in molecular evolutionary rates is
also determined by the among-gene variation in a proportion of neutral mutations [14], we
hypothesized that molecular evolutionary rates affect intraspecific genetic diversity.

If our hypothesis is correct, the genetic diversity within species can be predicted from
their molecular evolutionary rates. Natural selection affects both intraspecific genetic
diversity and molecular evolutionary rate, and the strength of natural selection is the
main factor that shapes intraspecific genetic polymorphisms. Furthermore, testing this
hypothesis can help to elucidate the role of background selection. Pouyet et al., 2018,
measured average derived allele frequency per individual as a proxy for background
selection, and demonstrated that it impacts up to 80-85% of the variants in the human
genome [15]. Background selection is currently modeled based on the exon densities and
genetic linkages. Therefore, if the strength of natural selection on the exon regions is taken
into account to model the background selection, it will help to clarify intraspecific genetic
polymorphisms and interspecific substitutions.

In addition, based on this idea, a novel method to infer genomic evolution could help
detect signals of species-specific evolution. In this framework, the residues of the observed
and predicted genetic diversities based on molecular evolutionary rates can be regarded as
the signals of species-specific selection. Ever since Darwin, species-specific evolution has
been considered a key factor in the diversification of living organisms and their remarkable
adaptations to their environments. Nevertheless, the genetic background of species-specific
evolution, and especially how selection pressures fluctuate along the history of a species,
is still unclear, even in this genomic era. This difficulty largely stems from our limited
knowledge about what determines genetic diversity and how genetic polymorphisms are
shaped within species.

The aims of this study were to: (1) clarify how genetic polymorphisms have been
shaped within species by testing our hypothesis that molecular evolutionary rates affect
intraspecific genetic diversity based on phylogenomic analysis of mammals and population
genomic analysis of five species (humans, chimpanzees, gorillas, mice, and dogs/wolves),
and (2) develop a new method to infer genomic evolution that detects the signals of
species-specific selection.

2. Materials and Methods
2.1. Measurement of Genetic Polymorphisms and De Novo Mutations

To test the above hypothesis that molecular evolutionary rates affect intraspecific
genetic diversity, we analyzed and compared the genetic diversity of humans with the
mammalian molecular evolutionary rates of each gene and focused on protein-coding
regions. The proportion of segregating sites (q) is the most direct estimate of human
intraspecific genetic diversity. Nucleotide diversity (71), the mean pairwise distance among
sequences, more heavily weights older mutations. Singletons are rare variants that are only
observed once in a sample, and can be considered as the collection of recent mutations.
The allele frequency of singletons in autosomes is 1/5008, which is less than 0.02% of
the number of sites in 2504 humans included in the 1000 Genomes Project data [16-18].
De novo mutations are obtained by comparing genomes of direct offspring with those
of their parents, with the differences uncovered being the closest reflection of germ cell
mutations [19]. By comparing the effects of molecular evolutionary rates on these different
indices, we may gain some sense of the longevity of deleterious or slightly deleterious
mutations that have been selected against [10].
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In each population, natural selection works on phenotypes and on the gene sets that
control them. Depending on the surrounding environment, the targets of natural selection
may vary among species. To identify species-specific targets, we searched for significant
deviations from the genetic diversity predicted by molecular evolutionary rates. Genes with
unexpectedly high genetic diversity may be under reduced functional constraints, whereas
those with unexpectedly low genetic diversity may be subject to enhanced constraints.

2.2. Probability of Intraspecific Polymorphism and Measurement of Molecular Evolutionary Rates

Genetic polymorphism within a species is generated by past mutations that have
neither reached fixation nor been deleted. The probability g that a site is polymorphic is
formulated as:

oo 0
q= /t:O dif/ic>o <(s)ds Pr(T > t|s,Ne(u),0 < u < )N (£)v. 1)

Here, v is the mutation rate, s and g(s) are the selection intensity and its distribution,
and N, (u) is the effective population size at time u before present. We note that the
probability of a positive value for s can be assumed to be negligible. T, which is the survival
time of a mutation before either being fixed or lost in the population, depends on the
selection intensity and population history. Ignoring the contribution of slightly deleterious
mutations for simplicity, we considered the scenario in which genetic polymorphism is
largely generated by neutral mutations. In this scenario, Equation (1) becomes:

q = vpF, )

where -
F= / Pr(T >t | s =0, Ne(1t),0 < u < £)2N,(t)dt.
Jt=0

The probability that a mutation is selectively neutral, p, expresses the extent of the
independence of the mutation from functional constraints. Although p varies among genes,
F does not. As a result, among-gene variation in the proportion of segregating sites reflects
either the variation in mutation rates or the variation of functional constraints.

Interspecific molecular evolution, in contrast, is based on mutations that have be-
come fixed in populations. Assuming the above scenario, the neutral theory of molecular
evolution expresses the molecular evolutionary rate as:

r=2N,(t)v x p x

TRO 3)

Although intraspecific genetic variation is many orders of magnitude lower than
that generated during the evolution of all mammals, Equations (2) and (3) predict that
the among-gene variation in the proportion of segregating sites is correlated with the
among-gene variation in the molecular evolutionary rate.

