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Abstract: Background: Renal cell carcinoma (RCC) is a common malignancy of the genitourinary
system and clear cell renal cell carcinoma (ccRCC) is the most representative subtype. The morbidity
and mortality of ccRCC have gradually risen during recent years; however, the pathogenesis and
potential biomarkers remain unclear. The purpose of our study was to find out prognostic genes
correlated with somatic mutation and the underlying mechanisms of HMCN1 mutation in ccRCC.
Methods: Somatic mutation data of two ccRCC cohorts were acquired from TCGA and cBioPortal.
Genes frequently mutated in both datasets were extracted, from which tumor mutation burden
and survival analysis revealed three prognostic genes. Further comprehensive analysis of HMCN1
mutation was carried out to identify differentially expressed genes and apply functional annotations.
The correlation of HMCN1 mutation and tumor immunity was also evaluated. Results: HMCN1,
SYNE1, and BAP1 mutations were associated with both tumor mutation burden and clinical prog-
nosis in ccRCC. Gene enrichment analysis suggested the effects of HMCN1 mutation on biological
processes and pathways linked to energy metabolism. HMCN1 mutation was also correlated with
anti-tumor immunity. There were several limitations in the sample size and cohort availability of
the present computational study. Conclusions: The present results inferred that HMCN1 mutation
might have an important clinical significance for ccRCC patients by regulating metabolism and the
immune microenvironment.

Keywords: bioinformatics; clear cell renal cell carcinoma; HMCN1; immunity; metabolism; mutation;
prognosis

1. Introduction

Renal cell carcinoma (RCC) is a common malignant solid tumor of the urinary system
with a morbidity of approximately 400,000 cases worldwide [1,2]. RCC are heterogeneous
tumors with multiple histological subtypes [3]. The most representative one is clear cell
renal cell carcinoma (ccRCC), which makes up approximately 70% of all cancers of the
kidney [4].

Since there are no obvious symptoms and reliable diagnostic biomarkers at the begin-
ning, 25–30% of RCC patients have already developed spread and metastasis by the time of
diagnosis [5]. In the early stages, radical nephrectomy is the most effective treatment [6],
but recurrence or metastasis occurs in 30% of patients after surgery [7,8]. Because of its
intrinsic resistance, RCC is insensitive to both chemotherapy and radiotherapy, which
makes the administration of advanced RCC a challenge [2,9]. Immune checkpoint inhibitor
therapy has been widely applied in many types of tumors in the past few years, including
ccRCC [10], but the therapeutic effectiveness is still controversial [2]. Although there have
been significant improvements in the diagnosis and management of ccRCC, the underlying
pathological mechanisms and prognosis-related biomarkers remain to be explored.
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Somatic gene mutation is considered to be critical in disease programs, and different
gene mutation statuses may affect tumor development, clinical outcomes, and treatment
strategies. Tumor mutation burden (TMB) is a biomarker of the somatic mutation status
in tumors, which serves as a valid predictor for the responses to immunotherapy [11,12].
Recent studies have also shown that at the cellular level, the infiltration of different subsets
of immune cells was involved in antitumor responses and may also be associated with
gene mutation status [13,14].

We performed bioinformatic analysis of somatic mutations combined with TMB and
clinical prognosis in the present study, identifying HMCN1 (Hemicentin 1) mutation as a
critical event in ccRCC progression. HMCN1 belongs to the family of extracellular matrix
(ECM) proteins [15]. Previous studies suggest that HMCN1 is primarily associated with age-
related macular degeneration (AMD) [16]. HMCN1s usually localize in the extracellular
stroma, so they may also promote tumor invasion or metastasis [17]. Mutations and the
abnormal expression of HMCN1 have been found in a variety of tumors, but its function
and molecular mechanisms in ccRCC are still unclear. To this end, we also carried out
comprehensive analyses to find out the novel pathways in HMCN1-mutant samples and
elucidated that the potential mechanisms of HMCN1 mutation were related to cellular
metabolism and anti-tumor immunity in ccRCC development.

2. Materials and Methods
2.1. Data Acquisition

Single nucleotide variation (SNV) data of 537 ccRCC patients (mainly from western
countries) was downloaded from TCGA [18]. We also downloaded the corresponding
clinical information and transcriptome profile of TCGA cohort. SNV data of 106 Japanese
ccRCC patients from Tokyo were extracted from UTokyo cohort [19], which was acquired
from cBioPortal [20].

