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Abstract: Background: N7-methylguanosine is a novel kind of internal modification that is widespread in
human mRNA. The relationship between m7G-related IncRNAs (MRL) and endometrial cancer remains
unknown. The aim of our study is to explore a predictive prognosis MRL signature in endometrial
cancer and identify the underlying biological mechanism. Methods: We obtained RNA-seq profiles,
clinical data, and information on somatic mutations from the TCGA database and obtained m7G-related
genes from a previous study. MRLs were identified through a co-expression network. The prognostic
model was constructed based on 10 m7G-related IncRNAs. Differentially expressed genes between low-
and high-risk groups were identified for further analysis, consisting of functional enrichment analysis,
immune function analysis, somatic mutation analysis, and potential drugs exploration. Results: We
constructed a 10-MRLs signature. According to the risk score, the signature was classified into high-
and low-risk groups. The signature had a reliable capacity for predicting the prognosis of endometrial
cancer patients. The findings about differentially expressed genes were also of great significance for
therapeutic treatments for endometrial cancer and gave novel insights into exploring the underlying
molecular mechanism. Conclusion: The prognostic model based on 10 MRLs is a reliable and promising
approach for predicting clinical outcomes and suggesting therapeutic methods for endometrial cancer
patients.

Keywords: N7-methylguanosine; long noncoding RNAs; endometrial carcinoma; prognostic model;

immune function

1. Introduction

Uterine corpus endometrial carcinoma (UCEC) is the most common cancer of the fe-
male reproductive system worldwide, ranking second among female genital cancers, with a
mortality rate of 2.7 per 100,000 in China [1,2]. Depending on etiology and clinical variables,
UCEC is generally classified as type I endometrioid EC or type Il non endometrioid EC [3].
Most endometrial cancers (72%) are detected in the early stage (stage I/1I), whereas 20%
have regional metastasis (stage III), and 8% have distant metastasis (stage IV) [4]. Although
most endometrial cancers are diagnosed at early and treatable stages, late diagnosis of
endometrial cancers at advanced stages remains challenging to treat. At present, UCEC are
treated primarily by hysterectomy in the early stage, and with surgery and other adjuvant
therapies in the advanced stage [5]. However, advanced UCEC, which is characterized by
highly aggressive and easily metastatic clinical behavior, shows poor outcomes. Although
it is highly curable by surgery when diagnosed at an early stage and grade, conventional
surgery brings devastating consequences for fertility to these patients [6]. Therefore, it is
of great significance for the improvement of early diagnosis and treatment of UCEC to
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understand the molecular mechanisms and explore new potential biomarkers, as well as
promising therapeutic targets.

Long noncoding RNAs (IncRNAs) are regulatory RNA transcripts longer than 200 nu-
cleotides without coding capacity [7]. Long noncoding RNAs have emerged as potent
regulators of gene expression at different levels, including chromatin remodeling, tran-
scriptional and post-transcriptional control, and protein metabolism [8]. A large number of
studies have indicated that IncRNAs are highly associated with the progression of a wide
variety of diseases through their crosstalk with other macromolecules, including DNA,
RNA, and protein [9,10]. The accumulated evidence has demonstrated that IncRNAs are
frequently dysregulated in cancers, and are involved in the progression and metastasis
of multiple malignancies. It has been reported that IncRNAs play a pivotal role in the
development and progression of cancer, and might function as cancer biomarkers and
novel therapeutic targets.

Recent discoveries have highlighted the regulatory roles of RNA modification in the
control of gene expression regulation and the course of cancer. To date, over 160 RNA mod-
ifications have been identified, including N7-methylguanine (m7G), N6-methyladenosine
(m6A), and 5-methylcytosine (m5C) [11]. It is known that m7G is one of the most abundant
modifications present in tRNA, rRNA, and mRNA 5 cap, and plays an essential role in
regulating multiple aspects of RNA processing, metabolism, and function [12]. The accumu-
lated evidence suggests a critical role for m7G in human disease development, especially
cancer, and aberrant expression of m7G is strongly associated with tumorigenesis and
progression [13]. However, the detailed molecular mechanisms of m7G-related IncRNAs in
treatment and prognosis of UCEC remain to be elucidated.