The molecular evolutionary rate can be measured from the variation in total branch
lengths of gene trees, which expresses the number of substitutions across the whole tree.
Additionally, mean branch lengths of gene trees should well reflect the variation in evo-
lutionary rates among genes, even in the presence of missing values, unless the resultant
sub-trees of the (unobserved) gene trees are seriously skewed. Gene trees sometimes
include extremely long terminal branches, even after careful inspection to control the qual-
ity of the alignment. Because mean branch length is sensitive to extremely long outlier
branches, we also calculated the median branch length as a robust estimate of among-gene
variation in molecular evolutionary rates.

2.3. Neutral tTheory Extended to Multiple-Gene Molecular Evolution

The well-accepted neutral theory of molecular evolution asserts that selectively ad-
vantageous mutations are rare among those mutations leading to interspecific variation [9].
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As a result, the rate of molecular evolution is the product of the mutation rate, v, and
the proportion of neutral mutations, p [11]. By extending this relationship to the rates of
multiple-gene molecular evolution, we obtained the branch lengths of gene trees using the
following formula [14]:
k —
by = ¢ X pi X (te X Vi) X Py
Here, p; represents the relative variability of gene i (i = 1,...,N), and t; and v are

the evolutionary time span and mutation rate along branch k (k = 1,..., M). By applying
a two-way ANOVA-type Poisson regression to the scaled branch lengths N é‘i) = b](‘l.) X L;

(where L; is the length of gene 7), namely,

E{Né‘i)} =c X L xa; x By

N M
where Zi:l Li xwa; = Zkzl =1

we can estimate p; and t; x v, based on the gene effect &; and branch effect ﬁk. The
interaction p,,, which captures the among-branch variation of functional constraints on
a gene, is estimated as the ratio of N é(l.) to the predicted value. When genomes include a
complete set of orthologous genes for all species, the maximum likelihood estimators of
the gene effect and the branch effect can be obtained as follows:

M
_ Lkt by
il ML, by x L

4)

&;

i by x Ly
il MLy by x L

P =

2.4. Summary Statistics Describing Variation in Long-Term Evolutionary Rates among Genes
in a Genome

In this study, we investigated the possibility that intraspecific population genetic diver-
sity is affected by the between-species long-term molecular evolutionary rate. Specifically,
we contrasted the rate of segregation in humans with the rate of molecular evolution in
mammals. As can be seen in Equation (4), the among-gene variation in the molecular
evolutionary rate can be measured from the total branch lengths of gene trees.

In actual practice, however, gene trees often include missing taxa, partly because of
incomplete sequencing, but mainly because of gene loss over the course of mammalian
evolution. As a result, the among-gene variation in total branch lengths reflects both the
among-gene variation in molecular evolutionary rate and variation in taxon sampling. To
reduce the effect of differential taxon sampling, we used mean branch lengths:

_ 1M,

The variation in mean branch length should well reflect the variation in evolutionary
rates among genes, even in the presence of missing values, unless the resultant sub-trees of
the (unobserved) complete gene trees are seriously skewed.

The generated gene trees sometimes included extremely long terminal branches. Long
branches in a gene tree may be ascribed to three phenomena: (1) sequencing or annotation
errors, (2) bias caused by the model used for tree inference, or (3) lineage-specific selection.
Even after careful inspection to control the alignment quality, however, we could not
exclude the possibility of incomplete modeling of molecular evolution or lineage-specific
selection in some cases. Because mean branch length is sensitive to extremely long outlier
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branches, we also calculated the median branch length as a robust estimate of the among-
gene variation in molecular evolutionary rates:

biviah =21 + B(ivih -
g (b 2] T by +2+1]
(i) & by = 2 .

Regarding protein evolution at the amino acid level, more than half of the branches
of some extremely conserved genes were of zero length; this resulted in a median branch
length of 0, which would be problematic in the succeeding regression analysis. We therefore
removed the five longest branches from each gene tree and obtained the truncated mean

branch length, E(,-), as an estimate of 7(;). Both @(i) and E(i) were used in this study.

2.5. Measuring the Joint Effects of Background Selection by Long-Term Evolutionary Rates and
Hitchhiking in Non-Coding Regions

The genetic diversity at a genomic locus is reduced by the effects of selection on the
surrounding region in the chromosome that accommodates the target locus. The effect of a
small window at the genomic location x; is measured as:

u(x;)Ax-sh

1 TSR
2(sh + R(x;))

Here, u(x;) is the deleterious mutation rate at the window, Ax is length of the window,
sh is selective effect, and R(x;) is the recombination fraction between the window and the
target locus [20]. In our study, we assumed background mutation rate is the same across all
loci, and analyzed the effects of the surrounding exons that experienced different levels of
selection. The neutral variation, 77y, is reduced by the joint effects of background selection
as:

m . .
7_[:7_[01—[ 1— UAx-sh; |
=T 2(sh; + R(x;))

where the product runs over the windows in the exons of the chromosome. We introduce a
model that describes the selective effect in terms of the long-term molecular evolutionary
rate:

sh; = exp(a+ Br;).

where « is the gene effect of the gene that spans the window. Thus, we obtained:

—U-Ax-exp(a + Br;)
2(exp(a+ pri) + R(xi))* |

o ﬂoﬁ 1— U-Ax-exp(a+ Bri) 1 i 5)
i=1

Yexp(at pr) - R~ P &

For the de novo mutation rate of the genome, U, we assumed 1 x 10~8 per position
per haploid genome based on [21].

