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Ağrı 04100, Türkiye
7 Botany Unit, Finnish Museum of Natural History, University of Helsinki, FI-00014 Helsinki, Finland
8 Institute of Advanced Studies Kőszeg (iASK), H-9731 Kőszeg, Hungary
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Abstract: Assessment of genetic diversity among different varieties helps to improve desired charac-
teristics of crops, including disease resistance, early maturity, high yield, and resistance to drought.
Molecular markers are one of the most effective tools for discovering genetic diversity that can
increase reproductive efficiency. Simple sequence repeats (SSRs), which are codominant markers, are
preferred for the determination of genetic diversity because they are highly polymorphic, multi-allelic,
highly reproducible, and have good genome coverage. This study aimed to determine the genetic
diversity of 40 common bean (Phaseolus vulgaris L.) landraces collected from the Ispir district located
in the Northeast Anatolia region of Türkiye and five commercial varieties using SSR markers. The
Twenty-seven SSR markers produced a total of 142 polymorphic bands, ranging from 2 (GATS91
and PVTT001) to 12 (BM153) alleles per marker, with an average number of 5.26 alleles. The gene
diversity per marker varied between 0.37 and 0.87 for BM053 and BM153 markers, respectively.
When heterozygous individuals are calculated proportional to the population, the heterozygosity
ranged from 0.00 to 1.00, with an average of 0.30. The expected heterozygosity of the SSR locus
ranged from 0.37 (BM053) to 0.88 (BM153), with an average of 0.69. Nei’s gene diversity scored an
average of 0.69. The polymorphic information content (PIC) values of SSR markers varied from 0.33
(BM053) to 0.86 (BM153), with an average of 0.63 per locus. The greatest genetic distance (0.83) was
between lines 49, 50, 53, and cultivar Karacaşehir-90, while the shortest (0.08) was between lines 6
and 26. In cluster analysis using Nei’s genetic distance, 45 common bean genotypes were divided
into three groups and very little relationship was found between the genotypes and the geographical
distances. In genetic structure analysis, three subgroups were formed, including local landraces and
commercial varieties. The result confirmed that the rich diversity existing in Ispir bean landraces
could be used as a genetic resource in designing breeding programs and may also contribute to
Türkiye bean breeding programs.

Keywords: bean breeding; genetic diversity; molecular markers; structure

1. Introduction

Bean (Phaseolus vulgaris L.) is one of the most important cultivated plants from the
legume family worldwide in terms of total yield and cultivated area [1]. Beans consumed
in different forms (green pods, immature or dried seeds) are a primary source of vegetable
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protein in the human diet [2]. For many people living in European countries, P. vulgaris is a
traditional dietary component [3,4].

Bean has two centers of genetic diversity that are distinguished and recognized ac-
cording to their phenotypic, biochemical, and genotypic differences. These are Middle
American and Andean gene centers. These centers of genetic diversity are separated from
each other by both geographical and partial reproductive barriers [1,5]. In addition, these
gene pools vary strongly with morphological and biochemical markers [6]. In terms of
genetic diversity, the Mesoamerican gene pool has more diversity than the Andean gene
pool [7]. Seeds of beans in the Middle American gene pool are characterized as either small
or medium-sized, while seeds of phenotypes in the Andean gene pool are usually described
as larger [8]. It is thought that the common bean was introduced to Europe in the 16th and
17th centuries, and it was introduced to Türkiye in the 17th century [9].

People living in different regions of Türkiye have been cultivating beans for centuries,
and it is an important food in their diet. Local bean genotypes are still used by people
living in many rural areas of the country. Beans have spread to many regions of the country
with both natural and artificial selections over time and have created populations known
with names specific to these regions [2]. Beans show marked genetic variation in terms
of many morphological characteristics such as seed, pod, and flower characteristics [10].
However, the increase in the use of commercial varieties in recent years and the insufficient
use of local varieties in breeding programs have led to a significant narrowing of the genetic
base [11,12]. Therefore, knowledge of genetic diversity, examination of population structure,
and understanding of the relationships of varieties within and between commercial classes
are essential steps for genetic improvement and preservation of the genetic diversity of
beans [13]. In addition to being the center of domestication for important Old-World cereal
and grain legume crops with its ecological and geographical characteristics, Türkiye has an
important place globally regarding plant genetic diversity. Beans, which have a critical role
in Türkiye in both the economy and human nutrition, have a high genetic diversity [14].

Genetic diversity studies are important for breeding programs since they provide valu-
able information for the effective conservation and application of existing germplasms [15].
Such studies facilitate understanding of genetic relationships between accessions, identi-
fication of germplasm excesses and admixtures, and identification of genitor pairs with
sufficient genetic distance [16]. Evaluation of morphological traits is a traditional method
to identify and define the relationship between local bean genotypes. Genotypes can be
divided into groups according to their morphological characteristics, e.g., fruit flesh, flower
structure, leaf shape, and seed [2]. However, morphological features may change under the
influence of ecological conditions. Therefore, the use of these markers is not fully effective
in determining diversity. In recent years, molecular markers have been used together with
morphological markers to evaluate genetic diversity in plants. Because molecular markers
are not affected by ecological factors, it is an important method for genetic mapping and
examining genetic diversity, population structure, and phylogenetic relationships in many
plants such as beans [17,18].

