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Abstract: LncRNAs have been well known for their multiple functions in the tumorigenesis, de-
velopment, and relapse of colorectal cancer (CRC). Accumulating studies demonstrated that the
expression of lncRNAs can be regulated by ferroptosis, a biological process that has been revealed to
suppress CRC progression. However, the functions and clinical implications of ferroptosis-associated
lncRNAs in CRC remain largely unknown. We, herein, aim to construct a prognostic signature with
ferroptosis-related lncRNAs for the prognostic estimation of CRC patients. Firstly, we identified
the lncRNAs related to ferroptosis based on the RNA-Seq data of CRC from the TCGA database.
The univariate and multivariate Cox analyses were then performed to establish a prognostic signa-
ture composed of eight ferroptosis-related lncRNAs (AL161729.4, AC010973.2, CCDC144NL-AS1,
AC009549.1, LINC01857, AP003555.1, AC099850.3, and AC008494.3). Furthermore, we divided the
CRC patients into high- and low-risk groups based on the signature and found the overall survival
(OS) of patients in the high-risk group was significantly shorter than that in the low-risk group
(p = 3.31 × 10−11). Moreover, the patients in the high-risk groups had shorter recurrence-free survival
(RFS) (p = 6.5 × 10−3) and disease-free survival (DFS) (p = 4.27 × 10−4), as well as higher tumor
recurrence rate. Additionally, we found that the oncogenic pathways were enriched in the high-risk
group, whereas the ferroptosis pathway that probably repressed CRC development was enriched in
the low-risk group. In summary, our signature may provide a theoretical foundation for not only
accurate judgment for prognosis but also evaluation for recurrence and metastasis in CRC patients.

Keywords: colorectal cancer; ferroptosis; long non-coding RNA; prognostic signature; metastasis

1. Introduction

As one of the most common cancers, colorectal cancer (CRC) is the third most com-
monly diagnosed cancer and the second leading cause of cancer death worldwide [1].
Statistically, in 2020, the number of new CRC cases exceeded 1.9 million and the number of
CRC deaths exceeded 0.9 million, whereas the sum of them accounts for about one-tenth
of all cancers [1]. The 5-year survival rate for CRC patients is about 64%, while it is about
12% for metastasized CRC patients [2]. It makes CRC horrific that more than half of CRC
patients develop liver metastases [3,4]. Moreover, intrahepatic recurrence usually happens
within 3 years after surgical resection of these CRC patients with liver metastases [3] and
the 5-year survival rate of the patients is only 20–50% [4]. As the primary prognostic factor,
the prognostic performance of the current tumor-node-metastasis (TNM) staging system for
CRC patients is still insufficiently accurate [5]. Furthermore, due to the high heterogeneity
of CRC, few biological markers can accurately predict its recurrence [6]. Therefore, the
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identification and validation of new prognostic markers are greatly needed for the precise
prognosis of CRC patients.

Ferroptosis, which was first discovered in 2012 [7], is a novel regulatory pattern of
cell death that is mediated by iron and lipid peroxidation [8]. Due to its involvement in
a variety of biological processes in cancer [9–11], ferroptosis has been reported to play a
dual role in cancer occurrence and development [8]. On the one hand, ferroptosis can exert
its suppressive effect on cancer development [12–14] or recurrence [15,16]. On the other
hand, ferroptosis may also promote cancer progression in certain circumstances, such as
oxidative stress [17,18]. Therefore, ferroptosis induction or inhibition can be employed
as a novel therapeutic strategy for certain cancers. Recently, a series of studies have
implicated the inhibitory function of ferroptosis in the carcinogenesis and development of
CRC [19–22]. It has been revealed that cellular iron transportation is impaired during colon
cancer progression [20]. The ferroptosis induced by resibufogenin treatment is mediated
by glutathione peroxidase 4 (GPX4) inactivation and suppresses CRC cell growth and
tumorigenesis [19]. Besides, ferroptosis can be triggered by combinative treatment of β-
elemene and cetuximab, contributing to the growth retardation and migration suppression
of CRC cells with KRAS mutations [21]. Collectively, ferroptosis may play a negative
regulatory role in the progression of CRC.

Long non-coding RNAs (LncRNAs), a kind of non-protein coding transcript with a
length of more than 200 nucleotides [23], are widely involved in a variety of biological
processes associated with cancer, including rapid proliferation, apoptosis resistance, angio-
genesis, metabolic reprogramming, invasion, metastasis, and so on [23–25]. For example,
by interacting with heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) to upreg-
ulate the expression of transcription factor 7 like 2 (TCF7L2) that activates Wnt signaling,
lncRNA MIR100HG acts as an inducer of epithelial–mesenchymal transition (EMT), which
facilitates cetuximab resistance and metastasis in CRC [26]. Additionally, the aberrant
expression of lncRNAs in cancer confers on them the ability to predict the prognosis of
patients [23,27,28]. Recently, several studies demonstrated that the expression levels of
lncRNAs can be regulated by ferroptosis [29–31]. For instance, lncRNA GABPB1-AS1′s
expression can be elevated in the hepatocellular carcinoma cells by erastin, which serves as
an inducer of ferroptosis [29]. Besides, H19 and NEAT1, two additional lncRNAs, were
also up-regulated in cells undergoing ferroptosis [30,31]. Nonetheless, study on lncRNA in
connection with ferroptosis in CRC is scarce so far.