We calculated 7t based on 1000 bp windows from 1000 Genomes Project Phase 3 data
using VCFtools (v 0.1.16) [22]. We defined the intergenic region as more than 100,000 bp
away from start or stop codons. Based on it, we assigned the exon, 5-UTR, 3’-UTR, and
intron regions of each window. Recombination rate R(x;) was summarized based on [23].
We used the African Caribbean in Barbados population’s recombination map from the
1000 Genomes Project to obtain the local recombination rate surrounding each window.
We fitted Equation (5) by the nls (nonlinear least squares) function in R (v4.0.5) [24] and
estimated the three parameters 779, «, and f for 5’-UTR, 3/-UTR, and intron regions for each
chromosome.

2.6. Observed and Corrected Correlations between Intraspecific Genetic Diversity and Long-Term
Molecular Evolutionary Rates

To examine the effects of long-term molecular evolutionary rates on intraspecific
genetic diversity, we calculated the correlation between the rate of molecular evolution
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B = {b(l),b(z),...,b(i),...} and the number of segregating sites K = {K(l),K(z),...,K(i>,...}.

Because E(i) and K(;) were accompanied by the random noise of estimation and sampling,
we corrected the observed correlation by taking into account the sampling variance of each

b(z) and K(z)

To investigate the effect of sampling variance, we denoted the observed values of B
and K as B and K, where E; {E | B} =B, E; [IZ | K} = K, and the subscript “S” represents
the sampling mean and variance. In addition, we used the subscript “G” to represent the
among-gene mean and variance. The expectation of the observed correlation between B

and K, rG (E, I?) , is contrasted with r (B, K) as follows:

E, [COVG (E, 12) ]
E:[ Vo (B) ] E:[ Ve (K)]
rg(B,K) .
=) (- =4

By evaluating the sampling variances of B and K, we obtained the bias-corrected
correlation as follows:

r6(B.K) = ra(B,K) x <1+ EG[VS[EBH) (H%E{é)m).

“felb] -

2.7. Sampling Variance of Mean Branch Lengths

We evaluated the sampling variance of branch lengths with reference to the Poisson
random variables for the numbers of nucleotide or amino acid substitutions. Given that
the branch length of gene i of branch k, b’(‘i), is the expected number of substitutions per
site, we assumed that the stochastic variance of B’(‘i)l (i) is approximated by the variance of a

Poisson random variable with mean b’(‘i) l(;, where [(;) is the sequence length of gene i:

[ Bk _ 7k
v (Bk1) = B Ly
The variance of the mean branch lengths of gene i is therefore evaluated as:

Vi) =7 b

1 ¢y L vM p(pk L M 0 7
Mk_zlbm] =32 i V(o) = 32 T Toy — Mig, 0

Bootstrap resampling of columns in the alignment allows estimation of the variance
of median and mean branch lengths. As an alternative approach, we developed a simple
simulation method to evaluate the stochastic variance due to the randomness of substitu-
tions. Given a gene tree, we generated the number of substitutions for each branch from
the Poisson distribution, with its mean set to the product of the branch length and the gene
length. We obtained the sample of the mean (and median) branch length by dividing the
mean (and median) of the generated number of substitutions by the gene length.
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2.8. Stochastic Variance of Intraspecific Genetic Diversity

If one assumes that mutations in a population are neutral and that the population is at
equilibrium, then the variance in the number of segregating sites, K, is:

a2’

where a, = Z;.:ll % and b, = Z?;ll le Here, n is the number of chromosomes in a sample
from the population [25]. The first term reflects the randomness of mutations, and the
second term measures the stochasticity of the genealogy. When the population is not at

equilibrium but has its own history, the variance becomes:

2 V(To)

V(K) = E(K) + (E(K)) L

Here, E(T;) and V(T,) are the mean and variance of waiting times of coalescence
events in genealogies [26]. Unfortunately, detailed information on genealogies is not
available in most cases. We note, however, that the above variance formula is consistent
with the variance formula of a negative binomial distribution. We therefore applied negative
binomial regression with a log link:

log[E(K)] = log(L) + « + Blog(BL) + vDx

where L = {l(l), l(z),. .., l(i), .. } is the length of genes and BL is the mean branch length.

Dy is a dummy variable for genes on the X chromosome that incorporates differences in
effective population size between an autosome and the X chromosome. We carried out this
regression using the function glm.nb in the R package MASS [27]. The variance of K can be
obtained by:
E(K))?
V1K) = Eig)
where 0 is the shape parameter of the negative binomial distribution.
We also applied the model:

E(K) =L x [a+ B(BL)] x exp(vDx).