2.2. Genome-Wide Mutation Profiling

We analyzed and visualized the somatic mutation characteristics in each sample
with Perl software and R package “GenVisR” [21]. The frequency of various variant
classifications and distribution of different types of variant genes were visualized by the
waterfall plot. We intersected the top 30 genes ranked by mutation rate in both groups.

2.3. TMB Calculation and Survival Analysis

TMB was defined as the mutation rate per million bases [22], which was assessed
by dividing non-synonymous mutation numbers by the exon length. Non-synonymous
mutations contain all missense, insertion/deletion, and frameshift variants [23,24]. In
present study, TBM in each TCGA sample was calculated by Perl. The correlation of TMB
score and gene mutation status was analyzed by R package “ggpubr”. Then, Kaplan–
Meier survival analysis and log-rank test was performed for evaluation with R packages
“survminer” and “survival”. We also built a Cox proportional hazards model consisting of
all clinical pathological characteristics via univariate and multivariate Cox regression.

2.4. Differentially Expressed Genes (DEGs) Analysis

We employed the DEGs analysis to identify DEGs between HMCN1-mutant and wild-
type samples with a cutoff of |Log FC| > 1 and FDR < 0.05. The resulting volcano map
and heatmap were plotted by R package “edge R” and “pheatmap” [25].

2.5. Functional Annotation of DEGs

Gene enrichment analysis was processed by GO and KEGG and visualized by R
package “clusterProfiler”, “enrichplot”, and “ggplot2” [26]. Gene set enrichment analysis
(GSEA) was also performed by GSEA software (v4.2.2) to analyze gene expression profile
at the gene-set level [27]. Pathways with a p value < 0.05 were considered statistically
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significant. Gene sets “c2.cp.kegg.v7.5.1.symbols.gmt” and “h.all.v7.5.1.symbols.gmt”
applied to GSEA were obtained from Molecular Signature Database [28].

2.6. Protein–Protein Interaction (PPI) and Submodule Analysis

To construct a PPI network, we used the online tool STRING [29]. The network was
screened with combined score more than 0.4 and visualized with Cytoscape 3.9.1 [30].
Submodule analysis was carried out by MCODE [31] to identify hub modules that may
perform independent functions. We selected the most highly connected modules with a
degree cutoff = 2, node score cutoff = 0.2, k-core = 2, and max depth = 100. Functional
annotations were performed subsequently for screened hub subnetworks.

2.7. Estimation of Immune Cell Infiltrating

We evaluated the infiltrating levels of 22 types immune-infiltrating cells according
to CIBERSORT [32]. After calculation, the composition of different immune cells was
demonstrated. Then R package “limma” was used to perform Wilcoxon rank-sum test
in patients with different HMCN1 mutation statuses [33]. The result was visualized in
the violin plot by R package “vioplot” [34]. We also compared the expression of immune
checkpoint genes between HMCN1-mutant and wild type samples by R package “limma”.

2.8. Statistical Analysis

R software (version 4.1.2) was applied for all statistical analyses. The correlation
of gene mutation and TMB score was investigated by Mann–Whitney U test. Survival
curves were generated by Kaplan–Meier survival analysis, and log-rank test was applied
for evaluation. Univariate and multivariate Cox regression models were constructed for
each clinical risk factor. A two-tailed p value < 0.05 was considered statistically significant
in all comparisons.

3. Results
3.1. Somatic Mutation Landscape of ccRCC

Figure 1 illustrates the workflow chart of our research. We first downloaded the
required data for analysis from TCGA and cBioPortal and evaluated the variants of each
sample in two cohorts. Detailed mutation information of the top 30 mutated genes is
illustrated in Figure 2A,B, and different mutation types are distinguished by different
color annotations. The top 10 mutated genes in TCGA cohort were VHL, PBRM1, TTN,
SETD2, BAP1, MTOR, MUC16, KDM5C, HMCN1, and DNAH9. The top 30 mutated
genes were figured out in Japanese patients from the UTokyo cohort as well. The most
frequently mutated gene was VHL, followed by PBRM1, TTN, MUC16, SETD2, CSMD3,
BAP1, AHNAK2, TET2, and MUC4. The Venn diagram in Figure 3A indicates that there are
12 genes carrying a relatively high mutation rate in both two cohorts.

