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Abstract: To further understand the origin and evolution of Patellogastropoda, we determined the
mitochondrial genome sequence of Cellana toreuma, and compared its mitogenome characteristics
with the other four limpets of Nacellidae. The ratio of Ka and Ks indicated that these Nacellidae
species were suffering a purifying selection, with exception of the atp6 gene. The gene sequence
is basically consistent among families, while there are great differences among Lottidae species.
According to the mitogenome sequences of selected gastropod species, we reconstructed a new
phylogenetic tree with two methods. The data complement the mitogenome database of limpets and
is a favorable research tool for the phylogenetic analysis of Gastropoda. It is found that there is a
long-branch attraction (LBA) artefact in the family Lottiidae of Patellogastropoda. Therefore, the
Patellogastropoda was separated by Heterobranchia, and Lottiidae is located at the root of the whole
phylogenetic tree. Furthermore, we constructed the divergence time tree according to the Bayesian
method and discussed the internal historical dynamics, and divergence differences among the main
lineages of 12 Patellogastropoda under an uncorrelated relaxed molecular clock. In turn, we made a
more comprehensive discussion on the divergence time of limpets at the molecular level.

Keywords: mitochondrial genome; Patellogastropoda; Cellana toreuma; gene order; phylogeny;
divergence time

1. Introduction

Mitochondria are circular double-membrane semiautonomous organelle, which exist
in the cells of most eukaryotic species. It has an independent and complete mitochondrial
genome. They originate from an endosymbiotic α-proteobacterium and usually provide
chemical energy sources through oxidative phosphorylation [1–4]. Because mutations
affecting mitochondrial function are related to aging and disease, it also has certain biomed-
ical significance [5,6]. The advantages of mitochondria are that their evolution rate is
faster than that of nuclear genes in most species. Each cell has multiple copies of the
mitochondrial genome and higher A-T content [7]. Moreover, it also has the characteristics
of conservation gene function [8]. Mitogenome recombination is a common process in
protists and plants [9,10]. Single genes may affect the progress of species relationships
because of their different evolutionary rates [11]. Thus, the complete mitogenome is consid-
ered significant in population genetics and phylogeny, as well as an important tool for an
in-depth understanding of gastropod phylogenetics.

Patellogastropoda, as an archaic mollusk, has caused concern in the scientific com-
munity. Due to their important ecological status and biodiversity, it is often researched in
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morphology, ecology, biogeography, embryology, and population genetics [12–18]. Patel-
logastropoda has assumed a significant role in the evolution of marine organisms among
the gastropods on intertidal rocky shores. They have experienced a long period of species
evolution, while the current classification indicates that Patellogastropoda includes the two
superfamilies of Lottioidea (Gray, 1840) and Patelloidea (Rafinesque, 1815) [19]. According
to the latest classification, the superfamily Lottioidea includes seven families (Acmaeidae,
Eoacmaeidae, Erginidae, Lepetidae, Lottiidae, Neolepetopsidae, and Pectinodontidae),
while the superfamily Patelloidea has only two families (Nacellidae and Patellidae) [19].
Previous identification of Patellogastropoda species was based on morphology and has
caused taxonomic confusion. Limpets are considered cryptic species and the appearance of
different species is almost similar. Surprisingly, the immature forms of limpets differ from
the adults, which causes more complications for species identification.

The small economic limpet Cellana toreuma (Reeve, 1854) is found on sheltered to
intertidal rocky shores and is widely distributed from tropical to Polar regions [20] this
includes mainly China, Japan, South Korea, Ryukyu, Vietnam, and the Philippines [21–27].
The limpet is an important grazer and an ectoparasitic host of Philoblenna tumida (Ho, 1981),
Hexanauplia [28–30]. Due to the complex biogeographic model of limpets, they are used
to understand the distribution pattern of species in the intertidal zone along heteroge-
neous coastline [31–34]. Their shell is a rare Chinese herbal medicine, which is often
collected and processed in summer [35]. It is mainly used for children with convulsions
and other symptoms to implement a sedative effect [36]. The duration of planktonic larvae
of C. toreuma is uncertain, while the reported results show that they can last for at least 8 to
13 days [37,38]. C. toreuma is sensitive to ambient temperature, and high temperature will
affect cardiac performance and lead to large-scale mortality [39–41]. Early reports mention
studies and analyses being conducted on morphological and population dynamics. Firth
and Williams [37] used multiple environmental stressor influences to study the population
dynamics of C. toreum. The effects of large changes in temperature and salinity associ-
ated with wet monsoon seasons on the structure and function of tropical rocky coasts are
thus revealed. Wang and Wu [42] collected and measured data from northern Zhejiang,
China, and studied the age and growth of C. toreum. It is concluded that their annual
ring formation period is in January and the cycle is one year. Qian et al. [43] reported
optical and electron microscopy to observe the radular morphological differences between
C. toreuma and Cellana grata. Hirano [44] mentioned the activity pattern of C. toreuma
field population and learned that it is more frequent at flood and ebb tide. Iwasaki [45]
studied the interindividual trail following C. toreuma and found that they moved farther
during spring tides. However, there have only been a few reports on the phylogenetic
studies of this species. Wang et al. [24] selected a single mitochondrial COI to reveal the
phylogeographical pattern of C. toreuma and investigate the effect of environmental and
historical factors on this pattern. Similarly, Nakano [27] discovered a hidden species of
C. toreuma through the COI gene and analyzed its fundamental evolutionary relationship.
Until the 21st century, Nakano and Ozawa [26] presented a comprehensive phylogenetic
study on the global limpets and combined mitochondrial and nuclear sequencing. These
are just the preliminary study results of Patellogastropoda phylogeny.

