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Abstract: The important roles of machine learning and ferroptosis in bladder cancer (BCa) are still
poorly understood. In this study, a comprehensive analysis of 19 ferroptosis-related genes (FRGs)
was performed in 1322 patients with BCa from four independent patient cohorts and a pan-cancer
cohort of 9824 patients. Twelve FRGs were selected through machine learning algorithm to construct
the prognosis model. Significantly differential survival outcomes (hazard ratio (HR) = 2.09, 95%
confidence interval (CI): 1.55–2.82, p < 0.0001) were observed between patients with high and low
ferroptosis scores in the TCGA cohort, which was also verified in the E-MTAB-4321 cohort (HR = 4.71,
95% CI: 1.58–14.03, p < 0.0001), the GSE31684 cohort (HR = 1.76, 95% CI: 1.08–2.87, p = 0.02), and
the pan-cancer cohort (HR = 1.15, 95% CI: 1.07–1.24, p < 0.0001). Tumor immunity-related pathways,
including the IL-17 signaling pathway and JAK-STAT signaling pathway, were found to be associated
with the ferroptosis score in BCa through a functional enrichment analysis. Further verification
in the IMvigor210 cohort revealed the BCa patients with high ferroptosis scores tended to have
worse survival outcome after receiving tumor immunotherapy. Significantly different ferroptosis
scores could also be found between BCa patients with different reactions to treatment with immune
checkpoint inhibitors.

Keywords: bladder cancer; machine learning; immunotherapy; prognosis; ferroptosis

1. Introduction

As one of the most aggressive malignancies worldwide, bladder cancer (BCa) was
reported to have 83,730 new cases and 17,200 related deaths in the United States in 2021 [1];
in China, 80,500 new cancer cases and 32,900 related deaths in bladder were estimated in
2015 [2]. In addition, about 12.5% of patients primarily diagnosed as non-muscle invasive
BCa could still suffer from disease progression after initial treatment [3,4], which greatly
increases the mortality rate. For now, it is still important to identify effective prognostic
markers for patients with BCa.

Currently, ferroptosis is one of the newly reported types of cell death modality that
might act as an important regulator in cancer biology [5]. Being distinct from other types
of cell death, ferroptosis is mainly caused by the lethal accumulation of iron-dependent
lipid hydroperoxides [6]. Even though the process by which ferroptosis interacts with other
types of cell death in tumorigenesis is not fully understood [7], it is well accepted that the
execution of ferroptosis requires the oxidation of polyunsaturated fatty acids [5]. Moreover,
ferroptosis might take part in tumor suppression dominated by TP53 [8]. However, the
roles FRGs play in BCa are still poorly understood.

In this study, we firstly explored the important roles of FRGs in BCa, and then devel-
oped and verified a novel prognostic model based on FRGs in three independent patient
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cohorts by using a machine learning method. Subsequently, we performed functional
enrichment analysis to explore potential mechanisms associated with the FRGs’ signatures
and the potential use of the ferroptosis-related signatures for predicting immune responses
in patients with BCa.

2. Materials and Methods
2.1. Patient Cohorts

Four independent patient cohorts from The Cancer Genome Atlas (TCGA), Array-
Express (E-MTAB-4321) [9], Gene Expression Omnibus (GSE31684) [10], and IMvigor
210 trial [11] were recruited in this study. Only patients with complete gene expression
data and clinical prognosis information were selected for analysis. The TCGA cohort
included 405 BCa samples and 19 paired normal bladder samples from radical cystectomy
with pre-processed RNA-sequencing data and corresponding clinical data, which were
retrieved from TCGA database. In the GSE31684 cohort, raw CEL microarray data of
93 patients managed by radical cystectomy were analyzed for background adjustment
and normalization based on the Affymetrix Human Genome U133 Plus 2.0 Array through
robust multichip average methods [12]. Records for 476 patients managed by radical
cystectomy or transurethral resection in the E-MTAB-4321 cohort with complete clinical
data and processed RNA-seq sequencing data were also downloaded from ArrayExpress.
Clinicopathological and processed gene expression data of 348 mUC patients treated
with immune checkpoint inhibitors (ICIs) in the IMvigor210 cohort was retrieved from
IMvigor210CoreBiologies, a free data resource based on the R environment [13]. Basic clini-
copathologic features are shown in Table S1 in the Supplementary Materials. In addition,
19 ferroptosis-related genes (FRGs) were retrieved from previous published studies [14].
The pan-cancer data of 32 types of malignancies, including normalized RNA-seq data and
survival information for 9824 patients, were also downloaded from the TCGA database.