Although the ferroptosis-related lncRNA prognostic signatures have been developed
for the prognosis evaluation for CRC [32] and clinical outcomes and therapeutic responses
for colon cancer patients [33,34], we herein established a prognostic signature based on
eight ferroptosis-related lncRNAs that can not only predict OS but also estimate the risk
of recurrence and metastasis in CRC patients. Our prognostic signature can categorize
CRC patients into high- and low-risk groups and judge a poor prognosis for patients
in the high-risk group. Moreover, the signature exhibited broad applicability in various
clinical subgroups, independence in evaluating the prognosis of CRC patients, as well
as prognostic accuracy verified by the receiver operator characteristic (ROC) analysis.
Additionally, we constructed a nomogram that can effectively predict the OS rate of CRC
patients. Furthermore, the signature determined that CRC cells from high-risk patients
are more prone to recurrence and metastasis. Taken together, our ferroptosis-related
lncRNA signature has a high prognostic value and may serve as a theoretical reference for
personalized therapies for CRC patients.

2. Materials and Methods
2.1. Data Collection and Preprocessing

We downloaded the RNA sequencing (RNA-seq) data, simple nucleotide variations
data, and corresponding clinical data of CRC patients from The Cancer Genome Atlas
(TCGA) database (https://portal.gdc.cancer.gov, accessed on 25 March 2021). The disease-
specific survival (DSS) and progression-free interval (PFI) information of these patients
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were downloaded from the University of California, Santa Cruz (UCSC) Xena database
(http://xena.ucsc.edu, accessed on 16 August 2021). Additionally, the progression-free
survival (PFS) and disease-free survival (DFS) information were collected from the cBio
Cancer Genomics Portal (cBioPortal) database (http://www.cbioportal.org, accessed on
16 August 2021). The protein expression data of CRC patients were obtained from the
Clinical Proteomic Tumor Analysis Consortium (CPTAC) database (https://cptac-data-
portal.georgetown.edu/study-summary/S016, accessed on 14 July 2021). Then, the ex-
pression levels of mRNAs and lncRNAs were converted to the transcripts per kilobase of
exon signature per million mapped reads (TPM). The 505 patients with OS ≥ 30 days were
retained for assuring the accuracy of the result in our analysis.

2.2. Identification of Differentially Expressed LncRNAs Related to Ferroptosis

The R package DESeq2 [35] was used for detecting the differentially expressed genes
between normal tissues and CRC tissues. For further analysis, we filtered the genes
that are not expressed in at least 20% of all samples to remove low-expressed genes.
Besides, we downloaded 201 genes related to ferroptosis from the FerrDb database (http:
//www.zhounan.org/ferrdb, accessed on 12 March 2021) [36]. The differentially expressed
lncRNAs whose expression levels were correlated with at least one of the differential
ferroptosis-related genes (|R| > 0.5 and p < 0.001) were identified as the ferroptosis-related
lncRNAs through the Pearson correlation analysis.

2.3. Establishment of the Prognostic Signature Composed of Ferroptosis-Related LncRNAs in the
Training Set

The 505 screened CRC patients were regarded as an entire set and the R package
caret [37] was used to randomly divide the entire set into a training set and a test set. The
Fisher’s exact test was used to detect the differences in traditional clinical characteristics of
the patients between the two sets. Then, we used the R package survival [38] to perform
the univariate Cox regression analysis of OS for ferroptosis-related lncRNAs in the train-
ing set, and the prognostic lncRNAs were identified according to the criteria of p < 0.01.
Additionally, to prevent the signature from overfitting, Least Absolute Shrinkage and Selec-
tion Operator (LASSO) Cox regression analysis was performed on the prognosis-related
lncRNAs through the R package glmnet [39]. The stepwise multivariate Cox regression
analysis was performed to construct the ferroptosis-related lncRNA prognostic signature
by the smallest Akaike information criterion (AIC) value. Subsequently, the risk score of
each patient was calculated by the following formula: risk score = ∑n

i = 1(Coefi ∗ Expri).
The “Coef” represents the coefficient of each lncRNA in the results of multivariate Cox
regression analysis, and “Expr” represents the expression level of each lncRNA.

2.4. Evaluation and Validation of the Prognostic Capability for the Prognostic Signature in the Test
and Entire Sets

According to the optimal cut-point of the risk score of the training set determined by
the surv_cutpoint function in survminer package (v.0.4.8, https://rpkgs.datanovia.com/
survminer/index.html, accessed on 6 November 2020), the training, test, and entire set
were divided into the high-risk and low-risk groups, respectively. Then, the Kaplan–Meier
survival analysis and log-rank test were utilized to evaluate the differences in OS, RFS,
DFS, DSS, PFS, and PFI of CRC patients between the high- and low-risk groups. Next,
we used the R package survivalROC (v.1.0.3, https://cran.r-project.org/web/packages/
survivalROC/index.html, accessed on 22 December 2020) to draw the time-dependent
ROC curves of OS and evaluate the prediction accuracy of the prognostic signature based
on the area under the curve (AUC) value. Subsequently, the risk curves for the two groups
of CRC patients, as well as their overall survival time and survival status distribution
diagram, were drawn to illustrate the relationship between the risk score and survival of
patients. The expression heatmap of the eight lncRNAs in the signature was drawn by the
R package heatmap.

http://xena.ucsc.edu
http://www.cbioportal.org
https://cptac-data-portal.georgetown.edu/study-summary/S016
https://cptac-data-portal.georgetown.edu/study-summary/S016
http://www.zhounan.org/ferrdb
http://www.zhounan.org/ferrdb
https://rpkgs.datanovia.com/survminer/index.html
https://rpkgs.datanovia.com/survminer/index.html
https://cran.r-project.org/web/packages/survivalROC/index.html
https://cran.r-project.org/web/packages/survivalROC/index.html
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2.5. The Relationship between Risk Score and Clinical Characteristics

According to various clinical characteristics, we divided the entire set into subgroups
for analyzing the relationship between risk score and clinical characteristics, such as age
(<65 years old, ≥65 years old), sex (female, male), TNM stage (stage I–II, stage III–IV), T
stage (T1–2, T3–4), N stage (N0, N1–2), M stage (M0, M1), recurrence status (non-recurrence,
recurrence), and survival status (alive, dead). Subsequently, the Fisher’s exact test was used
to detect the differences in traditional clinical characteristics of the patients between the
high- and low-risk groups. Moreover, the Wilcoxon test was used to calculate the difference
in risk scores between different clinical subgroups. Additionally, the differences in OS
between the high-risk group and low-risk group of these subgroups were analyzed by the
Kaplan–Meier method and log-rank test.