Cellana toreuma, as one of the few mitochondrial whole-genome sequences of Patel-
logastropoda, provides a further supplement for the phylogenetic analysis of Patellogas-
tropoda. Our aims were to (1) extend the taxonomic study method and improve the
Patellogastropoda identification efficiency, (2) compare and evaluate the variation and
conservation of mitogenomes to understand the latest classification of Patellogastropoda,
(3) via A-T skew values and the relative synonymous codon usage (RSCU) of protein-coding
genes (PCGs), understand the gene function, (4) establish a complete analysis system for
gastropod phylogeny, especially for limpets evolution, and (5) evaluate divergence time
of C. toreuma in subclass Patellogastropoda given the fossil record, so as to study the
evolutionary history of limpets.
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2. Materials and Method
2.1. Sample Collection, Identification, and DNA Extraction

Cellana toreuma wild specimens were collected from Qingdao of Shandong Peninsula
in the Yellow Sea (October 2019; E 120◦ 45, N 36◦ 07). The specimens were deposited in
absolute ethyl alcohol. The specimens were preliminarily identified through the published
taxonomic book [46], and we consulted morphology experts from the marine biology
museum of Zhejiang Ocean University. Fresh samples were immediately placed in absolute
ethyl alcohol to ensure their quality. Using the rapid salting-out method, we extracted the
genomic DNA from the adductor muscle [47]. The quality was determined by 1% agarose
gel electrophoresis and stored in −20 ◦C for sequencing. We selected the best quality DNA
from the six samples for the next-generation sequencing. All animal experiments were
conducted under the guidance approved by the Animal Research and Ethics Committee of
Zhejiang Ocean University.

2.2. Mitogenomes Sequencing, Assembly, and Annotation

Mitogenome sequencing of C. toreuma by the Illumina HiSeq X Ten platform was
used to conduct high-throughput sequencing; this work was carried out by Origingene
Bio-pharm Technology Co., Ltd. (Shanghai, China). The preliminary results showed that a
sequencing library set with an average insert size of 400 bp was generated, and each library
had about 10 Gb of the raw data. After that, it was necessary to delete contaminated reads
and low-quality sequence fragments. The de novo assembled separate clean readings of
the sequence via the NOVOPlasty software (https://github.com/ndierckx/NOVOPlasty
(accessed on 26 May 2021)) [48].

The mitochondrial genome of C. toreuma was annotated and analyzed based on inverte-
brate genetic code by the MITOS web server (http://mitos2.bioinf.uni-leipzig.de/index.py
(accessed on 30 May 2021)) [49]. We also referred to the uploaded mitogenome sequence
of other Nacellidae species to ensure the accuracy of start and stop codons and gene se-
quences of the species in our study. The circular mitogenome visualization of C. toreuma
was completed through the common CGView server (http://stothard.afns.ualberta.ca/
cgview_server/index.html (accessed on 30 May 2021)) [50].

2.3. Sequence Analyses of Mitogenomes

The nucleotide composition of the whole mitogenome, PCGs, rRNA, tRNA genes, and
A-T content were analyzed by MEGA 7.0 [51]. Meanwhile, it was also determined necessary
to study the codon usage and the relative synonymous codon usage (RSCU) of PCGs. Then,
the base skew values were calculated using the formulas at A-T skew = (A − T)/(A + T) and
G-C skew = (G − C)/(G + C) [52]. In addition, we selected DnaSP6.0 [53] to analyze the non-
synonymous (Ka) and synonymous (Ks) substitutions rates of mitogenomes in Nacellidae
species to study their evolutionary adaptation. Of which other species in Nacellidae were
downloaded from the GenBank database of NCBI (National Center for Biotechnology
Information, https://www.ncbi.nlm.nih.gov/ (accessed on 17 March 2022)).