2.2. Construction and Evaluation of the Prognosis Model Based on FRGs

To determine the specific FRGs for the construction of the prognosis model for patients
with BCa, we carried out a least absolute shrinkage and selection operator analysis via
the glmnet package in the R environment using the training cohort (TCGA cohort), with
a lambda number of 1000 to ensure the robustness of the model. Only specific FRGs
associated with clinical prognosis were screened out, and their respective coefficients were
also calculated. Then, we calculated the ferroptosis score as follows:

Ferroptosis score =
n

∑
i=1

(Coefficient × Feri)

The prognosis model was further verified in the independent E-MTAB-4321 cohort,
GSE31684 cohort, and pan-cancer cohort with a cut-off value of the median value for
each cohort.

2.3. Gene Set Enrichment Analysis

In order to determine the potential mechanisms related to the ferroptosis score, we
carried out a gene set enrichment analysis (GSEA) [15,16] via the clusterProfiler pack-
age [17] in R; this analysis was performed based on the Kyoto Encyclopedia of Genes and
Genomes (KEGG) PATHWAY database and a gene ontology (GO) analysis. The abun-
dances of 22 types of immune cells were estimated from transcriptomic data by using
CIBERSORT [18].

2.4. Tumor Immune Microenvironment Analysis

We estimated the abundances of various immune cells for each sample using CIBER-
SORT [19]. The expressions of chemokines, interleukins, interferons, MHC molecules,
costimulators, coinhibitors, and other important cytokines were analyzed between patients
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with high and low ferroptosis scores. Key immune characteristics, including TGF-β re-
sponse, IFN-γ response, macrophage regulation, proliferation, wound healing, Th1 cells,
Th2 cells, and Th17 cells, were also retrieved from previous research for comparative analy-
ses [20]. The association of the machine-learning-based ferroptosis score and the response
to immunotherapy was also explored in the IMvigor210 cohort.

2.5. Exploring the Potential Compounds Targeting the FRG Signature

Exploration of the potential compounds that targeted the ferroptosis-related gene
signature was carried out based on a dataset downloaded from CellMiner [21], which is a
database and query tool designed for the cancer research community to facilitate integration
and study of molecular and pharmacological data for the NCI-60 cancerous cell lines. The
half-maximal inhibitory concentration (IC50) was used to predict the drug sensitivity of
potential compounds.

2.6. Statistical Analysis

Statistical analysis was performed in R (3.6.2) for this study. Survival analysis was
carried out through Kaplan–Meier curve and Cox regression analyses to compare overall
survival (OS, deaths from all causes) and disease-free survival (DFS, survival without BCa-
related events) with a hazard ratio (HR) and 95% confidence interval (CI). The predictive
nomogram was constructed using the nomogramEx and rms packages in R, and evaluated
via using concordance index (C-index) and receiver operating characteristic (ROC) curves
with an area under curve (AUC) value.

3. Results
3.1. Clinicopathological Characteristics of Patients in this Study

A total of 1322 patients with BCa were included in this study. The clinicopathological
features of patients in the TCGA cohort (n = 405), the E-MTAB-4321 cohort (n = 476), the
GSE31684 cohort (n = 93), and the IMvigor210 cohort (n = 348) are shown in Table S1
in the Supplementary Materials, with mean follow-up duration of 27.0 ± 27.9 months,
33.1 ± 17.3 months, 47.5 ± 44.8 months and 10.2 ± 7.7 months, respectively. In the
IMvigor210 cohort, a total of 348 BCa patients with follow-up information were treated
with ICIs, in which 298 patients had exact immunotherapy results: complete response (CR),
partial response (PR), stable disease (SD), or progressive disease (PD).