2.6. Independent Prognostic Analysis of Risk Score and Construction of a Nomogram

To confirm whether risk score can be used as an independent prognostic indicator
for CRC patients, we performed univariate and multivariate Cox analyses, together with
the ROC curve analysis, based on risk score and clinical characteristics (age, sex, TNM
stage, T stage, N stage, and M stage) in the training, test, and entire sets. Furthermore,
based on the risk score and clinical characteristics (age, sex, and TNM stage) in the training
set, we constructed a nomogram through the R package rms [40] to predict the OS rate of
CRC patients and calculated the concordance index (C index) of the nomogram. Then, the
bootstrap method was used for internal verification, and calibration curves of 1, 3, and
5 years were plotted to assess whether the survival rate predicted by the nomogram is
consistent with the actual survival rate. Moreover, external verification for the prognostic
value of the nomogram was also performed in the test and entire sets.

2.7. Functional Enrichment Analysis

Because the CRC patients’ proteomics data we downloaded in the CPTAC database are
from TCGA patients, the protein expression data of the 70 patients with the risk scores in
the CRC proteomics data are used as the proteomics set. We first compared the difference in
OS between the high- and low-risk groups of CRC patients from the proteomics set by the
Kaplan–Meier method and log-rank test. Then, the DESeq2 package was used to calculate
the differential expression of genes between the high- and low-risk groups in the entire
set based on the RNA-seq data, as well as the differential expression of proteins between
the high- and low-risk groups in the proteomics dataset. The differentially expressed
genes and proteins were used for the Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis by R package ClusterProfiler [41]. The pathways with p.adjust < 0.05
were considered to be significantly enriched. Furthermore, all the genes of the entire set or
all the proteins of the proteomics set were used to perform gene set enrichment analysis
(GSEA) based on the KEGG pathway by the gseKEGG function of the ClusterProfiler
package. The pathways with normalized enrichment score |NES| > 1 and p.adjust < 0.05
were considered to be significantly different. A positive value of NES indicates the pathway
is enriched in the high-risk group, but a negative value indicates the pathway is enriched
in the low-risk group. The epithelial–mesenchymal transition (EMT) score of each patient
was calculated via the mean expression of the mesenchymal genes subtracted by the mean
expression of the epithelial genes [42], and a higher EMT score implies that the cancer cell
is closer to the mesenchymal phenotype. The difference in EMT scores between the high-
and low-risk groups was calculated via the Wilcoxon test.

2.8. Analysis of Somatic Mutation Data

We analyzed and summarized the somatic mutation data of CRC patients using the R
package maftools [43]. Then the Fisher’s exact test was performed to detect the genes whose
mutation frequencies were different between the high- and low-risk groups. Subsequently,
all the mutated-gene genes were used to perform GSEA analysis. Pathways with |NES| > 1
and p < 0.05 were considered to be significantly different.
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2.9. Statistical Analysis

All statistical analyses were performed using R software (v.4.0.2, https://www.r-
project.org, accessed on 22 June 2020). We used Fisher’s exact test to check the differences
in categorical variables in different groups. DEseq2 was used to identify the differentially
expressed genes and proteins between the two groups. The Pearson method was used
to analyze the correlation between differential ferroptosis-related genes and differentially
expressed lncRNAs. The differences in risk scores and EMT scores between different
groups were calculated with the Wilcoxon test. The results with p < 0.05 were indicated as
significant unless otherwise stated.

3. Results
3.1. Identification of Differentially Expressed Ferroptosis-Related LncRNAs in CRC Patients

The flowchart for identifying ferroptosis-related lncRNAs in CRC patients is shown
in Figure 1A. We firstly screened 4098 differentially expressed lncRNAs with the criteria
of |log2(Fold Change)| > 1 and p.adjust < 0.05 between the normal and CRC tissues.
Additionally, we downloaded 201 human genes related to ferroptosis from the FerrDb
database and they are listed in Table S1. Then, we identified 155 differentially expressed
ferroptosis-related mRNAs according to the standard of p.adjust < 0.05. Next, we removed
the genes that were not expressed in 20% or more of all samples. As a result, 1292 differen-
tially expressed lncRNAs and 150 ferroptosis-related mRNAs remained for further analysis.
Then, the Pearson method was used to analyze the correlations between the expression
levels of these lncRNAs and mRNAs. Subsequently, 562 lncRNAs, which we named
ferroptosis-related lncRNAs, were screened out according to the threshold of correlation
coefficient |R| > 0.5 and p < 0.001.