2.4. Phylogenetic Inference

To determine the phylogenetic position of the Patellogastropoda species in gas-
tropods, phylogenetic analyses were performed based on the 13 protein-coding genes
(PCGs) of the mitogenomes. A total of 87 sequences were downloaded from GenBank
(https://www.ncbi.nlm.nih.gov/ (accessed on 17 March 2022)). Furthermore, two bivalves
Donax variegatus and Donax trunculus were classified as outgroup [54] (Table 1). The soft-
ware DAMBE 5.3.19 [55] was used to adjust the nucleotide sequence of each PCGs, and
the substitution saturation was calculated via the GTR substitution model. The sequences
were aligned using ClustalW of MEGA 7.0 [51] with the default parameters. Phylogenetic
relationships were reconstructed for the maximum likelihood (ML) and Bayesian inference
(BI) analyses with IQ-TREE [56] and MrBayes v3.2 [57]. The GTR + F + I + G4 model was
chosen according to BIC and was the best fit selected in the ML methods analyses; we used

https://github.com/ndierckx/NOVOPlasty
http://mitos2.bioinf.uni-leipzig.de/index.py
http://stothard.afns.ualberta.ca/cgview_server/index.html
http://stothard.afns.ualberta.ca/cgview_server/index.html
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ModelFinder to determine the best model data [58]. We reconstructed the consensus tree
and used 1000 bootstrap replicates in ultrafast likelihood bootstrap. The BI analysis selected
the best substitution GTR + I + G model under the AIC by MrModeltest 2.3 [59]. The first
burn-in 25% of the trees were discarded, and two Markov chain Monte Carlo (MCMC) of
simultaneous were operated for 2,000,000 generations. Sampling occurred every 1000 ultra-
fast bootstrap replicates to determine the branch support of the dataset. The phylogenetic
tree was displayed using the online tool iTOL (Interactive Tree of Life, https://itol.embl.de/
(accessed on 20 March 2022)) and annotated with various datasets [60].

Table 1. List of species analyzed in this study and their GenBank accession numbers.

Subclass Family Species Size (bp) Accession No.

Patellogastropoda Lottiidae Nipponacmea fuscoviridis 18,720 MK395167
Lottia goshimai 18,192 MT248298
Lottia digitalis 26,835 DQ238599

Patellidae Patella vulgata 14,808 MH916653
Patella ferruginea 14,400 MH916654

Acmaeidae Bathyacmaea nipponica 16,792 MF095859
Bathyacmaea lactea 18,446 MW309841

Nacellidae Cellana toreuma 16,260 MZ329338
Cellana nigrolineata 16,153 LC600801

Nacella concinna 16,761 KT990126
Nacella magellanica 16,663 KT990125

Nacella clypeater 16,742 KT990124

Heterobranchia Polyceridae Notodoris gardineri 14,424 DQ991934
Roboastra europaea 14,472 NC_004321

Nembrotha kubaryana 14,395 NC_034920
Aplysiidae Aplysia dactylomela 14,128 DQ991927

Aplysia vaccaria 14,130 DQ991928
Aplysia kurodai 14,131 KF148053

Siphonariidae Siphonaria pectinate 14,065 AY345049
Siphonaria gigas 14,518 JN627205

Volvatellidae Ascobulla fragilis 14,745 AY345022
Placobranchidae Thuridilla gracilis 14,259 DQ991939

Plakobranchus ocellatus 14,173 AP014544
Elysia chlorotica 14,132 EU599581

Elysia timida 14,088 NC_035490
Elysia ornata 14,188 NC_030537

Onchidiidae Onchidella celtica 14,150 AY345048
Onchidella borealis 14,510 DQ991936

Platevindex mortoni 13,991 NC_013934
Peronia peronii 13,968 JN619346

Ellobiidae Carychium tridentatum 13,908 KT696545
Ovatella vulcani 14,274 JN615139

Ellobium chinense 13,979 NC_034292
Auriculinella bidentata 14,135 JN606066
Auriculastra duplicata 13,920 NC_036959

https://itol.embl.de/
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Table 1. Cont.

Subclass Family Species Size (bp) Accession No.

Caenogastropoda Turritellidae Turritella bacillum 15,868 NC_029717
Pomatiopsidae Oncomelania quadrasi 15,184 LC276227

Oncomelania hupensis nosophora 15,182 LC276226
Xenophoridae Onustus exutus 16,043 MK327366

Naticidae Euspira pila 15,244 NC_046703
Euspira gilva 15,315 NC_046593

Mammilla mammata 15,319 NC_046597
Mammilla kurodai 15,309 NC_046596

Turridae Turricula nelliae spuria 16,453 MK251986
Conidae Conus borgesi 15,536 EU827198

Conus tulipa 15,756 KR006970
Conus betulinus 16,240 NC_039922

Muricidae Menathais tuberosa 15,294 NC_031405
Indothais lacera 15,272 NC_037221

Concholepas concholepas 15,495 NC_017886
Chicoreus torrefactus 15,359 NC_039164

Chicoreus asianus 15,361 MN793976
Boreotrophon candelabrum 15,265 NC_046505

Ceratostoma rorifluum 15,338 MK411750
Ceratostoma burnetti 15,334 NC_046569

Ocinebrellus inornatus 15,324 NC_046577
Ocinebrellus falcatus 15,326 NC_046052

Neritimorpha Neritidae Nerita chamaeleon 15,716 MT161611
Nerita balteata 15,571 MN477253