Detection of genetic diversity and higher genetic diversity provide extremely impor-
tant information in selecting superior genotypes for plant breeding [19]. Many molecular
methods, such as random amplified polymorphic DNA (RAPD) [20], inter-simple sequence
repeat (ISSR) [21], amplified fragment length polymorphism (AFLP) [22], simple-sequence
repeats (SSR) [4], inter-primer binding site (iPBS) retrotransposon [23], single-nucleotide
polymorphisms (SNPs) [12], and start codon targeted markers (SCoT) [24], are used for the
analysis of genetic diversity and population structure in beans. Among molecular markers,
SSRs have special relevance in analyzing genetic diversity [25]. SSRs, highly polymorphic
and codominant markers [26], have short repeating DNA sequences, usually 2–6 bp in
length, and are used in genome mapping, gene tagging, genetic diversity estimation, variety
identification, and marker-assisted selection [27]. SSRs are widely and successfully used to
determine genetic diversity in beans and to create genetic maps [4,13,28–30]. in reviewed re-
cent studies, the bean genotypes evaluated by SSR markers used only a narrow or different
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region source. In addition, a wide-ranging study has not yet been conducted to measure the
genetic diversity of bean germplasm in Türkiye. This research was carried out to reveal the
genetic diversity and population structure of the landraces obtained from the bean popula-
tion grown in the Ispir district by using the SSR molecular marker method to determine the
degree of inbreeding between the landraces and to reveal suitable lines for breeding studies.
Therefore, the germplasm information yielded from this study will be useful for bean
breeding studies. In addition, the findings are anticipated to contribute to the development
of strategies to protect endangered bean genetic resources in the Erzurum-Ispir region.

2. Materials and Methods
2.1. Plant Material

The common bean genotypes used in this study were collected from the Ispir Valley
in Northeast Anatolia, Türkiye. A total of 45 common bean genotypes together with
five nationally registered cultivars were used for SSR analysis. (Figure 1 and Table 1).
In addition, some seed characteristics (100-seed weight, seed color, and seed shape) of bean
accessions are presented in Table 1.

Figure 1. Geographic distribution of common bean landraces collected from different geographical
provinces of Ispir, Türkiye (Table 1; 1: Öztoprak, 2: Ispir Center Gaziler Neighborhood, 3: Yeşilyurt
Village, 4: Maden Village, 5: Elmalı District Ağıldere Village, 6: Ulubel Village, 7: Kirazlı Village,
8: Maden Köprübaşı District Akbağ Neighborhood, 9: Commercial varieties. Commercial varieties
are shown off the map as they are not local genotypes).
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Table 1. List of bean accession by information, coordinates, and some seed characteristics of the
gathering place (Figure 1).

CN 1 ACN Site-Location Latitude Longitude Altitude (m) SW (g) SC SS

1 Line-2

1-Öztoprak Village

40.518 41.052 1431 57.3 White Circular
2 Line-3 40.518 41.052 1431 57.3 White Oval
3 Line-4 40.518 41.052 1431 63.3 White Circular
4 Line-5 40.518 41.052 1431 60.0 White Oval
5 Line-6 40.518 41.052 1431 57.2 White Circular
6 Line-10 40.518 41.052 1431 58.2 White Circular
7 Line-12 40.518 41.052 1431 55.1 White Oval
8 Line-14 40.518 41.052 1431 59.1 White Circular
9 Line-15 40.518 41.052 1431 58.3 White Circular

10 Line-16 40.518 41.052 1431 62.0 White Circular
11 Line-17 40.518 41.052 1431 63.5 White Circular
12 Line-19 40.518 41.052 1431 62.1 White Circular
13 Line-20 40.518 41.052 1431 58.9 White Oval
14 Line-21 40.518 41.052 1431 61.9 White Circular
15 Line-26

2-Ispir Center Gaziler Neighborhood
40.485 41.002 1264 60.2 White Circular

16 Line-27 40.468 40.983 1168 56.2 White Circular
17 Line-28 40.468 40.983 1168 59.8 White Circular
18 Line-32

3-Yeşilyurt Village
40.518 41.069 1549 57.0 White Circular

19 Line-33 40.518 41.069 1549 57.7 White Circular
20 Line-35 40.518 41.069 1549 58.1 White Circular
21 Line-39

4-Maden Village

40.435 40.851 1226 54.5 White Oval
22 Line-40 40.435 40.851 1226 54.1 White Oval
23 Line-41 40.435 40.851 1226 55.9 White Oval
24 Line-42 40.435 40.851 1226 56.6 White Circular
25 Line-45