3.2. A Prognostic Signature Consisting of Eight Ferroptosis-Related LncRNAs Was Derived from
the Training Set

The entire set obtained after filtration was randomly divided into a training set (n = 354)
and a test set (n = 151) according to a ratio of 7:3 [44]. The clinical characteristics of the CRC
patients in the training and test sets are shown in Table S2 and Fisher’s exact test showed
there were no significant differences in these clinical characteristics of the patients between
the two sets (p > 0.05). The detailed clinical information of each patient is shown in Table S3.
In the training set, we used univariate Cox analysis to identify ferroptosis-related lncRNAs
associated with the OS of CRC patients, and 11 lncRNAs were retained based on a cut-off
value of p < 0.01 (Figure 1B). LncRNAs with a hazard ratio (HR) > 1 are associated with
a poor prognosis in CRC patients, whereas lncRNAs with a HR < 1 are associated with a
favorable prognosis in CRC patients. They were then further filtered by LASSO regression
analysis and 10 lncRNAs related to prognosis remained (Figure 1C,D). Subsequently, we
performed the multivariate Cox analysis and established a prognostic signature comprising
eight ferroptosis-related lncRNAs associated with prognosis (Figure 1E, Table 1). Next, the
risk score of each patient was calculated based on the coefficients (Table 1) and expression
levels of these eight lncRNAs. The relationships of the eight lncRNAs of the prognostic
signature and 20 ferroptosis-related mRNAs that are associated with their expression
(|R| > 0.5, p < 0.001) were visualized in the mRNA–lncRNA co-expression network by
Cytoscape software (v.3.8.2) [45] (Figure S1A). Correlations between these mRNAs and
lncRNAs, as well as risk types, are also shown in the Sankey plot by the R software package
ggalluval [46] (Figure S1B).

https://www.r-project.org
https://www.r-project.org
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Figure 1. Construction of a prognostic signature composed of eight ferroptosis-related lncRNAs
based on the training set. (A) Flowchart for the identification of ferroptosis-related lncRNAs. (B) The
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forest plot shows the 11 ferroptosis-related lncRNAs associated with OS identified by univariate
Cox regression analysis. (C) The LASSO coefficient profile of the 10 OS-related lncRNAs displays
the trajectory of the coefficients of the independent variable changing with the lambda. The upper
abscissa represents the number of the independent variables with non-zero coefficients. (D) The
cross-validation diagram shows that 10 candidate lncRNAs were screened out by LASSO regression
analysis based on minimal error. The upper abscissa represents the number of independent variables.
The vertical dashed line on the left was drawn according to the minimum criterion, corresponding
to the optimal model. The vertical dashed line on the right was drawn according to one standard
error of the minimum criteria (the 1-se criteria), corresponding to the signature with the fewest
variables. (E) The forest plot shows a ferroptosis-related lncRNA prognostic signature constructed
by multivariate Cox regression analysis. Unadjusted hazard ratios represent the 95% confidence
intervals; * p < 0.05; ** p < 0.01; *** p < 0.001.

Table 1. The coefficients of eight ferroptosis-related lncRNAs of the multivariable Cox regression
analysis in the training set.

Gene Symbol Ensembl ID Genomic Location (GRCh38) Coefficient

LINC01857 ENSG00000224137 Chr2: 207,662,375–207,667,024 0.0865
CCDC144NL-AS1 ENSG00000233098 Chr17: 20,868,433–21,002,276 0.4138

AP003555.1 ENSG00000254605 Chr11: 70,014,858–70,021,059 0.0909
AL161729.4 ENSG00000271659 Chr9: 95,514,045–95,514,520 0.1325
AC099850.3 ENSG00000265415 Chr17: 59,202,677–59,203,829 −0.0251
AC010973.2 ENSG00000244151 Chr7: 151,074,742–151,076,530 0.187
AC009549.1 ENSG00000270607 Chr11: 19,710,934–19,712,619 0.3169
AC008494.3 ENSG00000271797 Chr5: 115,262,505–115,263,448 −0.668

3.3. Evaluation and Validation of the Prognostic Performance for the Prognostic Signature

The training set was divided into a high-risk group (n = 121) and a low-risk group
(n = 233) via the optimal cut-point of the risk score (risk score = 0.1826). Furthermore, the
Kaplan–Meier curve showed the difference in OS between the high- and low-risk groups
in the training set (Figure 2A). The OS of patients in the high-risk group was significantly
shorter than that in the low-risk group, suggesting this signature was valuable for the
prognosis of CRC. Furthermore, the AUC values at one, three, and five years of the ROC
curve for the risk score were 0.717, 0.757, and 0.705, respectively, indicating the signature
had good prognostic accuracy (Figure 2B). The risk curve, together with the overall survival
time and survival status distribution graph, showed the OS of patients was associated
with the risk score (Figure 2C,D). The overall survival time in the high-risk group was
lower than that in the low-risk group, and the number of deaths in the high-risk group
was also higher. The heatmap of clustering analysis for the expression levels of eight
ferroptosis-related lncRNAs displayed that AL161729.4, AC010973.2, CCDC144NL-AS1,
AC009549.1, LINC01857, and AP003555.1 were highly expressed in the high-risk group,
while AC099850.3 and AC008494.3 were highly expressed in the low-risk group (Figure 2E).

We used the same formula as the training set to calculate the risk score of each patient
in the test set. According to the optimal cut-point of the risk score in the training set
(risk score = 0.1826), the test set was also categorized into the high-risk group (n = 63)
and low-risk group (n = 88). The Kaplan–Meier survival curve showed that patients
in the high-risk group had a lower OS rate and a poorer prognosis than those in the
low-risk group (Figure 3A). Moreover, the ROC analysis showed that this prognostic
signature had stable prognostic ability for CRC patients (one-year AUC = 0.744, three-year
AUC = 0.734, five-year AUC = 0.707; Figure 3B). The risk curve and survival graphs are
displayed in Figure 3C,D. The heatmap of clustering analysis for the expression levels of
eight ferroptosis-related lncRNAs in the high-risk and low-risk groups of the test set is
shown in Figure 3E.
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Figure 2. Evaluation for the prognostic value of the lncRNA signature in the training set. (A) Kaplan–
Meier survival curve for OS of CRC patients in the high- and low-risk groups. (B) The time-dependent
ROC curves of OS based on the risk score indicate the prognostic accuracy of the 8-lncRNAs signature.
(C) The distribution of risk scores of CRC patients. (D) The scatter plot shows the overall survival
time and survival status of CRC patients in the high- and low-risk groups. (E) Heatmap of clustering
analysis for the expression of eight ferroptosis-related lncRNAs. L, low risk; H, high risk.
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Figure 3. Validation for the prognostic value of the lncRNA signature in the test set (A) Kaplan–
Meier survival curve for OS of CRC patients in the high- and low-risk groups. (B) The time-Figure 3. Validation for the prognostic value of the lncRNA signature in the test set (A) Kaplan–Meier