Clithon oualaniense 15,706 MT568501
Clithon sowerbianum 15,919 MT230542

Clithon retropictus 15,802 NC_037238
Neritina iris 15,618 MW694828

Septaria lineata 15,697 MW694829
Neritina violacea 15,710 KY021066

Neomphaliones Peltospiridae Chrysomallon squamiferum 15,388 AP013032
Gigantopelta aegis 16,097 MW442948

Vetigastropoda Phasianellidae Phasianella solida 16,698 NC_028709
Phasianella australis 18,397 KX298888

Angariidae Angaria neglecta 19,470 NC_028707
Angaria delphinus 19,554 NC_031860

Haliotidae Haliotis ovina 16,531 NC_056350
Haliotis tuberculata 16,521 FJ599667
Haliotis laevigata 16,545 NC_024562

Trochidae Stomatella planulata 17,151 NC_031861
Gibbula umbilicalis 16,277 NC_035682
Umbonium thomasi 15,998 MH729882

Monodonta labio 16,440 MK240320
Turbinidae Bolma rugosa 17,432 NC_029366

Lunella granulate 17,190 NC_031857
Lunella correensis 17,308 MN604179

Tegulidae Tegula lividomaculata 17,375 NC_029367
Tegula brunnea 17,690 NC_016954

Chlorostoma argyrostomum 17,780 KX298892
Omphalius rusticus 18,067 NC_056356

Omphalius nigerrimus 17,755 KX298895

2.5. Divergence Time Estimation

The divergence time of the subclass Patellogastropoda species was estimated only at
the nucleotide level, 13 PCGs used the Bayesian framework, and we used the uncorrelated
and lognormal relaxed molecular clock model in BEAST v1.8.4 [61]. For the tree prior,
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we used a Yule process of speciation. Furthermore, we used two calibration points as the
priors of the divergence times for calibration. The uniform distribution of the estimated
divergence times was drawn by Priors [62] for fossil ages, and the 53 Mya point calibration
was set as the root rate of Cellana based on the fossil of Cellana tramoserica (14–93 Mya). The
5.6 Mya point calibration was set as the root rate of Nacella based on the fossil of Nacella
clypeater [62]. The final Markov chain samples every 1000 generations, discards 10% of the
burn-in samples, and runs twice for 100 million generations through the TreeAnnotator
v1.8.4 software in the BEAST software package. After that, we use Tracer v. 1.6 [63] to
check the convergence of the chain, to ensure that the parameters of the effective sample
sizes (ESSs) were greater than 200. We used the software FigTree v1.4.3 to visualize the
divergence time tree [64].

3. Results and Discussion
3.1. General Features of Entire Mitogenome

The whole mitogenome sequence of C. toreuma was sequenced with a length of
16,260 bp (GenBank accessions: MZ329338) which is consistent with previously reported
species of the four Nacellidae families, approximately 16,153 to 16,767 (Table 1). The circular
molecules are similar to other gastropods, which contain a highly variable control region
and typically 37 genes including 2 ribosomal RNA genes, 13 protein-coding genes (PCGs),
and 22 transfer RNA genes. Among them, a total of seventeen genes on the forward strand,
including seven PCGs (cox1-3, atp8, atp6, nad3, and nad2), and ten tRNA genes (trnD, trnT,
trnG, trnE, trnR, trnN, trnA, trnK, trnI, and trnS1). The other genes are encoded on the
reverse strand (Table 2). The control region was located between the trnC and trnG gene,
similar to other previously reported Nacellidae species (Figure 1) [65,66]. The genome
structure of C. toreuma was identical to other Nacellidae mitogenomes, without gene rear-
rangement in this family. However, there was a big difference between their gene order
to other families of Patellogastropoda species, whose rearrangement always brought up
concern within the scientific community.

Table 2. Annotation of the Cellana toreuma mitochondrial genome.

Gene Strand
Location

Length Codons Intergenic Nucleotide*(bp) Anticodon
Start Stop

cox1 + 1 1542 1542 ATG/TAA 74
cox2 + 1617 2315 699 ATG/TAA 21
trnD + 2337 2403 67 58 GTC
atp8 + 2462 2650 189 ATG/TAA 248
atp6 + 2899 3393 495 ATG/TAA 34
trnT + 3428 3496 69 53 TGT
nad5 - 3550 5232 1683 ATG/TAA 39
trnH - 5272 5339 68 30 GTG
trnQ - 5370 5438 69 24 TTG
nad4 - 5463 6815 1353 ATA/TAA 5
nad4l - 6821 7087 267 ATG/TAA 49
trnS2 - 7137 7204 68 17

cob - 7222 8367 1146 ATG/TAG 20
nad6 - 8388 8870 483 ATT/TAA 24
trnP - 8895 8962 68 −47 TGG
nad1 - 8916 9881 966 ATT/TAA 21
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Table 2. Cont.