Maximum likelihood inference was conducted by applying the function optim. A
positive value of « indicates intraspecific survival of mutations destined for deletion from
the population on a macroevolutionary time scale.

2.9. Species Specificity: The Significant Deviation of Trait-Associated Gene Sets

Intraspecific genetic diversity is affected by long-term molecular evolutionary rates.
Species-specific enhanced/reduced functional constraints may be observed as residuals
of the prediction of the above negative binomial regression. For each gene in a trait-
associated gene set, we calculated the lower-tailed p-value of the observed number of
segregating sites based on the predicted value and the estimated scale parameter. To obtain
the significance of the gene set, we standardized the p-values by transforming them to the
percentiles of their corresponding standard normal distribution. The p-value of the sample
mean of these transformed values was obtained using a t-distribution as a reference. The
t-values measure the deviation from the predicted genetic diversities of genes in gene sets.
Positive t-values indicate the existence of reduced functional constraints or diversifying
selection in a human lineage, whereas negative values indicate the presence of enhanced
functional constraints or purifying selection. Given the false discovery rate (FDR) value,
significant genes were selected by the Benjamini and Hochberg procedure [28]. We tested
the significance of the enhanced /reduced functional constraints on the disease-associated
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gene sets, the DisGeNET database [29] by contrasting the average deviation with the ¢
distribution. We analyzed the gene sets that included at least two genes. Consequently,
we analyzed 14,267 disease-related gene sets. We interpreted the disease-associated genes
based on the disease category annotations in DisGenNET (v6.0) [29] and the MalaCard
database [30].

2.10. Commonality and Specificity among Five Species

To generalize our findings, we also analyzed the genetic diversity of chimpanzees,
orangutans, mice, and dogs/wolves. To visualize the commonality and specificity between
species, we applied principal component analysis (PCA) to the proportion of segregating
sites of five species and the long-term rate using 5560 single-copy genes. To interpret
the genes that comprise the principal components, we examined the functions of the top
20 genes for each of the three PCs. For enrichment search [31], we set FDR = 0.05 as the
significance cut-off value. To identify the genes and disease-associated gene sets unique
to the species, we applied correspondence analysis (CA) to the negative log-transformed
p-values.

2.11. Multiple-Alignment of Mammalian Genes

We downloaded 96 complete mammalian genomes from GenBank (https://www.ncbi.
nlm.nih.gov/genbank/) and used a custom Perl script to extract protein-coding sequences
of each species. A gene pool containing 21,350 mammalian genes was generated based
on NCBI genomic annotation. We generated a multi-sequence file of all genes in the gene
pool, and kept one sequence per species for each gene. Including genes that are shared by
more than 70 out of 96 mammal species and shared with the human 1000 Genomes Project
annotation (hgl9 human genome assembly), 14,671 genes were used in this study. Among
these genes, 5560 were previously reported as single-copy genes in class Mammalia in [14].
Alignments at the codon level were performed in Prank v.170427 [32]. Sites with less than
70% coverage among all species and sequences with less than 30% coverage among gene
loci in the alignment were removed.

2.12. Inference of Gene Trees

We generated a maximum likelihood tree for each gene using IQ-TREE (v1.6.12) [33],
which automatically performed model selection and determined the best data partitions.
The best evolutionary model for each gene was independently selected based on the
Bayesian information criterion and used to infer the gene tree. All gene trees were calculated
using 1000 bootstrap replicates.

2.13. Population Data

We downloaded single-nucleotide polymorphism (SNP) data for 2504 humans (Homo
sapiens) from the 1000 Genomes Project Phase 3 data [16-18]. SNP data for 60 common chim-
panzees (Pan troglodytes), 31 gorillas (Gorilla gorilla), 35 laboratory mice (Mus musculus), and
127 dogs and wolves (Canis lupus) were collected from published papers and databases [34-37].
Information on de novo mutations in the human genome was collected from [19]. Human
ancestral alleles were collected from [38]. Individual-derived alleles of each gene were
collected by comparing SNPs of each individual with human ancestral sequences.

3. Results
3.1. The Effect of Long-Term Evolutionary Rates and Recombination on Shaping Genetic Diversity

The estimated parameters, mp, &, and (3, varied among chromosomes (chromosomes
1-22) and features (3’-UTRs, 5'-UTRs, exons, and introns) (Figure 1). 7y varied both
among chromosomes and features (two-way ANOVA, p <2 x 10716 for chromosomes,
p <2 x 1071° for features). However, only features were significant factors for the varia-
tions of « (p = 0.147 for chromosomes, p <2 x 10716 for features) and f values (p = 0.12 for
chromosomes, p <2 X 10716 for features) (Figure 1a—c). The estimated mean 71y across all
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chromosomes for 3’-UTR, 5’-UTR, exon, and intron regions were 0.00122, 0.00116, 0.00097,
and 0.00110, respectively. Exon regions had the lowest ), followed by intron regions,
whereas 3'-UTRs had the highest 7ty among the four features (Figure 1d). We found that the
o and B values were negatively correlated with each other (cor = —0.920, p <2 x 1071°).
The parameter patterns of 5'-UTRs and exons were similar to each other, whereas those
of 3/-UTRs and introns were similar to each other (Figure 1le,f). Hierarchical clustering
using fitted values of 7y, &, and B of all 22 chromosomes showed that 5'-UTRs and exons
clustered together, whereas 3’-UTRs and introns clustered together (Figure 1g). These
results indicate that the main effect differs for each genetic region. The 5-UTR and exon
regions had lower o and higher p values compared with the 3’-UTR and intron regions.
This result indicates that long-term rate is the main effect that impacts genetic diversity at
5’-UTRs and exons, whereas recombination is the main effect that impacts genetic diversity
at 3’-UTRs and introns. Thus, we focused on the relationship between long-term rates and
gene diversity in this study.