survival curve for OS of CRC patients in the high- and low-risk groups. (B) The time-dependent ROC
curves of OS based on the risk score indicate the prognostic accuracy of the 8-lncRNAs signature.
(C) The distribution of risk scores of CRC patients. (D) The scatter plot shows the overall survival
time and survival status of CRC patients in the high- and low-risk groups. (E) Heatmap of clustering
analysis for the expression of eight ferroptosis-related lncRNAs in the high- and low-risk groups. L,
low risk; H, high risk.
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The same method was used to calculate the risk score of each patient in the entire set,
which was classified into a high-risk group (n = 184) and a low-risk group (n = 321) based
on the optimal cut-point of the risk score derived from the training set (risk score = 0.1826).
Consistent with previous results, patients in the high-risk group had a worse prognosis
in OS (Figure S2A). At one, three, and five years, the AUC values were 0.724, 0.745, and
0.711, respectively (Figure S2B). The risk curve and survival status plots indicated that a
higher patient risk score means a higher mortality rate (Figure S2C,D). The heatmap of
clustering analysis for the expression levels of the eight ferroptosis-related lncRNAs is
shown in Figure S2E.

To further evaluate the more common clinical indicators related to prognosis, we
compared the RFS, DFS, DSS, PFS, and PFI rates of CRC patients. As observed in the
training, test, and entire sets, all these indicators of patients in the high-risk group were
also lower than those in the low-risk groups in the test or entire sets (Figures S3 and S4).
All the above results indicated that the ferroptosis-related lncRNA signature could be used
as a valuable prognostic indicator for CRC patients.

3.4. Analysis of the Relationship between the Prognostic Signature and the Clinical Characteristics
of CRC Patients

The Fisher’s exact test revealed that there were no significant differences in the age or
gender of the patients between the high- and low-risk groups, but there were significant
differences in TNM stage, T stage, N stage, M stage, recurrence status, and survival status
of the patients between the high- and low-risk groups (Table S4 and Figure 4A). To explore
further whether the risk score is related to the clinical characteristics of CRC patients,
we divided the patients in the entire set into two subgroups according to age (≥65 years
old, <65 years old), sex (female, male), TNM stage (stage I-II, stage III-IV), T stage (T1–2,
T3–4), N stage (N0, N1–2), and M stage (M0, M1), and determined whether there was
a difference in risk scores between the two subgroups. As shown in Figure 4B,C, no
correlation existed between the risk score and age or sex (p > 0.05). However, the risk
score was related to the TNM stage, T stage, N stage, M stages, recurrence status, and
survival status because there were statistical differences between the risk scores of their
two subgroups (p < 0.05; Figure 4D–I). Moreover, CRC patients with higher pathological
stages had higher risk scores.

Furthermore, to determine the prognostic value of the prognostic signature in var-
ious clinical features, we used the Kaplan–Meier method and log-rank test to perform
survival analysis between the high- and low-risk groups in each subgroup. As shown
in Figure 5, except for stage T1–2 (p > 0.05; Figure 5G), the prognosis of patients with
high-risk scores was worse than that of patients with low-risk scores in other subgroups
(p < 0.05; Figure 5A–F,H–L). These findings indicated that the prognostic signature was
applicable to a large number of patients. Additionally, the higher the risk score is at the
same pathological stage, the worse the patient’s prognosis may be.

3.5. The Prognostic Signature Can Be Applied as an Independent Prognostic Factor for CRC Patients

Univariate and multivariate Cox analyses were employed to determine whether the
ferroptosis-related lncRNA signature can be used as an independent prognostic factor for
CRC patients and the results are shown in the forest plot (Figure 6). In the training set, the
univariate Cox analysis showed that the risk score of the ferroptosis-related lncRNA signa-
ture was correlated with the prognosis of CRC patients (Figure 6A) and the multivariate
Cox analysis showed that the risk score can be taken as an independent prognostic factor
for CRC patients (Figure 6B).
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Figure 4. The relationship between the risk score and clinical characteristics of CRC patients in the 
entire set. (A) The heatmap shows the distribution of clinical characteristics of patients between Figure 4. The relationship between the risk score and clinical characteristics of CRC patients in the

entire set. (A) The heatmap shows the distribution of clinical characteristics of patients between
high-risk and low-risk groups. The box plots show that there is no significant difference in risk scores
between patients with different ages (≥65 years old, <65 years old) (B) or patients with different
sexes (female, male). (C,D) The box plot shows the risk scores of CRC patients with stage III–IV
are significantly higher than that of stage I–II. (E) The box plot shows that the risk scores of CRC
patients with the T3–4 stage are significantly higher than those of T1–2. (F) The box plot shows that
the risk scores of CRC patients with the N1–2 stage are significantly higher than those of N0. (G) The
box plot shows that the risk scores of CRC patients with the M1 stage are significantly higher than
those of M0. (H) The box plot shows that the risk scores of CRC patients with tumor recurrence are
significantly higher than those of tumor non-recurrence. (I) The box plot shows that the risk scores of
dead patients are significantly higher than those of alive patients. * p < 0.05; ** p < 0.01; *** p < 0.001.
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Figure 5. Prognostic value of the prognostic signature for CRC patients with different clinical
characteristics. Kaplan–Meier survival curve analysis for OS shows the differences between the high-
and low-risk groups in multiple clinical subgroups of CRC patients in the entire set, including age <
65 years old (A), age ≥ 65 years old (B), female (C), male (D), stage I–II (E), stage III–IV (F), T1–2 (G),
T3–4 (H), N0 (I), N1–2 (J), M0 (K), and M1 (L).
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Figure 6. Assessment for the prognostic independence of the risk score. (A,B) show the univariate 
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univariate Cox and multivariate Cox analysis of OS based on the risk score and clinical 