3.2. Gene Mutations Related to TMB and Prognosis

In order to sort out the hub genes that probably serve a critical role in ccRCC, we first
calculated the TMB values in all patients. Combining the mutation data with the TMB
expression profile, we revealed that the TMB values of ccRCC patients were significantly
associated with several gene mutations, including VHL, PBRM1, TTN, SETD2, BAP1,
MTOR, HMCN1, CSMD3, and SYNE1 (Figure 3B).

Then, we separated the patients in TCGA cohort into wild and mutant types depending
on the gene mutation status and survival analysis was performed in combination with
patients’ survival data. Kaplan–Meier survival curves and log-rank tests were conducted
to figure out prognosis-related mutations. Our results demonstrated that among the
12 mutated genes, only 3 gene mutations were associated with the prognosis of ccRCC
patients significantly, including HMCN1, BAP1, and SYNE1, which were also TMB-related
genes (Figure 4A–C). The biological role and molecular mechanisms of BAP1 and SYNE1
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mutations in ccRCC have been previously reported [35–37]. In this work, we further carried
out an integrated analysis of HMCN1 mutation.

As was illustrated in Figure 4A, HMCN1 mutation was significantly associated with
poorer clinical outcome. To determine if HMCN1 mutation was an independent predictive
biomarker, further univariate and multivariate Cox regressions were employed. After the
screening of a multivariate model, HMCN1 mutation remained significantly associated with
overall survival under correction for clinical characteristics and TMB score. In addition,
age, stage, and TMB score were also considered as important prognosis-related biomarkers.
Older age, a more advanced stage, and a higher TMB value were significantly associated
with a poorer clinical prognosis (Figure 5A,B).

3.3. Identification of DEGs

We selected DEGs to further explore potential pathways by which HMCN1 mutation
impacts ccRCC development. The differentially expressed mRNAs in HMCN1-mutant and
wild-type samples were calculated with a criteria of log fold change >1.0 or <−1.0 and
FDR < 0.05. Overall, we identified 134 DEGs, with 88 being upregulated in HMCN1-mutant
samples and 46 being downregulated. The results were illustrated by a volcano map
and heatmap in Figure 6A,B. Moreover, the lollipop chart downloaded from cBioPortal
demonstrated that the mutation types of HMCN1 included splice, in-frame, and missense
mutations across the entire gene (Figure 6C).
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3.4. Functional Annotations of DEGs

Gene enrichment analysis was performed after identifying DGEs. The top 20 GO and
KEGG terms were illustrated in Figure 7A,B. GO analysis indicated that the main biological
processes of genes differentially expressed in patients with HMCN1 mutation were enriched
in the aerobic electron transport chain, ATP synthesis coupled electron transport and
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mitochondrial ATP synthesis coupled electron transport. The main pathways enriched were
oxidative phosphorylation, non−alcoholic fatty liver disease, and diabetic cardiomyopathy.
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Figure 4. Gene mutations associated with prognosis. Kaplan–Meier survival curves of three gene
mutations significantly correlated with clinical prognosis. (A): HMCN1 mutation is associated with
poorer prognosis; (B): BAP1 mutation is associated with poorer prognosis; (C): SYNE1 mutation is
associated with poorer prognosis.

GSEA further confirmed that HMCN1 mutation may lead to alterations in key path-
ways related to energy metabolism. Figure 8A,C exhibited the hallmarks and pathways
that considerably enriched in HMCN1 mutant samples, containing adipogenesis, oxidative
phosphorylation, fatty acid metabolism, the TCA cycle, fructose and mannose metabolism,
and porphyrin and chlorophyll metabolism. Pathways including apical junction, apical
surface, mitotic spindle, adherens junction, focal junction, gap junction, and regulation
of the actin cytoskeleton were significantly enriched in wild-type samples. The majority
of these were closely associated with cell polarity, the cytoskeleton, and cell junctions
(Figure 8B).