a) b) Q)
To a B
Chromosome
Chromosome Chromosome
Residuals Feature Residuals ~ Feature Residuals
Feature
d) e) f)
H i _ g
o - : = - B R ;
o 2 . E : —_ asz{ E - o : ;
= B N e
g — . o —=—=— —_—

T T T T T T T T T T T T
3UTR  SUTR Exon Intron 3UTR  SUTR  Exon Intron 3UTR  5UTR  Exon Intron

Figure 1. Effect of long-term evolutionary rates and recombination on shaping genetic diversity.
mp represents the level of the intrinsic genetic diversity. Selection on a genomic locus reduces the
genetic diversity at the locus. Hitchhiking propagates the effect of selection on the surrounding region.
We described the selective effect (sh;) on a gene in terms of the long-term molecular evolutionary
rate (r;) as sh; = exp(a + Pr;) (see Materials and Methods). Parameter « describes the impact of
recombination relative to long-term rate in the model. Higher « values in genomic regions indicate
that recombination contributed more to the prediction of genetic diversity than the regions with
lower « values. 3 describes the impact of the long-term rates of nearby genes. Higher 3 values in
genomic regions indicate that the long-term rates of genes contributed more to genetic diversity
than the regions with lower (3 values. The three parameters were estimated for each chromosome
and for each feature (3’-UTR, 5'-UTR, exon, or intron). In total, we obtained 88 (22 chromosomes
X 4 features) estimates each for 7y, «, and 3. (a—c). Pie charts for 7y, «, and (3, respectively,
representing the contributions of chromosome, feature, and residuals. The variances of 7, «, and
B were decomposed into among-chromosome variances, among-feature variances, and variances
of residuals in two-way ANOVA that represented the interactions of each set of factors. (d—f). The
among-chromosome variations of 7y, &, and 3, respectively, for each feature (3/-UTR, 5'-UTR, exon, or
intron). (g). Hierarchical clustering of 7y, &, and (3 for each chromosome and feature. We normalized
the values of my, &, and (3 to analyze the three parameters together.
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3.2. Bridging Micro- and Macroevolution at the Molecular Level

Strong linear relationships were found between mammalian molecular evolutionary
rates and human g, the proportion of segregating sites (Figure 2a, cor = 0.585, p <2 x 10716).
The bias-corrected correlation was as high as 0.665 (Figure 2a, p < 2 x 107'6), which in-
dicates that the intraspecific genetic diversity of a gene is thus largely influenced by the
molecular evolutionary rate of the gene. Variation in functional constraints on genes is
the likely source of this causal relationship [39]. The estimated shape parameter in the
negative binomial distribution in humans was as large as 125,785, which indicates that
over-dispersion of human q can be ignored, and human q largely followed a Poisson distri-
bution. The correlation between q of four tested non-human mammal species (chimpanzees,
orangutans, mice, and dogs/wolves) and their molecular evolutionary rates, which ranged
from 0.368 (mice) to 0.478 (chimpanzees), was consistent with the findings in humans
(Figure S1, all were significant with p <2 x 10716).
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Figure 2. Bridging micro- and macroevolution at the molecular level: (a). Correlation between
the human proportion of segregating sites (q) and the rate of mammalian molecular evolution (r)
of 14,671 genes. cor* indicates the bias-corrected correlation. (b). Correlation between the human
proportion of segregating sites (q) and the rate of molecular evolution (r) based on gene trees of
different taxonomic clades. (c). Correlation between the proportion of human de novo mutations and
the rate of mammalian molecular evolution (r). (d). Correlation between the proportion of human
singletons and the rate of mammalian molecular evolution (r). (e,f). Principal component analysis
(PCA) of q of five species and the long-term rate using 5560 single-copy genes.

Figure 2b shows the raw correlation between the human proportion of segregating sites
(q) and molecular evolutionary rate variation inferred from different taxonomic hierarchies,
ranging from the human/chimpanzee divergence (human terminal branches) to family
Hominidae (great apes) to superorder Euarchontoglires. Significant correlations between
human q and rate variations were found for all clades, with higher taxonomic hierarchies
showing stronger correlations. Furthermore, among-gene rate variation in rodents and
Laurasiatheria was highly correlated with human q (cor = 0.389 and 0.532, respectively;
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both p <2 x 1071¢). The rate variation in mammals had the highest raw correlation with
human q (Figure 2b, cor = 0.585). Evolution is a stochastic process, which is affected
by multiple factors. A deeper evolutionary scale results in more stable estimates of the
long-term rates across genes.