Figure 6. Assessment for the prognostic independence of the risk score. (A,B) show the univariate
Cox and multivariate Cox analysis of OS based on the risk score and clinical characteristics (age, sex,
TNM stage, T stage, N stage, and M stage) in the training set, respectively. (C,D) show the univariate
Cox and multivariate Cox analysis of OS based on the risk score and clinical characteristics in the
test set, respectively. (E,F) show the univariate Cox and multivariate Cox analysis of OS based on
the risk score and clinical characteristics in the entire set, respectively. The 1-year ROC curves of OS
based on the risk score and clinical characteristics in the training set (G), test set (H), and entire set
(I) indicate the prognostic accuracy of these variables. Unadjusted hazard ratios represent the 95%
confidence intervals.
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In the test set, univariate Cox analysis (Figure 6C) indicated that risk score was related
to prognosis, and multivariate Cox analysis (Figure 6D) also proved that risk score was
an independent prognostic factor. Similarly, in the entire set, univariate Cox analysis
(Figure 6E) and multivariate Cox analysis (Figure 6F) also showed that the risk score can be
used as an independent prognostic factor. Moreover, the AUC values of the risk score were
also higher than those of the majority of clinical characteristics, including age, sex, T stage,
N stage, and M stage, in the training, test, and entire sets (Figure 6G–I). Taken together,
the risk score of the ferroptosis-related lncRNA signature was a significant independent
prognostic factor for CRC patients.

3.6. Construction and Verification of a Nomogram for the Prediction of the OS Rate

To predict the OS rate, we constructed a nomogram in the training set using various
indicators, including the risk score and clinical characteristics. The total point calculated
by summing the scores of the indicators can predict OS rates of 1, 3, and 5 years for CRC
patients (Figure 7A). The derived C-index of 0.820 (95% CI = 0.767–0.873, p < 0.001) indicated
that the nomogram had an accurate predictive ability. Furthermore, the calibration curves of
1, 3, and 5 years showed that the OS rates predicted by the nomogram were well consistent
with the actual OS rates (Figure 7B–D).
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Figure 7. Construction and verification of the nomogram in the training set. (A) The established
nomogram, which contains several indicators, such as age, sex, TNM stage, and risk score, can predict
the OS rate of 1, 3, and 5 years for CRC patients in the training set. The calibration curves at 1-year
(B), 3-year (C), and 5-year (D) OS of the nomogram in the training set show the predicted result of
the nomogram is close to the actual OS rate.
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Additionally, the C-index values of the nomogram in the test and entire sets were 0.727
(95% CI = 0.601–0.853, p < 0.001) and 0.796 (95% CI = 0.744–0.847, p < 0.001), respectively,
indicating the nomogram derived from the training set also had a stable predictive power
in both the test and entire sets. Furthermore, the accuracy of the OS rate generated by the
nomogram was validated by the 1-, 3-, and 5-year calibration curves in the test and entire
sets (Figure S5). As a result, the nomogram had a reliable predictive performance.

3.7. Functional Enrichment Analysis Revealed the Biological Processes Related to the Prognostic
Signature

To find the factors that may lead to the significant difference in OS between the high-
risk group and the low-risk group, we explored some possible biological pathways and
processes. The 462 differentially expressed genes between the high- and low-risk groups
were identified with |log2 (fold change)| > 1 and p.adjust < 0.05. KEGG enrichment analysis
showed that these differentially expressed genes were enriched in the “Cell adhesion
molecules” pathway that related to tumor metastasis (Figure 8A). Moreover, GSEA analysis
with all the genes revealed that “ECM–receptor interaction”, “Cell adhesion molecules”,
and “Focal adhesion” pathways were enriched in the high-risk group, whereas “DNA
replication”, “Mismatch repair”, and “Cell cycle” were enriched in the low-risk group
(Figure 8B). Interestingly, the “ferroptosis” pathway and some metabolic pathways related
to it, including “Citrate cycle (TCA cycle)”, “Peroxisome”, “Biosynthesis of unsaturated
fatty acids”, and “Fatty acid metabolism”, were enriched in the low-risk group (Figure 8C).
Furthermore, the EMT scores in the high-risk group were also significantly higher than
those in the low-risk group, which indicated CRC cells in the high-risk group were more
inclined to be the mesenchymal phenotype (Figure 8D).

As shown in Figure S6A, the OS of patients in the high-risk group was significantly
shorter than that of the low-risk group in the proteomics dataset. Therefore, we explored
the differences in expression levels of proteins between the high- and low-risk groups.
We identified 320 differentially expressed proteins with the standard of p < 0.05 between
the high- and low-risk groups. Subsequently, we found that the expression of Ki-67,
a cell proliferation marker protein, was significantly down-regulated in the high-risk
group (Figure S6B). These 320 differentially expressed proteins were primarily enriched in
some metabolic pathways, together with several cancer-related pathways such as “DNA
replication”, “ECM-receptor interaction”, “Mismatch repair”, and “Ferroptosis” pathways
(Figure S6C). GSEA analysis with all the proteins also demonstrated that “ECM-receptor
interaction” and “Focal adhesion” pathways were enriched in the high-risk group, whereas
“DNA replication”, “Mismatch repair”, and “Cell cycle” pathways were enriched in the
low-risk group (Figure S6D). Based on the above analysis, it can be assumed that cancer
cells in the high-risk group may be related to the suppression of the cell cycle, metastasis,
mutation, and the inhibition of ferroptosis.