The past decade has witnessed remarkable advances in cancer immunotherapy, in-
cluding chimeric antigen receptor T cells, bispecific antibodies, and immune checkpoint
inhibitors [14-17]. Immunotherapy is a promising approach to treat advanced or recurrent
UCEC patients. In the wake of immunotherapy and personalized medicine, it is necessary
to identify biomarkers to predict treatment response.

The aberrant expression or mutation of IncRNAs and the abnormal modifications
of m7G lead to diverse disorders that include many cancers. However, the direct inter-
connection and role of IncRNAs and m7G in EC remain largely unknown and require
further investigation. In this study, we used the TCGA database to search for m7G-related
IncRNAs. We ultimately identified six differentially expressed IncRNAs and successfully
constructed an EC risk prediction model. In addition, the m7G-related IncRNAs model
was used as the target to explore potential therapeutic drugs, in order to find new modes
of immunotherapy:.

2. Materials and Methods
2.1. Data Collection

The workflow chart (Figure 1) shows the process of data preparation, data analysis,
and visualization of the results in our study. The RNA-seq profiles, clinical data and
information on somatic mutations of UCEC cases, and normal cases were all downloaded
from the TCGA database [18]. A total of 20 m7G-related genes (MRGs) were obtained from
a previous study.

2.2. Identification of m7G-Related IncRNAs in UCEC

The m7G-related mRNA-IncRNA co-expression network was identified utilizing
“limma” package in R software. The correlation was considered significant, with a | Pearson
correlation coefficient | > 0.4 and the p-value <0.05. The coexpression network is visualized
in the Sankey diagram.

2.3. Construction of m7G-Related IncRNAs Prognostic Signature for UCEC

Cox univariate analysis was utilized to evaluate the prognostic values (p < 0.05) of
m7G-related IncRNAs (MRLs), among which 15 MRLs remained after filtering. To avoid
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overfitting, the least absolute shrinkage and selection operator (LASSO) regression was
then applied for further analysis. Finally, risk scores were obtained through the multivariate
Cox regression. The risk scores for each patient were calculated using the formula: Risk
score = Expressionj,crna1 X Coefficient jncrna1 + Expression jncrnaz X Coefficient jncrna2
+ Expression j,.rnan X Coefficient j,rnvan [19]. We separated a total of 541 patients into
training or validation groups, randomly, with the ratio of 1:1. The clinicopathological
characteristics of patients with UCEC are shown in Table 1. Patients in both the training and
validation cohorts were divided into high-risk groups and low-risk groups, according to
their risk scores. Overall survival (OS) and progression-free survival (PFS) were generated
for all patients, train group, and validation group, respectively, using the “survminer”
R package. In addition, the receiver operating characteristic curve (ROC) [20] and the
area under the ROC curve (AUC) were constructed to identify the predictive accuracy of
prognostic signatures utilizing the “timeROC” R package.

m7G-related genes (MRGs)
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(MRLs)

Univariate Cox analysis
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Multivariate Cox regression
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Figure 1. The workflow chart.




Genes 2022, 13, 1301

40f15

Table 1. Clinicopathological characteristics of patients with UCEC.

Total Train Validation
Characteristics N p-Value
n %o n % n %

Age (years) <65 304 56.19% 152 56.09 152 56.3 0.9521
>65 235 43.44% 119 4391 116 42.96
unknow 2 0.37% 0 0 2 0.74

Grade G1 98 18.11% 55 20.3 43 15.93 0.528

G2 120 22.18% 61 22.51 59 21.85
G3 312 57.67% 149 54.98 163 60.37
High Grade 11 2.03% 6 2.21 5 1.85

2.4. Construction of Predictive Nomogram and Principal Component Analysis

A prognostic nomogram was formulated via the “rma” package in R software to
predict the probability of 1-, 3-, and 5-OS of UCEC patients. To evaluate the accuracy of the
nomogram, calibration curves were then constructed. Principal component analysis (PCA)
was performed to explore the distribution of patients with various risk scores utilizing the
“scatterplot3D” R package.