3.3. The Immediate Effect of Natural Selection

Among-gene variation of intraspecific genetic diversity is caused by among-gene
variation in mutation rate and functional constraints. To examine whether the mammalian
molecular evolutionary rate of a gene correlates with its mutation rate, we regressed the rate
of point mutations per generation (proportion of human de novo mutations) on mammalian
molecular evolutionary rates. We found no correlation between the proportion of de novo
mutations and mammalian molecular evolutionary rates (cor = 0.00, p = 0.986, Figure 2c).
In contrast, the proportion of singletons in the 1000 Genomes Project human data was
found to be affected by mammalian molecular evolutionary rates (cor = 0.446, p <2 X 10-16;
Figure 2¢). By applying negative binomial regression to singletons, the expected number of
singletons was estimated as:

E[number of singletons]/(gene length) = 0.113 x (long — term rates)* 41,

The effect of mammalian molecular evolutionary rate was highly significant (p <2 x 10716,
Table 1).

Table 1. Negative binomial regression of numbers of human de-novo mutations and singletons on the me-
dian branch length of the mammalian gene trees. The regression model is log(E|[counts] / (gene length)) =

a + Blog(median branch length) : E[counts]/(gene length) = ¢*(long — term rates)F.
De Novo Mutation Singleton
Estimate  SE p-Value Estimate SE p-Value
intercept -9.938 0307 <2x10° 2177 0.026 <2 x 10716
log(Long-term rates) ~ —0.008  0.064 0.904 0.413 0.006 <2 x 10716

Singletons, which reflect relatively recent changes, may help shape complex traits [40,41].
Selection caused by long-term evolutionary force has in turn influenced human genetic
diversity over a short time scale, probably soon after the occurrence of the initial mutation.

3.4. Commonality and Specificity among Species

The principal component analysis of the genetic diversity and the long-term molecular
evolutionary rate showed the commonality and specificity of genetic diversity among
five species, human, chimpanzee, gorilla, mouse, and dog/wolf (Figure 2e,f). The first
principal component (PC1) explained 48% of variability and expressed the overall amount
of inter- and intraspecific genetic diversity. PC2 had a contribution of 13.3% and represented
reduced/enhanced functional constraints in mice. PC3 had a contribution of 13.0% and
expressed enhanced/reduced functional constraints in dogs/wolves. The relationships
among the five species precisely reflected their phylogenetic relationships.

The top 20 genes with negative deviations in PC1 are generally those genes that
have enhanced functional constraints in mammals. These genes were enriched in the
categories of learning or memory (GO:0007611, FDR = 0.0035) and behavior (GO:0007610,
FDR = 0.004) (Table S1) in a Biological Process (GO) enrichment search [42]. The top
20 genes in the positive direction of PC2, which had relaxed functional constraints or
were subjected to diversifying selection in mice, were enriched in fibrinogen complex
(GO:0005577, FDR = 1.87 x 10~°, Table S1). The MID1 gene, which had the largest deviation
in PC2, was previously reported to have undergone X-inactivation in humans, but escaped
in mice [43]. For the top 20 genes in PC3, a GO enrichment search did not suggest any
significant categories. However, a Reactome Pathways search [44] revealed that these genes
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are mostly enriched in Class I MHC-mediated antigen processing and presentation and
the adaptive immune system (seven genes, Table S1: AP1S2, CDC27, PSMA4, PSMC2,
TLR4, UBA1, and UBE2L6). The adaptive immune system was subjected to enhanced
functional constraints in dogs/wolves, probably because the carnivorous lifestyle of their
wild ancestors was accompanied by a higher risk of pathogen infections.

3.5. Enhanced/Reduced Functional Constraints on the Genes

Species-specific enhanced /reduced functional constraints of each gene can be quanti-
fied by measuring the deviation in the proportion of segregating sites (q) from predictions
based on mammalian molecular evolutionary rates. Figure 3 shows how such deviation
can be used to predict species-specific selections on gene (Figure 3a) and disease-related
gene sets (Figure 3b), respectively. Genes or gene-sets with positive deviations indicate
they are under relaxed functional constraints or under positively selected, while genes
or gene sets with negative deviations indicate they are under enhanced functional con-
straints. In Figure 3b, gene sets associated with substance-related disorders, lymphopenia,
and pneumonia are used as examples. It indicates that the functional constraints on the
genes associated with substance-related disorders were reduced in human, whereas those
associated with lymphopenia and pneumonia were enhanced. Table S2 summarizes the
p-values and t-values of all 14,267 disease-related gene sets.
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Figure 3. Disease-associated gene set test: (a). Scatter plot, boxplot, and regression model of
the human proportion of segregating sites (q) vs. mammalian molecular evolutionary rates of
14,671 genes. The blue curve represents the prediction by the negative binomial regression (see
Methods). (b). Examples of significant disease-associated gene sets in humans revealed by analysis
of 14,267 disease-associated gene sets. Genes related to the following diseases in humans are shown
as examples: substance-related disorders, lymphopenia, and pneumonia.