3.5. PPI Network Establishment, Hub Genes, and Submodules Screening

We constructed a PPI network with 53 nodes and 442 edges using online tool STRING
(Figure 9A) and visualized it in Cytoscape. The key genes with the top 30 node degrees
in the network were listed in the bar chart (Figure 9B). Then, two significant modules
containing 15 and 7 genes, respectively, were distinguished by MCODE (Figure 9C,D). The
following GO and KEGG functional annotations revealed that the main functional areas of
genes in submodule 1 were significantly enriched in oxidative phosphorylation, the aerobic
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electron transport chain, and ATP synthesis coupled electron transport. Genes in submod-
ule 2 exhibited significant enrichment in the negative regulation of hydrolase activity, sterol
import, and cholesterol import. The main pathways of genes in submodule 1 were enriched
in oxidative phosphorylation, non-alcoholic fatty liver disease, and Parkinson’s disease.
The genes in submodule 2 were enriched in cholesterol metabolism, the PPAR signaling
pathway, and complement and coagulation cascades (Tables 1 and 2).
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Table 1. Functional annotations of module 1.

ID Description p-Value Genes

GO

GO:0006119 Oxidative
phosphorylation 6.61 × 10−33 COX7B/COX8A/COX5A/CYC1/COX4I1/CYCS/NDUFB9/COX6A1/

COX7A2/COX7A1/NDUFB7/UQCR11/NDUFA4/NDUFA2/UQCRQ

GO:0019646 Aerobic electron
transport chain 1.09 × 10−32 COX8A/COX5A/CYC1/COX4I1/CYCS/NDUFB9/COX6A1/COX7A2/

COX7A1/NDUFB7/UQCR11/NDUFA4/NDUFA2/UQCRQ

GO:0042773 ATP synthesis coupled
electron transport 4.11 × 10−32 COX8A/COX5A/CYC1/COX4I1/CYCS/NDUFB9/COX6A1/COX7A2/

COX7A1/NDUFB7/UQCR11/NDUFA4/NDUFA2/UQCRQ

KEGG

hsa00190 Oxidative
phosphorylation 7.91 × 10−28 COX7B/COX8A/COX5A/CYC1/COX4I1/CYCS/NDUFB9/COX6A1/

COX7A2/COX7A1/NDUFB7/UQCR11/NDUFA4/NDUFA2/UQCRQ

hsa04932 Non-alcoholic fatty
liver disease 7.87 × 10−27 COX7B/COX8A/COX5A/CYC1/COX4I1/CYCS/NDUFB9/COX6A1/

COX7A2/COX7A1/NDUFB7/UQCR11/NDUFA4/NDUFA2/UQCRQ

hsa05012 Parkinson disease 3.49 × 10−23 COX7B/COX8A/COX5A/CYC1/COX4I1/CYCS/NDUFB9/COX6A1/
COX7A2/COX7A1/NDUFB7/UQCR11/NDUFA4/NDUFA2/UQCRQ
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of top 30 hub genes. (C) PPI network of module 1. (D) PPI network of module 2.

Table 2. Functional annotations of module 2.

ID Description p-Value Genes

GO

GO:0051346 Negative regulation of hydrolase activity 6.72 × 10−8 VTN/SERPINC1/APOA1/APOC3/AMBP

GO:0035376 Sterol import 5.38 × 10−6 APOA1/APOC3

GO:0070508 Cholesterol import 5.38 × 10−6 APOA1/APOC3

KEGG

hsa04979 Cholesterol metabolism 0.00054577 APOA1/APOC3

hsa03320 PPAR signaling pathway 0.00122622 APOA1/APOC3

hsa04610 Complement and coagulation cascades 0.001572335 VTN/SERPINC1

3.6. HMCN1 Mutation-Related Tumor Immune Microenvironment

The composition of 22 subsets of immune-infiltrating cells calculated via CIBERSORT
was illustrated in the bar graph of Figure 10A. The relationship of different immune cell com-
ponents was also demonstrated (Figure 10B). Then, we investigated the differences of immune
cell distribution between different mutation status. The violin plot in Figure 10C presents that
the abundance of T cells CD4 naïve and T cells follicular helper was significantly different
in HMCN1-mutant samples. We also compared the expression of immune checkpoint genes
between HMCN1-mutant and wild type samples, and revealed that in HMCN1-mutant
samples, the expression of IDO1 was significantly upregulated (Figure 10D).
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4. Discussion

In the current study, we first reviewed the mutation profile of 537 American and
106 Asian ccRCC patients and identified three gene mutations that were related to both
TMB and clinical outcome. Among them, the correlation of HMCN1 mutation and ccRCC
has not been reported yet. Further exploration revealed that in samples with HMCN1
mutation, pathways related to metabolism were significantly enriched. Moreover, we
observed a different infiltration level in naïve CD4 T and follicular helper T cells in the
HMCN1-mutant group. The mutant samples also showed an increase in IDO1 expression.