3.2. Construction and Verification of the Prognosis Model in Multiple Patient Cohorts

By performing a least absolute shrinkage and selection operator analysis in the train-
ing cohort (TCGA cohort), we screened out 12 FRGs, including HSPA5, TFRC, SLC7A11,
SLC1A5, DPP4, RPL8, LPCAT3, SAT1, GPX4, ACSL4, NFE2L2, and FANCD2, to construct
the prognosis model (Figure 1A,B). The selected genes and their respective coefficients are
shown in Table S2 in the Supplementary Materials.

Based on the selected FRGs and their respective weight coefficients, the ferroptosis
score was then calculated according to the formula mentioned above for each patient.
When the cut-off value of the ferroptosis score was set as −1.557, the model achieved the
best prediction performance in prediction of the 5-year survival status through the ROC
curve analysis (Figure 1C). To evaluate the prognosis model, patients in the TCGA cohort
and the E-MTAB-4321 cohort were grouped into high- or low-risk groups based on the
cut-off value of −1.557. The cut-off value in the GSE31684 cohort was set as the median
value because most of the ferroptosis scores in this cohort were higher than −1.557, which
might have been due to the worse prognosis in this cohort. We performed a Kaplan–Meier
curve survival analysis and observed a significantly differential OS (HR = 2.09, 95% CI:
1.55-2.82, p < 0.0001) between patients with high and low ferroptosis scores in the TCGA
cohort (Figure 1D). We further verified the prognosis model in other independent patient
cohorts; the results indicated that the ferroptosis score was able to distinguish patients
associated with a worse DFS or OS in both of the two independent cohorts, with an HR of
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4.71 (95% CI: 1.58–14.03, p < 0.0001) in the E-MTAB-4321 cohort (Figure 1E) and 1.76 (95%
CI: 1.08–2.87, p = 0.02) in the GSE31684 cohort (Figure 1F). Heatmap analyses revealed that
higher ferroptosis scores were associated with higher BCa tumor stages (Figure 1G).
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Figure 1. Prognosis model based on ferroptosis-related genes for BCa. (A,B) The 10-fold cross-
validated error and coefficients at varying levels of penalization plotted against the log (lambda)
sequence for the least absolute shrinkage and selection operator analysis, respectively. (C) ROC curve
of 1-, 3-, and 5-year OS prediction based on the ferroptosis score. (D) Kaplan-Meier survival analysis
of OS stratified by ferroptosis score for BCa patients in the TCGA cohort. (E) Kaplan-Meier survival
analysis of DFS stratified by ferroptosis score in the validation E-MTAB-4321 cohort. (F) Kaplan-Meier
survival analysis of OS stratified by ferroptosis score in another validation of the GSE31684 cohort.
(G) Heatmap illustrating the expression of the selected genes and the distribution of clinicopathologic
factors in the TCGA cohort. BCa, bladder cancer; TCGA, The Cancer Genome Atlas; ROC, receiver
operating characteristic; AUC, area under the curve; OS, overall survival; DFS, disease-free survival;
S1, Stage I; S2, Stage II; S3, Stage III; S4, Stage IV.

3.3. Evaluation of the Ferroptosis-Related Prognosis Model

To further evaluate the ferroptosis-related prognosis model for patients with BCa, we
performed a Cox regression analysis in three independent patient cohorts. As shown in
Figure 2A–C, the ferroptosis score proved to be an independent prognostic factor for BCa
patients, with an HR of 4.42, 1.03, and 5.32, respectively. Significant different distributions
of ferroptosis scores could also be found among patients with different tumor stages in the
TCGA cohort (Figure 2D), the E-MTAB-4321 cohort (Figure 3E), and the GSE31684 cohort
(Figure 2F). In addition, a higher ferroptosis score was also found in patients with a higher
tumor grade (Figure 2G) and patients with distant metastasis (Figure 2H).
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Figure 2. Evaluation of the ferroptosis-related prognosis model. (A–C) Univariate cox regression
analyses of ferroptosis score and clinicopathologic factors in the TCGA cohort, the validation MTAB-
4321 cohort, and GSE31684 cohort, respectively. (D–F) The different distributions of ferroptosis scores
among different stages and lymph node metastasis status in the TCGA cohort, the validation MTAB-
4321 cohort, and GSE31684 cohort, respectively. (G,H) The different distributions of ferroptosis scores
between different tumor grades and distant metastasis status in the TCGA cohort. TCGA, The Cancer
Genome Atlas.
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(B) Cox regression analysis of machine-learning-based ferroptosis score in different types of malignan-
cies in the TCGA dataset. (C) Gene set enrichment analysis of patients with high ferroptosis scores.
(D,E) Correlation analyses of ferroptosis scores and different adaptive immune cells (D)/innate
immune cells (E) in the TCGA cohort. BCa, bladder cancer; TCGA, The Cancer Genome Atlas.