Gene Strand
Location

Length Codons Intergenic Nucleotide*(bp) Anticodon
Start Stop

trnL2 - 9903 9968 66 4
trnL1 - 9973 10,041 69 −38
rrnL - 10,004 11,269 1266 87
trnV - 11,357 11,423 67 0 TAC
rrnS - 11,424 12,310 887 0
trnY - 12,311 12,376 66 15 GTA
trnM - 12,392 12,458 67 −2 CAT
trnF - 12,457 12,524 68 2 GAA
trnW - 12,527 12,595 69 8 TCA
trnC - 12,604 12,670 67 643 GCA
trnG + 13,314 13,380 67 7 TCC
trnE + 13,388 13,455 68 0 TTC
cox3 + 13,456 14,235 780 ATG/TAG 22
trnR + 14,258 14,324 67 1 TCG
trnN + 14,326 14,395 70 76 GTT
nad3 + 14,472 14,825 354 ATG/TAA 7
trnA + 14,833 14,900 68 0 TGC
trnK + 14,901 14,973 73 13 TTT
trnI + 14,987 15,054 68 31 GAT

trnS1 + 15,086 15,153 68 3 GCT
nad2 + 15,157 16,254 1098 ATA/TAG 5

Intergenic nucleotide*(bp): positive values indicated the interval sequence of adjacent genes, and negative values
indicated the overlapping of adjacent genes.
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The nucleotide compositions of complete C. toreuma mitogenomes were A 28.9%, T
39.5%, G 19.9%, and C 11.7% (Table 3). Moreover, the nucleotide compositions of the
mitogenomes from the other four species in the family Nacellidae, Patellogastropoda
were downloaded and organized, and we compared the base compositions of these other
Nacellidae species. In general, the A content of the five mitogenomes were from 26.5 to
28.9%, T 38.0 to 39.5%, G 19.9 to 22.7%, and C 11.7 to 13.9%, these base contacts only had
a slight distinction. Results show that the A and T content of C. toreuma exhibited higher
values than other species in the same family, with a range from 64.6% (Cellana nigrolineata)
to 68.4%. The nucleotide compositions were all skewed away from C in favor of G, the G-C
skews were from 0.177 (N. clypeater) to 0.283 (C. nigrolineata), and from A in favor of T, the
A-T skews were negative from −0.180 (Nacella concinna) to −0.155 (C. toreuma), indicating
the occurrence of more Ts than As.

Table 3. Nucleotide compositions of the mitogenomes from five species in family Nacellidae of
the Patellogastropoda.

Lengh (bp) A (%) T (%) G (%) C (%) A+T (%) AT-Skew GC-Skew

Cellana toreuma 16,260 28.9 39.5 19.9 11.7 68.4 −0.155 0.261
tRNAs 1497 34.8 34.8 16.8 13.6 69.6 0.000 0.103
rRNAs 2153 41.7 29.7 14.5 14.1 71.4 0.169 0.016
PCGs 11,133 26.5 39.8 17.3 16.4 66.3 −0.201 0.027

1st 5420 30.9 36.4 21.6 11.1 67.3 −0.083 0.319
2nd 5420 28.8 38.1 19.9 13.2 66.9 −0.140 0.201
3rd 5420 27.0 43.9 18.4 10.7 70.9 −0.238 0.264

Cellana nigrolineata 16,153 26.5 38.0 22.7 12.7 64.6 −0.179 0.283
tRNAs 1498 33.4 33.9 18.0 14.6 67.4 −0.007 0.104
rRNAs 2143 41.6 27.7 14.6 16.1 69.3 0.201 −0.047
PCGs 11,046 25.4 36.8 18.9 18.8 62.2 −0.184 0.003

1st 5385 28.1 36.3 23.5 12.2 64.3 −0.128 0.317
2nd 5384 26.0 37.9 22.9 13.2 63.9 −0.186 0.268
3rd 5384 25.5 40.0 21.9 12.7 65.4 −0.221 0.265

Nacella clypeater 16,742 27.5 38.6 19.9 13.9 66.1 −0.169 0.177
tRNAs 1560 32.6 33.7 19.0 14.7 66.3 −0.015 0.125
rRNAs 2222 43.1 27.5 14.6 14.8 70.6 0.221 −0.006
PCGs 11,283 26.3 38.9 17.6 17.2 65.2 −0.193 0.009

1st 5581 25.8 40.4 19.2 14.7 66.1 −0.221 0.132
2nd 5581 28.2 38.3 19.8 13.7 66.5 −0.151 0.182
3rd 5580 28.4 37.3 20.9 13.4 65.7 −0.134 0.217

Nacella concinna 16,761 27.1 38.9 20.4 13.6 66.0 −0.180 0.197
tRNAs 1501 32.6 34.1 18.7 14.6 66.8 −0.022 0.122
rRNAs 2216 44.0 27.1 14.2 14.7 71.1 0.237 −0.017
PCGs 11,286 25.7 38.7 18.1 17.5 64.4 −0.201 0.015