2.5. Functional Enrichment Analysis and Immune Function Analysis

We explored the differentially expressed genes (DEGs) between low-risk and high-risk
groups using the “limma” package with the threshold of FDR < 0.05 and |log,FC| > 1.
Gene Ontology (GO) [21] analysis was performed, based on the DEGs, to explore the
enrichment of biological processes (BP), molecular functions (MF), and cellular components
(CC). The immune function of DEGs was also identified, based on the “immune.gmt”, and
visualized in a heatmap.

2.6. Somatic Mutation and Tumor Mutation Burden in Different Risk Groups

The cases were divided into low-risk and high-risk groups, according to their risk
scores. The “maftools” [22] and “ggpubr” packages in R software were utilized to visualize
the mutation data and tumor mutation burden (TMB), respectively, between different risk
groups.

2.7. Drug Sensitivity Prediction between Different Risk Groups

We predicted the IC5q values of various chemotherapy drugs for the low-risk and
high-risk UCEC groups via the “pRRophetic” [23] R package. The p-value indicates the
effectiveness in inhibiting biochemical activity or biological processing.

2.8. Statistical Analysis

R version 4.1.1 was utilized to perform and visualize statistical analysis, while Pearson
correlation analysis was used to identify the correlations among variables. Student’s ¢-
test was performed for normally distributed variables between two groups, while the
Mann-Whitney U-test was conducted for abnormally distributed variables.

3. Results
3.1. Identification of Prognostic m7G-Related IncRNAs in UCEC

We constructed the Sankey diagram (Figure 2A) to visualize the co-expression network
of IncRNAs and MRGs, based on which, we obtained m7G-related IncRNAs. Then, we
applied univariate Cox analysis for primary screening and 15 MRLs were extracted after
filtering (Figure 2B). Lasso regression analysis was also applied, as shown in Figure 2C-D.
Finally, the multivariate Cox regression analysis was utilized to identify 10 MRLs, including
AC010378.1, NBAT1, DNAJC3-DT, AC139887.1, LEMD1-AS1, AC011466.1, AC004951.1,
AL031667.3, AC019080.5, and LINC00662.
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Figure 2. Identification of prognostic m7G-related IncRNAs. (A) Sankey diagram of the correlation
between MRGs and IncRNAs. (B) Univariate Cox regression analysis identified 10 MRLs correlated
with prognosis. (C,D) Cvfit and lambda curves of Lasso regression analysis. (E) The correlation
between 19 MRGs and 6 MRLs identified by multivariate Cox regression.

The relationship between the 10 MRLs and 20 MRGs was identified, as shown in
Figure 2E. The color red represents a positive correlation between MRLs and MRGs, while
blue indicates a negative correlation. For instance, AC004951.1 was significantly positively
correlated with NUDT3, NUDT4, NUDT11, EIF4G3, EIF4E3, EIF4E, EIF4A1, and AGO2,
but was significantly negatively correlated with NUDT7, NUDT16L1, EIF3D, and CYFIP1.
Some MRGs had a significantly positive correlation with most or even all MRLs, such as
NUDT3, NUDT4, NUDT11, NCBP2, NCBP1, IFIT5, EIF4G3, EIF4E3, EIF4E, EIF4A1, and
AGO2, whereas some MRGs had a significantly negative correlation with multiple MRLs,
including NUDT16L1 and EIF3D. LARP1 was significantly positively correlated with two
MRLs, whereas SNUPN and CYFIP1 were significantly negatively correlated with two
MRLs. Both NUDT5 and LSM1 had a significantly negative relationship with AC139887.1.
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NUDT? was significantly positively correlated with AC019080.5 and DNAJC3-DT, but
negatively related to AC004951.1.