3.4. Applying the Prognosis Model for Pan-Cancer

Next, we explored whether our prognosis model could be applied in the pan-cancer
cohort. Based on 32 types of different malignancies from the TCGA database (9824 patients),
our model could also significantly distinguish patients with different survival risks based
on the same cut-off value of −1.557 (HR = 1.15, 95% CI: 1.07–1.24, p < 0.0001; Figure 3A). The
Cox regression analysis illustrated that the ferroptosis score could act as an independent
risk factor for multiple types of tumors, including adrenocortical carcinoma (ACC), BCa,
breast invasive carcinoma (BRCA), cervical squamous cell carcinoma and endocervical
adenocarcinoma (CESC), head and neck squamous cell carcinoma (NHSC), kidney renal
papillary cell carcinoma (KIRP), sarcoma (SARC), and uveal melanoma (UVM), indicat-
ing the robust prediction performance of the machine-learning-based prognosis model
(Figure 3B).

3.5. Tumor Immunity-Related Pathways Were Associated with the Ferroptosis Score in BCa

The GSEA revealed that several pathways, including those for IL-17 signaling, JAK-
STAT signaling, the cell cycle, and cellular senescence, were significantly associated with
the ferroptosis score (Figure 3C). Since IL-17 has been reported to play an important
role in tumor immunity [22,23], we next explored whether our ferroptosis score was
associated with tumor immunity in BCa. A correlation analysis indicated that several types
of immune cells were significantly associated with the ferroptosis score (Figure 3D,E), in
which regulatory T cells seemed to have the highest negative correlation. Immune-related
genes, including CCL7, CCL20, CCL26, PF4, PPBP, IL31RA, IL20RB, and EGF were the
most highly expressed in patients with high ferroptosis scores (Figure 4A). In addition,
patients with high ferroptosis scores were significantly associated with higher levels of
TGF-β response, proliferation, wound healing, Th1 cells, and Th2 cells (Figure 4B). Further
verification in the IMvigor210 cohort revealed the BCa patients with high ferroptosis scores
tended to have a worse survival outcome after receiving tumor immunotherapy (Figure 4C).
Significantly different ferroptosis scores could also be found between BCa patients with
different reactions to ICI treatment (Figure 4D).
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in ccRCC from different subclusters. (B) Different values for vital immune characteristics in different
subclusters. (C) Kaplan–Meier survival analysis of OS stratified by ferroptosis score in the IMvigor210
cohort treated with ICI. (D) Comparison of ferroptosis scores between BCa patients with different
reactions to ICI treatment. OS, overall survival; BCa, bladder cancer; ICI, immune checkpoint
inhibitor; CR, complete response; PR, partial response; PD, progressive disease. *, p < 0.05; **, p < 0.01;
***, p < 0.001; ****, p < 0.0001; ns, not significant.

3.6. Integrated Nomogram Improved the Prognosis Prediction for BCa Patients

We next explored whether our ferroptosis score could be used together with current
clinicopathological characteristics to improve the prognosis prediction for BCa patients.
We developed an integrated nomogram based on the ferroptosis score, patient age, and
tumor stage in the TCGA cohort (Figure 5A). The ROC curve analyses indicated that higher
AUC values in the nomogram were found when compared with other clinicopathological
characteristics (74.0% for 1-year OS, Figure 5B; 730% for 3-year OS, Figure 5C; 74.0% for
5-year OS, Figure 5D), revealing the potential clinical practicability of the nomogram.
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Genes 2022, 13, 1073 8 of 11