HMCN executes its biological functions as an extracellular matrix protein. The HMCN
family has two orthologs (HMCN1 and 2). HMCN1 is predominantly generated by stromal
cells [38]. The function of HMCN1 has not been well explored yet. As a cell polarity-related
gene commonly associated with calcium binding, the extracellular matrix component
HMCN1 is found at the dermal–epidermal and tendon junctions and may be involved in
the structural organization of epithelial cell junctions [38]. HMCN1 has been confirmed
to be related to AMD. Its variant Gln5345Arg has been discovered in a large AMD family
in America [16], and in a small subgroup of AMD patients, it may contribute to disease
susceptibility [39].

Mutations and the altered expression of HMCN1 have been proved to be involved in
malignant tumor development. HMCN1 regulates cancer-associated fibroblasts (CAFs) to
reinforce the aggressiveness of ovarian cancer. CAFs in high-grade plasmacytoid carcinoma
and clear cell carcinoma tissues show an upregulation of HMCN1, and tumor cells tend
to be less invasive after silencing HMCN1 expression in fibroblasts [40]. In hepatocellular
carcinoma, HMCN1 protein was also found to be overexpressed in tumors by proteomic
analyses [41].

HMCN1 mutation has been found in many cancers such as gastric, colorectal [42],
prostate [43], triple-negative breast cancer [44], and small-cell gallbladder neuroendocrine
carcinoma [45]. HMCN1 mutation is associated with patients’ pathological characteristics
and clinical prognoses. A study of molecular profiles and metastatic markers in Chinese
gastric cancer patients indicated that samples carrying HMCN1 mutation are associated
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with peritoneal metastasis [46]. The allelic mutation frequency of HMCN1 is also signifi-
cantly related to the prognosis of breast cancer [17]. As is known to all, drug resistance can
be attributed to ECM by interfering with drug permeation into cancer tissues and inducing
apoptosis resistance. Being an important component of ECM, HMCN1 has a significantly
lower expression in multi-drug resistant ovarian cancer cells [47].

In regards to kidney disease, HMCN1 variants play a role in renal pathophysiology [48]
and are considered as a potential gene causing diabetic nephropathy in Mexican Ameri-
cans [49]. In addition, patients with proteinuric nephropathy have higher levels of HMCN1
expression in their kidneys. In vitro and in vivo models reveal that HMCN1 contributes
to the remodeling of the podocyte cytoskeleton and the increased expression of HMCN1
in podocytes can be stimulated in response to hyperglycemia [50], which is an important
risk factor of RCC [51,52]. In fact, consistent with ovarian and liver cancers discussed
above, we did observe a significant overexpression of HMCN1 in ccRCC samples in TCGA
cohort. However, the correlation between hyperglycemia, the expression of HMCN1, and
the development of ccRCC is not yet clear.

Since HMCN1 mutation plays an essential role in cancer development, it is neces-
sary to elucidate the underlying mechanisms. Our GSEA results showed that HMCN1
mutation was mainly associated with cellular metabolism-related pathways including
glucose and lipid metabolism, which are extremely necessary for tumorigenesis and cancer
progression [53].