Construction and validation of a prognostic model in UCEC based on MRLs:

To identify the prognostic value and predictive accuracy for endometrial cancer of
these MRLs, a UCEC prognostic model for predicting risk scores was constructed, based
on the 10 MRLs extracted, as above. To evaluate the ability of predicting prognostic
value, the model was subsequently trained and validated. We identified the distribution
of risk scores and overall survival status in the training group, which indicated that the
samples in the low-risk and high-risk groups were distributed fairly (Figure 3A). The overall
survival (OS) rate (Figure 3D) and the progression free survival (PFS) rate (Figure 3G) in
the training group were generated via Kaplan—Meier survival analysis. Both the OS rate
and PFS rate showed that the prognostic outcome of UCEC patients in the high-risk group
was worse than that of the low-risk group. ROC curves were formulated to validate the
predictive accuracy, including a time-dependent ROC (Figure 3]) and an ROC based on
clinicopathological characteristics (Figure 3M). The same analyses were also applied in the
validation group (Figure 3B,E,H,K,N) and overall group, respectively, (Figure 3C,ELL,O).
The results in the validation group and overall group both illustrated that patients in
the high-risk group could have worse survival situations and higher mortality rates than
those in the low-risk group. In addition, the expression of the 10 MRLs in the low- and
high-risk groups were also visualized, using data from the training group (Figure S1A), the
validation group (Figure S1B), and the overall group (Figure S1C). Overexpression of an
MRL in the high-risk group indicated it as a risk factor for UCEC, whereas upregulated
MRLs in the low-risk group symbolized protective factors. These expression heatmaps
further illustrated the predictive value of the 10 MRLs, consisting of 7 UCEC risk factors:
NBAT1, LEMD1-AS1, AC011466.1, AC004951.1, AL031667.3, AC019080.5, and LINC00662;
and 3 UCEC protective factors: AC010378.1, DNAJC3-DT, and AC139887.1.

3.2. Construction of a Predictive Nomogram, Identification of Independent Prognostic Factors and
PCA Analysis

We plotted a predictive nomogram based on both clinicopathological characteristics
and risk group classification (Figure 4A), and constructed calibration curves to illustrate
the prediction accuracy of the nomogram (Figure 4B).

In addition, we also identified the independent prognostic factors for UCEC patients.
The results of univariate and multivariate Cox regressions are shown in Figures S2A,B,
respectively. The concordance index (Figure S2C) proves that the results of the predictive
model are believable.

We applied principal component analysis (PCA) to identify the distribution of samples
in low-risk and high-risk groups. The distributions of all genes, m7G-related genes, m7G-
related IncRNAs, and the m7G-related IncRNAs prognostic signature are shown in the 3D
PCA maps, respectively (Figure 5A-D).
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Figure 3. Construction and validation of the prognostic model based on MRLs. (A-C) The distribution
of risk scores and overall survival status in the training group, validation group and overall group.
(D-F) The Kaplan—-Meier curves of overall survival rates in the training group, validation group
and overall group. (G-I) The Kaplan-Meier curves of progression-free survival rates in the training
group, validation group and overall group. (J-L) Time-dependent ROC curves for the training group,
validation group, and overall group. (M-O) Clinicopathological characteristics ROC curves for the
training group, validation group, and overall group.
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3.3. Functional Enrichment and Immune Function Analysis

After establishing the prognostic model based on MRLs for UCEC, we identified a
low-risk group and a high-risk group. Differentially expressed genes were then extracted
from these two different risk groups (Table S1, shown in Figure S1D-E), and were analyzed