3.8. The Gene Mutation Profiling of CRC Patients between the High- and Low-Risk Groups

As the “Mismatch repair” pathway related to mutation was significantly enriched
in the low-risk groups, we further analyzed and summarized the somatic mutation data
of CRC patients in the high- and low-risk groups. The top 20 genes sorted by alteration
frequency in the high- or low-risk groups are shown in the waterfall plots (Figure 9A,B).
Then, we compared the difference in the mutation frequencies of genes between the high-
and low-risk groups for uncovering the possible pathways involved in the gene mutation
heterogeneity between the two groups. Subsequently, we found that the “VEGF signaling
pathway”, “Cellular senescence”, “ECM–receptor interaction”, and “PI3K-Akt signaling
pathway” were significantly enriched in the high-risk group, according to the result of
the GSEA analysis (Figure 9C). Additionally, the mutation frequencies of TP53 (67.09% vs.
56.13%), KRAS (51.90% vs. 41.26%), and NOTCH1 (6.96% vs. 2.60%) genes were significantly
increased in the high-risk group compared to the low-risk group (Figure 9D–F). These
results implied that the high-risk score was associated with the gene mutation.
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Figure 8. The possible biological processes related to the risk score revealed by the functional
enrichment analysis. (A) The significantly enriched KEGG pathways of the differentially expressed
genes between the high- and low-risk groups in the entire set. (B) The significantly enriched KEGG
pathways between the high- and low-risk groups in the entire set based on the RNA-seq data through
the GSEA analysis. (C) The “Ferroptosis” pathway and some metabolic pathways related to it are
enriched in the low-risk group of the entire set based on the RNA-seq data via the GSEA analysis.
(D) The violin plot shows the difference in EMT scores between the high- and low-risk groups in the
entire set.
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Figure 9. The somatic mutation landscape of CRC patients between the high- and low-risk groups.
Waterfall plots display the distribution of variant classifications of the top 20 genes with higher
mutation frequencies in the low-risk group (A) and high-risk group (B). (C) The significantly enriched
KEGG pathways between the high- and low-risk groups in the somatic mutation data through the
GSEA. Bar plots show the different mutation frequencies of TP53 (D), KRAS (E), and NOTCH1
(F) genes between the high- and low-risk groups in the somatic mutation data.
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Generally, the mutants of TP53 and KRAS genes play oncogenic roles in the tumorige-
nesis and development of CRC [47,48]. One previous study showed that TP53 mutations
are prevalent in metastatic CRC compared to the primary tumor [49]. Besides, the specific
TP53 or KRAS mutations are associated with poor survival in CRC [50,51], and the double
mutation of TP53 and RAS is related to a worse prognosis for patients after colorectal liver
metastases resection [52]. Similarly, the mutated NOTCH1 could cause abnormal activation
in the Notch signaling pathway, which contributes to CRC behaviors [53]. Notably, the
NOTCH1 mutation is the most frequently occurring somatic mutation in recurrent CRC
samples [54]. Hence, our findings that the high-risk group has a higher mutation frequency
of TP53, KRAS, and NOTCH1 may help to explain why this group has a worse prognosis.

4. Discussion

Increasing studies reported that lncRNA expression can be modulated by ferrop-
tosis [29–31], a biological process that may play a tumor-suppressive role in CRC pro-
gression [19–22]. In this article, we combined multiple ferroptosis-related lncRNAs as a
prognostic factor, which generally possesses higher accuracy and reliability than a single
prognostic factor [5,6]. Firstly, we identified 562 ferroptosis-related lncRNAs based on
the RNA-seq data of CRC from the TCGA database. Then, eight of them were selected
to establish an optimal prognostic signature, which showed a stable ability to predict the
prognosis of CRC patients. The prognostic signature can judge that the OS of CRC patients
in the high-risk group was significantly shorter than that of patients in the low-risk group.
Moreover, it showed broadly applicable performance in different subgroups. In addition
to OS, the lncRNA signature can also predict the RFS, DFS, DSS, PFS, and PFI of CRC
patients. Furthermore, the nomogram based on the risk score, age, sex, and TNM stage can
accurately predict the OS rates of CRC patients.

For the eight ferroptosis-related lncRNAs constructing the prognostic signature, two
lncRNAs (AC008494.3 and AC099850.3) are protective factors and the other six lncRNAs
(AC009549.1, AC010973.2, AL161729.4, AP003555.1, CCDC144NL-AS1, and LINC01857) are
risk factors. One recent study based on bioinformatics analysis reported that AC010973.2
and AL161729.4 are prognostic risk factors in CRC, while AC099850.3 is a protective fac-
tor [55]. Additionally, CCDC144NL-AS1 and LINC01857 have been experimentally studied
in cancers. CCDC144NL-AS1 can increase cell proliferation, migration, and invasion of
gastric cancer and is associated with a poor prognosis in gastric cancer patients [56]. Simi-
larly, LINC01857 has been revealed to promote progression in cancers, such as glioma [57],
B-cell lymphoma [58], and breast cancer, and predict the poor prognosis of breast cancer
patients [59]. Therefore, all the above previous studies supported the lncRNAs in our
prognostic signature function as protective or risk factors in CRC.