1st 5587 28.2 36.4 21.3 14.1 64.6 −0.127 0.202
2nd 5587 26.5 39.5 19.9 14.1 66.0 −0.198 0.171
3rd 5587 26.6 40.8 19.9 12.7 67.4 −0.212 0.220

Nacella magellanica 16,663 27.4 38.9 20.1 13.6 66.2 −0.174 0.192
tRNAs 1500 32.4 34.1 18.8 14.7 66.5 −0.026 0.124
rRNAs 2214 43.5 27.4 14.4 14.6 71.0 0.227 −0.008
PCGs 11,280 26.2 39.0 17.5 17.2 65.2 −0.197 0.009

1st 5555 28.0 37.0 21.5 13.5 65.0 −0.139 0.230
2nd 5554 27.7 38.0 20.1 14.2 65.7 −0.158 0.170
3rd 5554 26.4 41.6 18.8 13.2 68.1 −0.224 0.175

3.2. tRNA, rRNA, PCGs Genes, and Control Region

For the tRNA genes of C. toreuma, the length ranged from 1497–1560 bp, which had
an A and T content of 69.6%, which is the highest compared to other Nacellidae species
(Table 3). Due to the tRNAs of this limpet having similar values of A and T base, the A-T
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skew was 0, while the A-T skew of the other four species were negative. However, all the
G-C skews were slightly positive from 0.103 (C. toreuma) to 0.125 (N. clypeater). For the
rRNA genes, with lengths ranging from 2143 to 2222 bp, the A-T skews were positive from
0.169 (C. toreuma) to 0.237 (N. concinna), indicating a strong skew away from A. Furthermore,
almost all G-C skews of these species were negative, except the new limpet C. toreuma.

For the PCGs, the length ranging from 11,046 to 11,286 bp, each species in this family
exhibited a negative A-T skew and a positive G-C skew, with values from −0.221 to −0.201.
The first codon position of PCGs was observed to be a negative A-T skew, with the A-T
content reaching about 65%, and the most value being 67% in C. toreuma. The second and
third codon positions of PCGs were similar, while their G-C skews had the opposite results.
The mitogenomes of Nacellidae are rich in A-T, which is similar to other invertebrates. The
C. toreuma mitogenomes conventional started with the initiation codon ATG or ATT and
stopped with TAA or TAG.

Generally, the mitogenome of metazoans is quite compact, whereas a total of 1641 bp
in 30 intergenic spacers were found in C. toreuma mitogenome, ranging from 1 to 643 bp
in length. Additionally, the control region was found between trnC and trnG (Table 2).
Simultaneously, three overlapping sites (totally 87 bp) are observed ranging from 2 to 47
bp, which is commonly identified in other Nacellidae.

3.3. Mitochondrial Gene Codon Usage

The amino acids of five Nacellidae species, Leu1, Phe, and Val, were most frequently
utilized ranging from 7.60 to 15.11% in Phe of N. clypeater (Figure 2). The rare amino
acid was concentrated in His, Gln, and Arg, most of them less than 2 with the least being
Gln of C. toreuma (only 1.38%), which is similar to other Patellogastropoda as previously
reported [67,68].
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genomes of Nacellidae.

The relative synonymous codon usage (RSCU) for 13 PCGs of these species was
measured to understand the genetic codon bias of their sequenced mitogenomes. The
results showed that the synonymous codon preferences are conserved among the five
species, as may ascribe to their close relationships belonging to the same family. These
preferences were also recognized in some other Patellogastropoda. The four most used
codons for the five species sequenced are consistently UUA (Leu2), UCU (Ser2), GCU (Ala),
and CCU (Pro) for five Nacellidae species (Figure 3), and the most frequent codons of them
were UUA at 2.4% (Leu2) in N. magellanica. The least used codon was CUC (Leu1) in C.
toreuma, which was 0.1%.
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3.4. Selective Pressure Analysis

The selection pressure analysis also used these five species (Figure 4) to measure the
ratio of non-synonymous and synonymous substitutions (Ka/Ks). We aimed to investigate
the evolutionary and selective pressure relation. The results showed the average Ka/Ks
ranging from cox3 (0.124) to atp6 (1.106). The ratio for most PCGs was below one, indi-
cating that the mutations were swapped by synonymous substitutions; 13 PCGs of these
mitogenomes were evolving under purifying selection. The remaining atp6 gene reached
1.106, which may be due to the influence of positive selection during evolution. Among
these species, the cox3 gene had little change in amino acids and the lowest Ka/Ks ratio. It
is widely used as a potential molecular marker for species identification, genetic diversity,
and phylogenetic analysis [69,70].
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Figure 4. Selective pressure analysis for 13 PCGs among 5 Nacellidae mitochondrial genomes. Species
of Nacellidae are shown in Table 1. The purple and blue boxes indicate the number of nonsynonymous
substitutions per nonsynonymous sites (Ka) and the number of synonymous substitutions per
synonymous sites (Ks), respectively. The orange line indicates the mean of pairwise divergence of the
Ka/Ks ratio.