3.7. Identification of Novel Candidate Compounds Targeting the Ferroptosis-Related
Prognosis Model

Based on the IC50 of each candidate compound, we firstly carried out a correlation
analysis of the compound activity and ferroptosis-related risk score/gene in the NCI
60 cell line. As shown in Figure 6A, a total of 19 drugs were selected as candidate com-
pounds (p < 0.05). Significant differences in the estimated IC50 between cancer cell lines
with high and low ferroptosis scores were found in six compounds, including tamoxifen,
salinomycin, elesclomol, paclitaxel, erlotinib, and afatinib (Figure 6B), which might be used
as novel compounds to target the ferroptosis-related prognosis model for further analysis
in patients with BCa.
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4. Discussion

Due to the tumor heterogeneity of bladder malignancy, the accurate prediction of
clinical outcome is of great importance for clinical decisions and further management for
patients with BCa. As a vital physiological process that is gradually gaining attention,
ferroptosis has been proved to play important roles in tumorigenesis and is significantly
associated with the tumor therapeutic effect [24,25]. However, the important roles of FRGs
in BCa are still poorly understood.

In this study, we constructed and verified a prognostic model based on FRGs. Effective
prognosis prediction of our ferroptosis score was verified in three different patient cohorts,
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with HR values of 1.90, 2.63, and 1.76, respectively. Furthermore, our ferroptosis score
proved to be a risk factor of OS for BCa patients. The integrated nomogram based on
the ferroptosis score and clinicopathologic features performed well in predicting clinical
outcome at the 1-, 3- and 5-year follow-up.

Cisplatin-based traditional chemotherapy is recommended as the first-line drug for
metastatic BCa patients. [26] However, for relapsed patients, there is no approved second-
line drug. Currently, with their wide application in melanoma, colorectal cancer, non-
small-cell lung cancer, and Hodgkin’s lymphoma, ICI therapies targeting PD-1/PD-L1
show potential in treating relapsed BCa patients. Nevertheless, according to the results of
some clinical trials, the overall response rates of PD-1/PD-L1-related immunotherapy are
still improvable, and vary among individuals. [27,28] In addition, there were even some
cases showing hyperprogressive disease, meaning patients showed rapid progress after
PD-1/PD-L1 related immunotherapy. [29] Therefore, it is of great urgency to determine
clinically useful biomarkers for predicting the clinical and ICI treatment outcomes of
bladder cancer patients.

In addition to the application of immunochemistry using PD-1/PD-L1 antibodies,
tumor mutational burden [30] and microsatellite instability [31] are currently two novel
indicators for predicting ICI treatment. Nevertheless, both of the two biomarkers are
detected through high-throughput sequencing methods, which require freshly resected
samples and lead to high-level medical costs. Therefore, it is necessary to find a convenient
and comparatively reliable method for predicting immunotherapy responsiveness.

In our study, our ferroptosis score was found to be significantly different between BCa
patients with different reactions to ICI treatments, which could act as a potential biomarker
for tumor immunotherapy of BCa. Intriguingly, the ferroptosis score in our study was
correlated with abundances of some immune cells, especially regulatory T cells. Current
studies reported that regulatory T cells might play important roles in the tumor environ-
ment in successful immune checkpoint therapy [32]. In addition, functional fragility of
regulatory T cells is required for a response to the PD-1 blockade [33]. Therefore, the poten-
tial mechanisms underlining the ferroptosis score and regulatory T cells in immunotherapy
of BCa are worth further exploration.

There were also some limitations to our study. Firstly, only public patient cohorts were
included in this study, which might have resulted in a potential bias in the retrospective
study. For example, some patients with BCa might receive intravesical therapies before
surgery, which could stimulate an immune reaction and thus could affect gene expression at
the tumor level. Secondly, the lack of clinical data regarding the population also could have
caused bias in the study. Thirdly, even though high-throughput genetic techniques were
tested and verified in three independent patient cohorts, experimental studies for potential
mechanism exploration are still necessary for further verification of the FRG-related model.

5. Conclusions

In conclusion, we developed and verified a prognostic model based on FRGs, which
could act as an independent risk factor for patients with BCa. The integrated nomogram
based on the ferroptosis score and clinicopathologic features could improve the prognosis
prediction for BCa. Tumor immunity-related pathways were also found to be associated
with the ferroptosis score, and might serve as a potential biomarker for immune checkpoint
therapy for BCa. However, a prospective study and the exploration of mechanisms are still
needed for further analysis.
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