Genes 2022, 13, 1301

9of 15

A

signaling receptor activator activity
receplor ligand activity

G protein-coupled receptor binding
hormone activity

extracsllular matrix structural constituent
neuropeptide hormone activiy

structural constituent of cytoskeleton

Term

calcium-dependent protein binding
neuropeptide receplor binding
neuron projection terminus:

axon terminus

terminal bouton

neurapeplide signaling patway

using GO and immune function analysis. The DEGs were obviously enriched into biologi-
cal processes (BP), cellular component (CC), and molecular function (MF) in GO analysis
(Table S2). The DEGs were mainly enriched in MF, consisting of: G-protein-coupled recep-
tor binding, receptor ligand activity, signaling receptor activator activity, hormone activity,
neuropeptide hormone activity, extracellular matrix structural constituent, structural con-
stituent of cytoskeleton, calcium-dependent protein binding, and neuropeptide receptor
binding. The DEGs were significantly involved in the neuropeptide signaling pathway, in
terms of BP, while DEGs were mainly enriched in the neuron projection terminus, axon
terminus, and terminal bouton, in terms of CCs. G-protein-coupled receptors (GPCRs)
are the largest family of cell-surface molecules involved in signal transmission. Available
studies have demonstrated that GPCRs have recently emerged as crucial players in tumor
growth and metastasis [24,25]. The role of pituitary gonadotropin-releasing hormone recep-
tors (GnRH-R), involved in G-protein-coupled receptors (GPCRs) mediated intracellular
signaling pathway, are proven to be crucial in various cancers, such as endometrial can-
cer [26]. Growing evidence supports the importance of receptor ligand activity in tumor
responses to prognosis and therapy. Receptor ligand activity has recently been designated
as an especially useful clinical target [27]. A calcium-dependent phospholipase A2 (cPLA2),
related to calcium-dependent protein binding, was identified as a novel target and played
an essential role in endometrial tumorigenesis [28]. Various neuropeptides, consisting of
hypothalamic decapeptide GnRH, neuropeptide Y, and leptin were proven to have a tight
association with endometrial cancer [29-31]. The above research findings proved that those
pathways are potentially correlated with the mechanism of UCEC and our GO analysis
results are credible. All the results of GO analysis are shown in Figure 6A-D.
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Figure 6. Functional enrichment and immune function analysis. (A-D) Gene ontology enrichment
analysis of DEGs. (E) Immune function analysis of DEGs.

Immune function analysis was also applied to explore the potential immune signatures
correlated with the pathological and molecular mechanisms of UCEC (Figure 6E). The
significantly differential immune function between low-risk and high-risk groups consisted
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of type I IFN response, type II IFN response, human leukocyte antigen (HLA), T cell
co-stimulation, and cytolytic activity.

3.4. Somatic Mutation, TMB Correlated Analysis and Drug Sensitive Prediction in UCEC

Based on DEGs extracted previously, we then explored genomic differences in somatic
mutation between low-risk and high-risk groups. The results of somatic mutation analysis
are presented in Figure 7A,B, which shows that phosphatase and tensin homolog (PTEN),
phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), AT-rich
interaction domain 1A (ARID1A), titin (TTN), and tumor protein p53 (TP53) were most
frequently mutated in the high-risk group, while PTEN, PIK3CA, ARID1A, TTN, and
phosphoinositide-3-kinase regulatory subunit 1(PIK3R1) were mainly mutated in low-risk
group. It also shows that TTN, PTEN, PIK3CA, and ARID1A were the most frequent
mutated genes, not only in the high-risk group, but also in the low-risk group. Established
evidence proves that co-mutations in PIK3R1 and PIK3R2, the members of PI3K-Akt
signaling pathway, are mainly involved in the development of endometrial cancer [32].
In addition, the lower mutation rates of TTN, PTEN, PIK3CA and ARID1A have been
identified as possible risk factors in endometrial cancer [33]. ARID1A mutation also plays
an important role in the activation of the PI3K/AKT/mTOR pathway [34].