The substitution saturation index of the combined dataset for 88 Patellogastropoda
mitogenomes for 13 PCGs (Iss = 0.823) was significantly lower than the critical values
(Iss.cSym = 0.860 or Iss.cAsym = 0.847, p = 0.000). Therefore, substitution of combined
sequencing was unsaturated and suitable for phylogenetic analysis.

3.5. Gene Arrangement

According to the hypothetical gene order of ancestral gastropods, we compared the
PCG gene arrangement of 12 species in four families of the subclass Patellogastropoda
(Figure 5). The results showed that the gene order of the family Nacellidae, where C. toreuma
was located, was the same as that of the family Acmaeidae, and was consistent with the
ancestral gene order. In Patellidae, we found that only the nad3-nad2 fragment moved, and
the position was transferred from one fragment of cox1 to the other. The nad6-nad1-rrnL-rrnS-
cox3 fragment is still completely preserved. In addition, the atp8-atp6-nad5-nad4-nad4l-cytb
gene fragment was completely reversed. It is worth noting that the gene rearrangement
rate of the family Lottiidae is very high. Among them, L. goshimai retains the nad3-nad2
gene fragment, while the nad4 and nad4l genes in L. goshima are reversed; this situation also
occurs in Lottia digitalis. Moreover, the short gene fragment of rrnL-rrnS was retained in L.
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digitalis, and two rrnL fragments were reversed in L. goshimai. In particular, N. fuscoviridis
hardly retains the gene fragments of its ancestors; however, we can find that it has the same
fragment cox1-cox3 as L. digitalis in the same family. It also has the inversion of atp6 and cox2
genes with L. goshima, which may be the reservation of unique gene fragments produced
in the evolutionary process of this family. In general, the rearrangement of Lottiidae
remains the focus of our research. This irregular rearrangement may be responsible for the
separation of this family from the other three families in the subclass Patellogastropoda.
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3.6. Phylogenetic Relationship

After a long period of evolution, the species of Patellogastropoda are mainly divided
into two superfamilies, Lottioidea (Gray, 1840) and Patelloidea (Rafinesque, 1815). We
concatenated the alignment of 13 common PCGs from C. toreuma, as combined in 86 species
that represent 26 families of these 2 superfamilies in Gastropoda, (i.e., Patellogastropoda,
Heterobranchia, Caenogastropoda, Neritimorpha, Neomphaliones, and Vetigastropoda).
The bivalves D. variegatus and D. trunculus were set as outgroups (Figure 6). For ML and
BI trees, the 88 species could be divided into seven major clades. Of which most branches
exhibited high confidence of being coincidently classified with different clades, (i.e., BI:
1 posterior probability and 100% bootstraps value). Strikingly, we found that the Patellogas-
tropoda species were divided into two branches, located on both sides of Heterobranchia.
The family Lottiidae of Patellogastropoda was located at the foundational position of the
integral phylogenomic tree, while other families such as Patellidae, Acmaeidae, and Nacell-
idae were located between Heterobranchia and Caenogastropoda. We speculated that this
is probably a result of the long-branch attraction (LBA) artefact. This phenomenon was also
discovered in the study of two limpets N. fuscoviridis and L. goshimai [68]. The LBA artifact
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was defined as taxa with long branches that evolve rapidly in phylogenetic analysis, regard-
less of their real evolutionary location, which is highly misleading because the inferred false
relationship is often highly statistically supported [71]. Both BI and ML analyses are gener-
ally unable to avoid this artifact due to the limitations of their model, and there is no good
solution at present, which is also a place that needs to be improved for the future. Some
scholars have studied and discussed the LBA artifact in previous reports, but no studies can
counteract phylogenetics. We still obtain such a branch under our repeated verification in
both methods. After investigating, we speculated that the LBA artifact often produces mis-
leading results usually resulting from uneven or adequate sampling, and the mitogenome
data of Patellogastropoda is insufficient and cannot be solved temporarily. This makes
us more interested in the evolutionary research of the subclass Patellogastropoda, and it
is imperative to continue to find new data on Patellogastropoda. After that, these clades
combined at the subclass Caenogastropoda. Phylogenetic relationships of the subclasses
are recovering as ((((((Vetigastropoda + Neomphaliones) + Neritimorpha) + Caenogas-
troopoda) + Patellogastropoda) + Heterobranchia) + Patellogastropoda). Their overall
branching is basically consistent with our previous evolutionary analysis. Arquez et al. [72]
used mitogenome to analyze the evolution of five subclasses of Gastropoda. The results
showed that Heterobranchia and Patellogastropoda were sister groups to each other, and
this branch was located at the root of the entire evolutionary tree. Caenogastropoda, Veti-
gastropoda, and Vetigastropoda had the same branch as our study [72]. Subsequently,
Osca et al. [73] also used the mitogenome to study the phylogeny of Gastropoda species.
However, their result was slightly different, Caenogastropoda and Neritimorpha were sister
groups, followed by the subclass Vetigastropoda. In addition, Uribe et al. [74] obtained a
similar result to Osca et al. [73]; nevertheless, they added the species of the subclass Neom-
phalina, which are situated between Vetigastropoda and the sister group Heterobranchia
and Patellogastropoda. Sun et al. [75] reconstructed the tree of several species of gastropods
using mitogenome, species from Cocculiniformia and Neomphalina have been updated
and divided into the Neomphalines subclass. These results were completely consistent with
the evolutionary branches of several subclasses in our study [75]. In addition, branches
from the present study were similar to the results of Feng et al. [76], except for the minimal
change of Caenogastropoda and Neritimorpha. The simple phylogenetic analysis of the
deep-sea limpet by Li et al. [77] was the same as the results of the present study, which
confirms the reliability of our predicted branches of the phylogenetic tree.

