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Abstract: Autoimmune regulator (AIRE) is a multifunctional protein that is capable of inducing
tissue-specific antigens’ (TSAs) gene expression, a key event in the induction of self-tolerance, that is
usually expressed and functions in the thymus. However, its expression has been detected outside the
thymus and cells expressing the gene have been named extra-thymic AIRE expressing cells (eTACs).
Here, we discuss the finding of AIRE and TSAs gene expression in CD71+ cells from human fetal
liver parenchyma, which are mostly represented by CD71+ erythroid cells.

Keywords: CD71+ cells; CD71+ erythroid cells; human fetal liver; AIRE; tissue specific antigens; TSAs

1. Introduction

Autoimmune regulator (AIRE) is a multi-potent protein [1,2] that plays a major role in
the induction of self-tolerance through the expression of tissue specific antigens (TSAs) [3]
and their presentation to T-cells by medullary thymic epithelial cells [4] and indirectly by
dendritic cells [5] in the thymus. Cortical thymic epithelial cells also express AIRE but
Nishijima et al. [6] did not observe TSA gene expression in these cells. AIRE-expressing
cells were detected outside the thymus and were named extra-thymic AIRE-expressing
cells (eTACs). Such eTACs were found in secondary murine lymphoid organs [7], where
antigen-presenting cells (APCs) [8] and eTACs absence was shown to restrict intrauterine
development in mice models [9]. Finding of new eTACs and eTACs in new locations
can give us further understanding of the developmental biology and the maintenance of
self-tolerance at various stages of ontogenesis at different tissues.

In this work, we analyzed publicly available CD71+ cells’ gene expression data set
(GSE199228), found that there is detectable AIRE gene expression in human fetal liver
CD71+ cells, and decided to validate AIRE gene expression as well as check for the induction
of selected TSAs (GCG, INS and TFF3) [10] gene expression by AIRE by a less noisy pipeline
than NanoString, i.e., touchdown PCR, melt curve analysis and DNA gel electrophoresis.

2. Materials and Methods
2.1. NanoString Data Analysis

We analyzed previously available NanoString data of CD71+ cells from human adult
bone marrow and fetal liver parenchyma (GSE199228). We performed background subtrac-
tion of the data using the mean of negative controls +2 Standard Deviations in order to
filter out noise from the data and considered genes with >2 detected probe count numbers
as noise-free.
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2.2. Study Population

Human fetal liver parenchyma samples (20–22 weeks of pregnancy) were obtained
from the “Bank Stvolovih Kletok” LLC (Tomsk, Russia) cell bank; sex is unknown (n = 6).

2.3. Cell Isolation

We thawed fetal liver parenchyma samples stored in 10% DMSO and 90% FBS (up to
1.5 mL in volume) in a water bath at 37 ◦C and then washed them with the 6 mL mixture
containing 5 mL full RPMI 1640 cell culture medium and 1 mL FBS. We isolated fetal
liver parenchyma mononuclear cells using density gradient centrifugation (Ficoll-Paque™
(Sigma-Aldrich, St. Louis, MO, USA) with the density of 1.077 g/mL) at 266 RCF for 30 min.

2.4. Cell Sorting

We performed magnetic sorting of fetal liver parenchyma mononuclear cells using a
magnetic stand and a magnet (Miltenyi Biotec, 130-042-102, Bergisch Gladbach, Germany) and
anti-CD71 MicroBeads (Miltenyi Biotec, 130-046-201) according to the manufacturer’s protocols.

2.5. Viability Staining

We measured the magnetically sorted cells’ viability on a Countess 3 Automated Cell
Counter (Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s
protocols using Trypan Blue. Trypan Blue staining showed >95% viability of all samples.

2.6. Flow Cytometry

We washed magnetically sorted cells in PBS. We used anti-CD71-PE (BioLegend,
334106, San Diego, CA, USA) and anti-CD235a-FITC (BioLegend, 349104) antibody for
staining according to the manufacturer’s protocols. Flow cytometry showed >94% purity of
the cells. A gating strategy was to isolate singlets from cells, measure CD71 in the singlets
and measure CD235a in the CD71+ singlets fetal liver CECs. CD71+ erythroid cells (CECs)
comprised >90% of the cells (Figure 1).

Figure 1. Human fetal liver parenchyma CECs’ purity assessment by flow cytometry.

2.7. Total RNA Extraction

We isolated total RNA from cells using the Total RNA Purification Plus Kit (Norgen
Biotek, 48400), and measured concentration of the RNA on the NanoDrop 2000c. We froze
the total RNA at −80 ◦C until the reverse transcription of the RNA.

2.8. Reverse Transcription

We performed reverse transcription of the total RNA samples (n = 6) using RNAscribe
RT and oligo-dT primers (Biolabmix, R04-50). We used an input of 100 ng of the RNA.
Reverse transcription was conducted as following: 55 ◦C for 50 min, 80 ◦C for 10 min.