Atraain21 0 55 55 sampls B Aradin21809.24) of 50 samples c
aw " P
Low-risk High-risk
: s i
i . | TR T
PR | 0 O s B % lade Lo s ot s
PTEN I LU | PTEN| Ball L Ta%
-4 1
e B T ——Y 000
TN lll‘ II "o e [ ] L} a? —
“HI\ AR N . ‘IHHUH“HI -—. il LTI LT III\ ||" . - %.’
s BT = e T T =y o] B
M R K LT P AR £
TR e ; AL R | :; g
D L A 2
g & T I 1 | 5,
; | E ] TR VAR ] | :
ol ) LR £
o = | pe B 2
Tars 4] | . o =
reLONI - o - 0
n.
Low-risk High-risk

—~ H-TMBs+high risk
== H-TMB-+low risk
= L-TMBshigh risk

L-TMB+ow risk

brd
@
1

Survival probability

o
o
&

p<0.001

0.00

012345678 91011121314151617181920

012345678 91011121314151617181920 Time(years)

Time(years)

Figure 7. Somatic mutation analysis and TMB correlated analysis. (A) The waterfall chart of the
top 25 most frequently mutated genes in the high-risk group. (B) The waterfall chart of the top 25
most frequently mutated genes in the low-risk group. (C) TMB in low-risk and high-risk groups.
(D) Kaplan-Meier curves of OS in high-TMB and low-TMB groups. (E) Kaplan-Meier curves of OS
in groups with various TMB and risk scores.

The tumor mutation burden (TMB) varied from the high-risk group to the low-risk
group, showing that TMB is significantly lower in the high-risk group (Figure 7C). Kaplan—
Meier analysis was performed to identify the correlation between TMB in UCEC and
survival probability (Figure 7D). The results indicated that patients with high TMB have a
better prognosis. The relationship among TMB, risk scores based on MRLs, and prognosis
was subsequently identified, showing that the prognosis of patients with high risk scores
and low TMB is the worst.

Drug sensitive prediction analysis was applied, based on DEGs, to explore potential
drugs for UCEC patients. The landscape of 11 candidate drugs are shown in Figure 8.
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The drugs in Figure 8A could be ideal candidate drugs (LFM-A13, WH-4-023, LAQ824,
AP-24534, KIN001-266, Vinorelbine, OSU-03012, and HG-6-64-1) for treating patients in the
high-risk group, while drugs in Figure 8B might be potential drugs (Lapatinib, XAV939
and PHA-665752) for patients in the low-risk group.
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Figure 8. Potential drugs for endometrial cancer patients. (A) Potential drugs for patients in the
high-risk group. (B) Potential drugs for patients in the low-risk group.

4. Discussion

Although the cornerstone of management for UCEC patients is surgery, the prognostic
difference between various types of endometrial cancers is substantial [35]. Hence, it
is of great significance to identify the prognosis of endometrial cancers with molecular
heterogeneity. The distribution of m7G exists widely in the human body [36]. It is known
that IncRNA acts as a therapeutic target and innovative biomarker for a variety of cancers,
because of its tissue-specific expression characteristics and genome-wide expression pat-
terns [37]. However, studies about the prognostic model based on m7G-related IncRNAs
for UCEC patients are still limited.

In our study, we identified 10 m7G-related IncRNA signatures to predict prognosis
for UCEC patients. UCEC patients were randomly distributed into a training group and
a validation group. The training group was used for constructing the prognosis model,
while the validation group was for testing the reliability of the model. Each patient
had an individual risk score, according to which, patients were assigned to high-risk or
low-risk groups. The prognostic outcome between high-risk and low-risk groups was
significantly different. The prediction ability was identified and visualized in ROC curves.
The predictive nomogram, taking account of both clinicopathological characteristics and
risk scores, was established, and PCA analysis was applied to intuitively illustrate the
distribution of patients with various risk scores.