Patellogastropoda has four families that make up the whole mitogenome, Nacelli-
dae and Acmaeidae are sister groups, followed by Patellidae. The Lottiidae, as an inde-
pendent branch, is located at the outermost of this subclass. Furthermore, our research
species C. toreuma and C. nigrolineata are undoubtedly sister species, both belonging to the
genus Cellana. They were divided into one branch with three species of the genus Nacella
in the same Nacellidae family. Phylogenetic trees of the Nacellidae families stand for
(C. toreuma + C. nigrolineata) + (N. concinna + (Nacella magellanica + N. clypeater). These
evolutionary branches conform to the conventional evolutionary characteristics, complying
with the results of existing studies.
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3.7. Divergence Times

We found that only seven available species of complete Patellogastropoda mitogenomes
were recorded in the Timetree (http://www.timetree.org/ (accessed on 21 March 2022))
with only three known divergent time points. These were concentrated in Nacella and
Cellana during the Cenozoic Era (65 million years ago, Mya) [78]. However, the divergence
time information of Bathyacmaea nipponica, Tectura paleacea, and Patella aspera were unknown,
which is a very unusual situation in Gastropoda species. Our study was designed to
estimate more information on the evolutionary time and understand the historical evolution
and dynamics of the limpets.

Our study demonstrated that N. magellanica and N. clypeater were differentiated around
9.74 Mya, and N. concinna differentiated at 15.21 Mya (Figure 7). They are slightly earlier
than the results in Timetree, but all the current differentiation occurred in the Neogene
era. Nacella and Cellana were differentiated around 50.87 Mya, which is consistent with
previous estimates of the divergence time. The analyses supported the supposition that the
major Patellogastropoda lineages originated in the early Cretaceous and diversified in the
middle and later Cretaceous; these have never been reported previously. In addition, the N.
fuscoviridis family diversified to the genus Lottia in the later Cretaceous. The genera Lottia,
Bathyacmaea, Patella, and Cellana were differentiated into Cenozoic Paleogene. All Nacellidae
species differentiation is concentrated in the Cenozoic period. The geographical isolation in
this period provided the environmental conditions for the Nacellidae differentiation, and
marine sediments provided food sources for the growth of Patellogastropoda.

http://www.timetree.org/
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4. Conclusions

To carry out a good systematic study of limpets, a new potential species was found, and
the mitogenomes of two species in the family Lottiidae were published. This provided more
insights into mitogenomes in Patellogastropoda and supplemented the molecular database
in such a classification group. We obtained the mitogenome sequences of C. toreuma by
high-throughput sequencing with the length of 16,260 bp, similar to other limpets. Each
mitogenome has the same composition and similar results of nucleotide composition for
five Nacellidae. The gene order was generally uniform within families, except for the
family Lottidae. Most PCGs were initiated with the ATG codon and terminated with
TAA codon. For the analysis of selective pressure, we found that most of the 13 PCGs
of Nacellidae were below 1, especially the cox3 gene which exhibited the lowest value
that demonstrated high conservation. This indicates that PCGs were subject to purifying
selection in the family, while the atp6 gene shows a high value, indicating that this gene
may have been mutated in the process of evolution. The phylogenetic tree provided a
further complement to the scientific classification of Patellogastropoda species. It is found
that there is an LBA artifact in the family Lottiidae in Patellogastropoda, which deceived
phylogenetic methods caused by the outgroup as distant or that the taxon sampling is
poor. To solve this problem, we use two methods to construct evolutionary trees, but
the Patellogastropoda is also divided into two branches on both sides of Heterobranchia.
This study could provide the basic information for genetic characteristics, phylogenetic
position, and evolution for these limpets, and provide a basis for resource management
and selective breeding in aquaculture. This Cellana species was differentiated in the late
Paleogene, and their evolution may be related to the geological events that changed their
living environment.
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