3.5.1. Genes under Species-Specific Selection

Figure 4a shows the correspondence analysis of genes and species based on the
deviance the genetic diversity from the predicted values from the long-term molecular
evolutionary rate (see Method). With FDR set to 0.01, we detected 53 genes whose diversity
can explain the species-specific diversity, among which 24 were designated as being related
to disease by the UniProt database [45] (Table S3). Based on their locations, we clustered the
genes into three groups: apes, mice, and dogs/wolves. The mouse group was enriched in
structural molecule activity (GO: 0005198, FDR = 0.003), whereas the other two groups did
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not have any significant enrichment. Notably, the genes detected by PCA and CA largely
overlapped, especially those that were most important for different PCs and groups (e.g.,
MID1 and FGB for mice, and UBA1 and VANGL1 for dogs/wolves; Figures 2e,f and 4a).
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Figure 4. Correspondence analysis of genes and disease-associated gene sets: (a). Correspondence
analysis of 14,671 genes of five species using — log;,(p) of each gene. (b,c). Correspondence analysis
of 14,267 disease-associated gene sets of five species using —log;,(p) of each disease-associated
gene set. The diseases highlighted are significant diseases with a false discovery rate of 0.01. (d).
Distribution of t-values of all diseases and significant disease-associated gene sets detected by
correspondence analysis. The pale blue histogram indicates the distribution of average t-values of
five species for each disease.

3.5.2. Multiple Species Disease-Associated Gene Set Test

With FDR of 0.01, we identified 20 disease-associated gene sets for humans, 23 for
chimpanzees, 86 for gorillas, 31 for mice, and 130 for dogs/wolves (Table S4). To capture
the patterns of species-specific evolution on the traits revealed by disease-associated genes,
we conducted CA based on the negative log-transformed p-values (Figure 4b,c). With an
FDR of 0.01, 180 gene sets were significant for at least one species (Table S5). Based on the
disease category annotations in DisGenNET (V6.0) [29] and the MalaCard database [30],
these were assigned to six major categories, including cancers (such as carcinoma, sarcoma,
lymphoma, and leukemia), genetic diseases (such as cardiovascular, metabolic, and liver
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and lung diseases), neuronal and mental diseases, infectious diseases, eye diseases, and
immune diseases. We marked particular clustering of disease-associated gene sets for each
species, and defined four groups: “cancer and organ diseases”, “immune and infectious
diseases”, “substance disorders”, and “eye diseases”. Figure 4d shows the distributions of
t-values of major diseases in each group. Notably, the significant diseases detected for each

species (Table S4) and CA (Table S5) were also largely consistent.

3.5.3. Cancer Disease Gene Sets and Morphological Evolution

The prominent diseases detected for mice and dogs/wolves were largely cancer
diseases with positive t-value (Figure 4d; Table S4). The “cancer and organ diseases” group
was also located near mice and dogs/wolves in CA (Figure 4b,c). These results indicate
that organ development was the most significant character that differentiated mice and
dogs/wolves from great apes.

Carcinomas are epithelial cell-derived cancers, whereas sarcomas are connective tissue-
derived cancers. Our testing datasets included both types of cancers, but the prominent
cancers detected for each species by CA was largely carcinoma of different organs. Only
one sarcoma (osteosarcoma) was detected. The evolution of epithelial cells rather than
connective tissue may thus be the main contributor to the morphological evolution of
different species.

Interestingly, great apes, especially humans, have relatively low t-values of cancer
diseases compared with mice and dogs/wolves (Figure 4d). Compared with those species,
cancer-related genes in great apes are subjected to enhanced functional constraints. Hu-
mans have evolved much longer lifespans (122.5 years by [46]) than other great apes (e.g.,
chimpanzee, 68 years) and dogs (27 years), while mice live for less than 4 years [46,47].
Cancer-associated gene sets that are subjected to enhanced functional constraints in humans
may be related to the evolutionary acquisition of longer lifespan.

3.5.4. Echoes of Infectious Diseases in the Human Genome

Outliers in humans were largely infectious diseases, immune diseases, lymphoma,
and leukemia, which had negative t-values (FDR = 0.01). The “immune and infectious
disease” group was also located near humans in CA (Figure 4b). Influenza-related gene sets
had the highest significance in humans (t-value = —5.62), and pneumonia (t-value = —5.17)
and chronic hepatitis B (t-value = —4.51) were also highly significant. With FDR as 0.1,
more infectious disease-related gene sets were detected in humans, such as Saint Louis
encephalitis, adult T-cell lymphoma/leukemia, hepatitis C, dengue fever, and brucellosis.
Several of these diseases have caused multiple historically important pandemics and taken
lives (e.g., Saint Louis encephalitis [48] and dengue fever [49]); although, some of them still
cause severe public health problems (e.g., influenza and pneumonia [50]). These diseases
affected human populations worldwide, leading to a strong selective sweep, which is
consistent with the finding in previous study [51].

3.5.5. Social Structure and Natural Reward Pathway in Great Apes

Humans, chimpanzees, and gorillas shared several outliers of substance-related disor-
ders, and they were all highly significant (Table S4). In CA, a related group was also located
in the middle of three great apes. The positive t-values associated with substance-related
disorders indicate that their specificity among mammals is due to evolution of the natural
reward pathway in the motivational-emotional system.