Among the 10 MRLs, NBAT1, LEMD1-AS1, AC011466.1, AC004951.1, AL031667.3,
AC019080.5, and LINCO00662 had a higher expression in the high-risk group, whereas
AC010378.1, DNAJC3-DT, and AC139887.1 were overexpressed in the low-risk group. It
is known that NBAT1 plays an essential role in suppressing malignant cell proliferation
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and migration in multiple kinds of cancers, including renal carcinoma [38], hepatocellular
carcinoma [39], and glioma [13]. LEMD1-ASI is reported to act as a prognostic signature
for ovarian cancer [40], while AL031667.3 and AC019080.5 are proven to be capable of
predicting the outcome of lung adenocarcinoma [41]. LINC00662 is shown to promote
the development and progression of cancer and have relationships with a wide range of
tumors in various systems [42], such as the reproductive, respiratory, and nervous systems.
However, the functional mechanism of the other MRLs have rarely been studied and remain
unknown. These IncRNAs might influence the pathogenesis and development of UCEC
through becoming involved in N”-methylguanosine regulation. Further studies should
be performed to reveal the underlying mechanism of the relationship between MRLs and
UCEC.

The differentially expressed genes between the high- and low-risk groups were identi-
fied and utilized for functional enrichment and immune function analysis. Type I interferon
(IFN) is known for its ability to influence immune response and activate antiviral pro-
gram [43]. Type I IFNs can be secreted by intratumoral dendritic cells or malignant cells,
and then lead to anticancer effects, consisting of promoting terminal differentiation and
inhibiting cell cycle progression [44]. Type II IFNs play an essential role in regulating
both adaptive and innate immune responses and preventing the development and pro-
gression of tumors [45]. In our study, Type I IEN and Type II IFN were proven to be
significantly correlated with endometrial cancer, indicating that targeting type I and II
IFN into a special cellular compartment of endometrial cancer might manage to play an
optimal therapeutic role. The human leukocyte antigen has the ability of distinguishing
between non-self and self-peptides, which enables HLA to play a key role in activating a
host immune response against tumor cells and pathogens [46]. T cell co-stimulation can
contribute towards reprogramming various immune regulatory pathways and enhance
counter-tumor immunity [47]. Cytolytic activity plays a crucial role in mutation. Tumors
with higher cytolytic activity were associated with more mutations [48] and this conclusion
was consistent with our findings that the low-risk group showed higher cytolytic activity
as well as higher somatic mutations. In consideration of the close relationship between
cytolytic activity and anti-regulatory immune responses, the mutations correlated with
cytolytic activity could act as novel biomarkers for predicting prognostic outcomes and
exploring potential immune treatments. HLA, T cell co-stimulation and cytolytic activity
were all identified as being significantly correlated with endometrial cancer, in our study.
Further study about endometrial cancer should be applied to obtain a better understanding
of its underlying immune mechanism, which could help to promote the development of
potential tumor immunotherapy.

In recent years, the essential role that IncRNA plays in mediating tumor progression
and regulating therapy resistance in a variety of cancers has been elucidated more and
more clearly [49]. N”-methylguanosine is a novel kind of internal modification that is
widespread in human mRNA. Hence, there are numerous unexplored areas remaining
between m7G and IncRNAs. We tried to provide a potential target for tumor therapy and
future research of endometrial cancer, but, inevitably, there were some limitations in our
study. First, only the TCGA database was utilized for constructing and validating the
model. To improve the reliability of this MRLs model, more additional samples could
be included. Second, it is better to validate the expression of MRLs and DEGs through
other methods or experiments. Finally, it remains unknown how those IncRNAs interact
with N7-methylguanosine and how the underlying biological mechanism of m7G-related
IncRNAs involved in endometrial cancer works. Further studies should be performed to
clarify these scientific issues.

5. Conclusions

In conclusion, we constructed a model based on 10 MRLs for prognostic prediction.
Compared with previous clinicopathological methods, the advantage of this model lies in
its convenience for testing in patients. The findings in our study might help to provide novel
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insights into predicting the prognosis of endometrial cancer patients and assist in exploring
the underlying mechanism of m7G-related IncRNAs’ interaction with endometrial cancer.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/genes13081301/s1. Figure S1. The expression heatmap of MRLs
and DEGs; Figure S2. Independent prognostic factors for UCEC patients; Table S1. The differentially
expressed genes (DEGs) between low-risk and high-risk groups; Table S2. The enriched GO terms of
differentially expressed genes.
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