Although the TNM stage is currently the most widely used prognostic indicator
for CRC patients, it is not without inherent limitations, including a lack of prediction
accuracy [6], insufficient prognostic information [60], and significant clinical outcome
disparities among CRC patients with the same histological tumor stage [61]. Therefore, it
is urgently needed to find new prognostic factors as the supplement to the TNM staging
system for the prognosis and treatment of CRC. Based on some clinical characteristics
and risk scores, univariate and multivariate Cox regression analyses were performed
in our study to prove that the ferroptosis-related lncRNA signature is an independent
prognostic risk factor for CRC patients. Moreover, the ROC analysis indicated the prediction
accuracy of the prognostic signature was better than most of the other clinical characteristics,
including age, sex, T stage, N stage, and M stage. The validation of the above results in
the test and entire sets further supported that the signature can be utilized as a reliable
prognostic indicator for CRC patients.

To elucidate the mechanism underlying the difference in prognosis between high- and
low-risk groups, we used gene enrichment analysis and GSEA to explore the biological
processes that differentiate the two groups using multi-omics data. Our analysis showed
that not only “Cell cycle” and “DNA replication” were de-enriched based on the RNA-seq
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and proteomics data (Figures 8B and S6D), but also the protein expression level of Ki-67 was
decreased in the high-risk group (Figure S6B), which indicated the CRC cells in this group
might enter a cell cycle arrest, a status of dormancy [62]. Previous studies demonstrated
that dormant tumor cells, including CRC cells, are responsible for the metastatic relapse
of primary tumors [62–64]. Mechanistically, during dormancy, the tumor cells can acquire
more mutations that are necessary for expanding neoplastic processes and preparing the
metastatic dissemination followed by subsequent outgrowth [62], which leads to the great-
est part of the morbidity and death of many solid tumors [65]. Consistently, using the
somatic mutation data, we discovered some cancer processes, such as “PI3K-Akt signaling
pathway”, “VEGF signaling pathway”, “ECM–receptor interaction”, and “Cellular senes-
cence”, were significantly enriched in the high-risk group (Figure 9C), which verified more
cancer-related mutations happen in the group with high risk.

Additionally, the “ECM–receptor interaction” and “Focal adhesion” pathways were
enriched in the high-risk group based on the RNA-seq and proteomics data (Figure 8B;
Figure S6D). Moreover, the CRC cells in the high-risk group may tend to be the mes-
enchymal phenotype (Figure 8D). These findings further implied CRC cells in this group
may have higher metastatic potential. Interestingly, one recent study reported that “Fo-
cal adhesion” and “ECM–receptor interaction” are two of the enriched pathways for the
proteins that were up-regulated in liver metastatic CRC tissues compared to primary CRC
tissues [66], which also shows the enrichment of these pathways is connected with metasta-
sis. Furthermore, the patients in the high-risk groups had lower RFS (Figure S3A–C) and
DFS (Figure S3D–F), as well as a higher tumor recurrence rate (Figure 4A,H), which also
confirmed the above results. Taken together, based on our analysis data, we postulated that
the tumor cells of CRC patients in the high-risk group may have entered a dormant period
and prepared for subsequent recurrence and metastasis.

Notably, we discovered that the differentially expressed proteins between the high-
and low-risk groups were enriched in the “Ferroptosis” pathway. Moreover, the GSEA of
the entire set showed that the “Ferroptosis” pathway was enriched in the low-risk group
(Figure 8C). Previous studies revealed the inhibitory function of ferroptosis on the tumori-
genesis and development of CRC [19,22], which may help to explain the phenomenon in
our study that the low-risk group had a good prognosis. In addition to “Ferroptosis”, some
metabolism-related biological processes interplaying with the ferroptosis pathway [9–11],
including “Peroxisome”, “Citrate cycle (TCA cycle)”, “Fatty acid metabolism”, and “Biosyn-
thesis of unsaturated fatty acids”, were also enriched in the low-risk group (Figure 8C).
Some recent studies found that the “TCA cycle” can promote ferroptosis via the accu-
mulation of lipid peroxide, thereby suppressing cancer progression [9,67,68]. Besides,
as substrates for lipid peroxidation, polyunsaturated ether phospholipids synthesized
from peroxisome [10,69,70] and polyunsaturated fatty acids synthesized by fatty acid
synthase [11,68] also contribute to ferroptosis. Therefore, these biological pathways may
synergistically enhance ferroptosis, resulting in the suppression of CRC occurrence and
development of patients in the low-risk group.

In brief, we developed a ferroptosis-related lncRNA signature that was closely related
to the prognosis of CRC patients and further verified its discriminative accuracy. Then,
based on the risk score and other clinical characteristics, we constructed a nomogram that
can effectively predict the OS rate of CRC patients. Nonetheless, our signature has certain
limitations. Because we validated the signature only with internal data from the TCGA
database, it will be more convincing to find suitable external data for verification. As
the functions and functional mechanisms by which the eight lncRNAs of the signature
participating in the ferroptosis in CRC are still unknown, further verification based on
experimental evidence will be required. Although there are imperfections that need to
be improved, our signature could provide new insights and a theoretical basis for the
prognosis and treatment of CRC patients.
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5. Conclusions

In summary, we established a novel prognostic signature with eight ferroptosis-related
lncRNAs to evaluate the prognosis of CRC patients. Moreover, the lncRNA signature
was also associated with the recurrence and metastasis of CRC. Apart from its broad
applicability and accuracy, our signature also revealed several possible explanations for the
poor prognosis of CRC patients in the high-risk group, such as tumor dormancy and anti-
ferroptosis. Therefore, our study may provide a theoretical foundation for the investigation
of the pathological mechanisms and clinical management strategies for CRC.
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lncRNAs in the prognostic signature and their related mRNAs associated with ferroptosis. Figure S2.
Verification for the prognostic value of the prognostic signature in the entire set. Figure S3. Evaluation
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