Abnormal metabolism is an important hallmark of cancer. Tumors can gain growth
advantages through metabolic reprogramming processes, such as aerobic glycolysis and
increased lipid synthesis [54]. Previous studies have shown that the reprogramming of
glucose and lipid metabolism occurs frequently in ccRCC [55]. Although conventional
research tends to assume that tumor cells primarily undergo glycolysis without oxidative
metabolism, recent studies have found that certain types of tumor cells consume more
oxygen and have higher levels of oxidative phosphorylation than normal cells. The ap-
plication of oxidative phosphorylation inhibitors may target at the procedure of tumor
cell metabolism and thus exert anti-tumor efficacy [56]. The increase of oxidative phos-
phorylation and mitochondrial membrane fusion-mediated NADH/NAD+ metabolism
can promote the immortalization of neural stem cell tumors [57]. Moreover, numerous
pieces of research have shown that the electron transport chain in mitochondria is required
for cancer development [58], which is consistent with the results of our GO functional
annotation. There have also been studies demonstrating that there may be a crosstalk
between energy metabolism and ECM remodeling, further supporting our assumption that
HMCN1 mutation might contribute to cellular metabolic reprogramming [59].

The present study found that key pathways altered in HMCN1-mutant ccRCC samples
were oxidative phosphorylation and glucose and lipid metabolism, suggesting that drugs
targeted at lipid and glucose metabolism and oxidative phosphorylation might contribute
to developing new therapeutic strategies for ccRCC with HMCN1 mutation.

In terms of immune cell infiltration conditions, naive CD4T and follicular helper T
(Tfh) cells show significantly different abundance in HMCN1 mutant samples, indicating
that HMCN1 mutation may enhance anti-tumor immune responses. Naïve CD4T cells
differentiate towards Tfh cells in response to transcription factor B-cell lymphoma 6 [60,61].
Tfh cells belong to a special subgroup of CD4T cells, which are involved in the regulation
of protective antibody responses to pathogens. The capabilities of mature Tfh cells are to
assist B cells in promoting antibody affinity maturation, class switch reorganization, and
memory cells production [62,63]. Besides, Tfh cells were most relevant to CD8T cells and
exhibited the highest negative association with M2 macrophages, further confirming the
hypothesis that an altered tumor immune microenvironment induced by HMCN1 mutation
may be involved in enhancing anti-tumor immunity.

Currently, an immune checkpoint inhibitor regimen shows impressive efficacy in
multiple types of cancers [64–66]. Conventional immune checkpoints include CTLA4,
PDCD1, CD274, IDO1, LAG3, TIGIT and so on [67]. IDO1 is a rate-limiting metabolic
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enzyme in tryptophan metabolism, which can convert tryptophan into kynurenine [68].
Interferon α stimulates the expression of IDO1 [69], which subsequently induces the
inactivation of T cells and NK cells, and the promotion of Tregs and myeloid-derived
suppressor cells (MDSCs) [70,71]. Numerous studies have shown that IDO1 is significantly
overexpressed in a variety of human cancers and mediates immunosuppression [72–74]. In
the present study, we revealed that HMCN1 mutation was associated with increased IDO1
expression, indicating that HMCN1 mutation may be a double-edged sword in regulating
immune responses. Since our previous results have suggested that HMCN1 mutation can
affect metabolic pathways, it may be important to further explore the correlation between
HMCN1 mutation and anti-tumor immunity regulated by cellular metabolism.

Several limitations should be considered in this study. First, the sample size of TCGA
dataset is limited and covers only patients from western countries, which makes it difficult
to apply our conclusion to patients worldwide. There are also differences in age, gender, and
ethnicity between samples, thus causing potential errors or biases. Because of insufficient
expression and survival information in the UTokyo cohort, it is difficult for us to figure out
whether HMCN1 mutation is also a predictive biomarker of prognosis and the immune
microenvironment in Japanese patients. Therefore, a further exploration of the HMCN1
mutation pattern in Asian patients is necessary. Second, the TCGA dataset includes only
25 cases with HMCN1 mutation, which might cause biased results. Finally, our present
study is only a correlation study based on multidimensional data, which lacks relevant
basic experiments in cell lines and clinical samples. In the future, we will carry out clinical
and biological experiments to validate the function and clinical significance of HMCN1
mutation in ccRCC and further explore the underlying mechanisms related to HMCN1
mutation in cancers.

5. Conclusions

In summary, we provided detailed insights into the critical role of HMCN1 mutation
in regulating ccRCC progression. The present study suggested that HMCN1 mutation
occurs frequently in ccRCC and was related to a higher TMB and a poorer clinical outcome.
HMCN1 mutation was considered as an independent prognostic biomarker and may be
relevant to cell metabolism and anti-tumor immunity.
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