2.9. PCR and Melt Curve Analysis

We performed touchdown PCR with melt curve analysis using UDG HS-qPCR Lo-
ROX SYBR (×2) Mix (Biolabmix, MHR033-2040), 1 µL out of the 20 µL of RT product, AIRE,
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INS, GCG and TFF3 gene primers at a final concentration of 500 µM. Used primers and
predicted amplicon characteristics are presented in the Table 1. All reaction were conducted
using 4 technical replicates. Touchdown PCR and melt curve analysis were conducted as
following: 55 ◦C for 2 min; 95 ◦C for 5 min; 11 cycles of: 95 ◦C for 20 s, 65 ◦C -> 55 ◦C for
30 s (1 ◦C/cycle decrement), 72 ◦C for 1 min; 29 cycles of 95 ◦C for 15 s, 55 ◦C for 20 s, 72 ◦C
for 30 s; 72 ◦C for 5 min; and melt curve 95 ◦C -> 65 ◦C (1 ◦C/step decrement). Melt curve
plots are shown in Figure 2a–d.

Table 1. Used primers and predicted amplicon characteristics.

Gene Forward Primer Reverse Primer Amplicon Length Melting
Temperature Accession

AIRE catctcgaccacttttcagttcag ccaccatgctgagtaaaataagacag 250 b.p. 82.0 ◦C NM_000383.4

GCG ggtgtattctgaggccacattg tgtggctaccagttcttctattctcc 295 b.p. 73.5 ◦C NM_002054.5

INS ggagaactactgcaactagacgcag ggttcaagggctttattccatctc 89 b.p. 82.5 ◦C NM_000207.3

TFF3 cacccacgtcacaggaaagc cgagagtggttgtgaaataaaggac 170 b.p. 78.5 ◦C NM_003226.4

Figure 2. Cont.



Genes 2022, 13, 1278 4 of 6

Figure 2. (a) Melt curve plot for AIRE cDNA amplicons. (b) Melt curve plot for GCG cDNA amplicons.
(c) Melt curve plot for INS cDNA amplicons. (d) Melt curve plot for TFF3 cDNA amplicons. Melt
curve plots for AIRE, GCG, INS and TFF3 cDNA amplicons.

2.10. Agarose Gel-Electrophoresis of PCR Products

We took 1 µL of the PCR product for each gene of interest, combined it with 8 µL of
nuclease-free water and 1 µL of 10× gel loading buffer. We used a 15 cm wide 2% agarose
gel, Bio-Rad power supply and the Bio-Rad gel tray. We ran the gel electrophoresis for
30 min with the power supply set to 100 V (Figure 3).

Figure 3. Agarose gel-electrophoresis.

3. Results

Human fetal liver parenchyma CD71+ cells have AIRE gene expression.
We studied a previously published CD71+ cells transcriptome dataset and found that

there is AIRE gene expression in human fetal liver CECs (2/4 samples in the dataset had
detectable gene expression) but not in adult bone marrow CD71+ cells (0/4 samples in the
dataset had detectable gene expression).
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Touchdown PCR validation confirms AIRE as well as some tissue-specific antigen
gene expression in human fetal liver CECs.

We performed a touchdown PCR with a melt curve and a gel electrophoresis and
found AIRE gene expression as well as the two out of three selected tissue-specific antigens:
GCG and TFF3, but not INS (Table 2).

Table 2. Presence of AIRE and TSAs gene expression in Human Fetal Liver Parenchyma CD71+ cells.

Human Fetal Liver Parenchyma CD71+ Cells

Cytokine Presence № of Samples Positive

AIRE + 6/6

INS − 0/6

TFF3 + 6/6

GCG + 6/6

4. Discussion

In this work, we showed AIRE and TSAs gene expression in human fetal liver
parenchyma CD71+ cells. CD71+ cells were mostly represented by CD71+ erythroid
cells (CECs) both in this and previous works. We propose a hypothesis that human fetal
liver parenchyma CD71+ cells had AIRE gene expression, which in turn had induced the
expression of tissue-specific antigens in these cells. It can also be that CD71+ eTACs help
with the maintenance of self-tolerance in the human fetal liver parenchyma by one of the
known AIRE-dependent mechanisms, such as generation of T-regs or induction of apopto-
sis in overzealous T-cells, while leaving any non-TSA-reactive T-cell intact [1]. Taking into
consideration the fact that most of the cells in the analyses were CECs, we can also make an
assumption that AIRE and TSAs gene expression took place in CECs. Previous works also
showed that CECs can express mRNA and produce proteins from a plethora of cytokines
and chemokines [11–16], and, therefore, are capable of immunoregulation. Absence of INS
gene expression can possibly be due to the lack thereof in the current AIRE-induced TSA
gene expression spectrum, as such events were previously reported [17].

Experimental limitation of this study is the absence of the protein production valida-
tion of AIRE, GCG and TFF3 proteins.

5. Conclusions

We found AIRE and TSAs-expressing cells in an unexpected organ of origin that is
the human fetal liver, and which requires further investigation. In the future, we plan
to: (1) study AIRE’s and TSAs’ transcripts co-localization in a single cell, (2) establish
the precise lineage of these CD71+ AIRE-expressing cells and (3) show AIRE’s and TSAs’
protein production.
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