We also note that there were several gene sets in the vicinity of great apes associated
with diseases affecting retina development and eye structures. This may be related to
the evolution of color vision in primates: in eutherian mammals, only primates have true
trichromatic color vision [52].
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4. Discussion

The genetic diversity of human genomes gradually accumulated during tens of thou-
sands of years of evolution, and was affected by many factors such as selection, mutation,
and migration [1-3]. Purifying selection due to functional constraints predominantly re-
moves deleterious variations in coding regions and functional non-coding regions such as
tRNA, rRNA, or long functional non-coding RNAs [4,6,53]. Other genetic regions are possi-
bly neutral or were impacted by selective sweeps or background selection [4,5]. Pouyet et al.
2018 found that as much as 85% of the human genome was under background selection [15].
This result challenges the general idea that population genomics can accurately estimate
population history. Because the existing procedures of population history inference mostly
assume the neutrality of mutations, the target polymorphic sites for inference need to be
cautiously sampled from the genomic regions with high recombination rates larger than
1.5 cM/Mb.

Because nearly whole genomic regions are under background selection, characterizing
the selection is the first step toward understanding genomic diversity. We found that the
long-term molecular evolutionary rates of genes are highly correlated with their intraspe-
cific genetic diversity. Growing genomic data of an increasing number of species enables
accurate inference of phylogenetic gene trees; this provides a reason to use long-term evolu-
tionary rates as predictors of intraspecific genetic diversity. We tested the effect of long-term
evolutionary rates and recombination on shaping genetic diversity in both coding regions
(exons) and non-coding regions (3’-UTRs, 5'-UTRs, and introns), and found that the long-
term rate is the main force shaping genetic diversity in 5'-UTRs and exons. Further analysis
showed that a large quantity of de novo mutations does not contribute to intraspecific
genetic diversity. Once the baseline of species-level genetic diversity can be predicted by
mammalian long-term rate, the enhanced /reduced functional constraints of each gene can
be quantified by measuring the deviation in species-level genetic diversity from predictions
based on the mammalian long-term rates. We estimated human species-specific evolution
by both gene and disease gene sets.

The genes related to infectious diseases and substance-related disorders were the
most representative examples of adaptive evolution in human genome. Genes related
to infectious diseases were under strong purifying selection, possibly because the mod-
ern society of human populations increased the chance of their exposure to pathogens.
Substance-related disorders were under reduced functional constraints. They represent a
reliance and/or abuse of a certain substance. The mechanism underlying these disorders
stems from the effect of the “substance” (e.g., a drug) on the natural reward pathway of the
motivational-emotional system. In nature, reward pathways generate positive emotions
that motivate organisms to search for food, water, mates and other beneficial environmental
resources, and to avoid predators [54]. Great apes display much more complex social
behavior compared with all other mammals; in particular, humans have the most complex
societal culture of all living organisms and enjoy the largest array of “natural rewards,”
including science, art, literature, and music. Motivation is a basic driver of human behavior,
and positive emotion is at its core [55]. We tested 14,267 disease-related gene sets, and
reported whether these gene sets are under relaxed or strengthened functional constraints.
These results offer new insights into human species-specific adaptations.

In this paper, we showed the effect of the long-term evolutionary rates of genes
on the genetic diversity of coding regions and their surrounding regions. However, a
preliminary analysis indicated that the adopted model did not explain the variable genetic
diversity well in intergenic regions that were more than 100,000 bp away from the coding
regions. This suggests that there remain some unknown influential factors that shape
the variability of genetic diversity in intergenic regions. There are approximately 500
ultraconserved elements in the human genome, the majority of which are in the intergenic
regions and function as enhancers that activate tissue-specific gene expression during
embryonic development. They are depleted at topologically associating domain boundaries
and enriched inside domains. Comparative analysis of intra- and interspecific genetic
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diversity in the intergenic regions will help bridge the great divide between the two
extremes, and clarify the role of ultraconserved regions and regions that are free from
background selection.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ genes13040708 /s1, Figure S1. Correlations between the proportion
of segregating sites (q) and the rates of mammalian molecular evolution (r) of chimpanzees, gorillas,
mice, and dogs/wolves. The result was obtained from 12,236 genes that are shared by all five species;
Table S1: Top 20 genes for the three principal components (PC; PC1-PC3) in principal component
analysis. The gene enrichment results are also summarized in this table; Table S2: p-values and
t-values of each disease from the disease-associated gene set tests of all 14,267 diseases of humans,
chimpanzees, gorillas, mice, and dogs/wolves; Table S3: Significant genes detected by correspondence
analysis with a false discovery rate of 0.01. The gene enrichment results are also summarized in this
table; Table S54: Significant disease-associated gene sets in humans, chimpanzees, gorillas, mice, and
dogs/wolves, with a false discovery rate of 0.01; Table S5: Significant disease-associated gene sets
detected by correspondence analysis using —log;(p) of each disease-associated gene set, with a
false discovery rate of 0.01.
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