5-Elmalı District Ağıldere Village

40.401 40.834 1470 59.2 White Circular
26 Line-47 40.401 40.834 1470 59.2 White Circular
27 Line-49 40.401 40.834 1470 55.2 White Circular
28 Line-50 40.401 40.834 1470 58.4 White Circular
29 Line-53 40.401 40.834 1470 56.2 White Circular
30 Line-54 40.401 40.834 1470 61.4 White Circular
31 Line-57

6-Ulubel Village

40.418 40.868 1424 54.5 White Circular
32 Line-59 40.418 40.868 1424 56.5 White Circular
33 Line-60 40.418 40.868 1424 59.3 White Circular
34 Line-61 40.418 40.868 1424 57.9 White Circular
35 Line-62 40.418 40.868 1424 55.3 White Circular
36 Line-63 40.418 40.868 1424 57.4 White Circular
37 Line-64 7-Kirazlı Village 40.436 40.887 1220 58.2 White Oval
38 Line-65 40.436 40.887 1220 54.8 White Circular
39 Line-67 8-Maden Köprübaşı District Akbağ

Neighborhood
40.434 40.819 1286 59.7 White Circular

40 Line-69 40.434 40.819 1286 55.6 White Circular
41 Aras-98

9-

Eastern Anatolia Agricultural Research Institute Directorate/Erzurum 45.4 White Cylindrical
42 Elkoca-05 Ataturk University Faculty of Agriculture/Erzurum 49.6 White Cylindrical
43 Göynük-98 Gateway Agricultural Research Institute Directorate/Eskişehir 53.5 White Cylindrical
44 Karacaşehir-90 Gateway Agricultural Research Institute Directorate/Eskişehir 18.0 White Oval
45 Yakutiye-98 Eastern Anatolia Agricultural Research Institute Directorate/Erzurum 43.9 White Cylindrical

1 CN: Code number; ACN: Accession number; SW: 100-seed weight (g); SC: Seed color SS: Seed shape.

2.2. DNA Extraction

Sample plants were grown in a greenhouse of the Atatürk University Field Crops
Department. Bulk DNA of 45 individuals per accession was prepared from young leaves
of 2-week-old plants in the Laboratory of Molecular Biology and Genetics, Department of
Field Crops, Ataturk University, Türkiye. Genomic DNA extractions were performed as de-
scribed by Zeinalzadehtabrizi et al. [31]. DNA quality was affirmed through electrophoresis
in 0.8% agarose gel. The NanoDrop® ND-1000 UV/V spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA) was used to determine DNA concentrations. For SSR
analysis, the final DNA concentration was adjusted to 50 µg/mL. Diluted DNA samples
were stored at −20 ◦C to await SSR-polymerase chain reaction (PCR).

2.3. SSR Analysis

Twenty-seven SSR primer pairs were selected from previous studies based on their
reliable amplification patterns and high polymorphic information contents. There are three
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markers on the Pv01 chromosome, five markers on the Pv02 chromosome, five markers
on the Pv04 chromosome, two markers on the Pv06 chromosome, and two markers on
the Pv07 chromosome, three markers on the Pv08 chromosome, and five markers on the
Pv09 chromosome. There was only one marker on the Pv01 (BM053 marker) and Pv05
(BM175 marker) chromosomes. In addition, none of the markers used in our study were
markers located on the Pv10 and Pv11 chromosomes (Table 2). These primer pairs resulted
in specific and stable DNA profiles in this study. PCR amplifications were performed in
Labcycler. The PCR mixture consisted of 10× buffer, 2 mM MgCl2, 0.25 mM of each dNTP,
2 µM (20 pmol) primer, 0.5 U Taq polymerase, and 50 µg/ng DNA template in a 20 µL
reaction mixture. The amplification conditions were as follows: an initial denaturation step
of 2 min at 95 ◦C, 37 cycles of 30 s at 95 ◦C, 60 s at 47–58 ◦C and 60 s at 72 ◦C, and a final
extension step of 5 min at 72 ◦C. The amplification products were resolved on 3% agarose
gel in 1X SB buffer at 150 V/cm for 120 min, stained with ethidium bromide (0.2 ug/mL),
visualized under a UV-transilluminator, and photographed under ultraviolet light with
Nikon Coolpix5000. The sizes of the base pairs were determined based on a DNA ladder
between 50 and 1000 bp (Vivantis product no. NM2421) [32].

Table 2. SSR primers and sequence information used for genetic diversity analysis among bean
accessions.

Marker
Name

GenBank
Code

Size
(bp)

Linkage
Group Motifs Forward (5′–3′) Reverse (5′–3′) References

BMd1 X96999 165 Pv03 (AT)9 CAAATCGCAACACCTCACAA GTCGGAGCCATCATCTGTTT [33]
BMd15 K03288 166 Pv04 (ATGC)4 TTGCCATCGTTGCTTAATTG TTGGAGGAAGCCATGTATGC [33]
BMd18 X59469 216 Pv02 (GAAT)3 AAAGTTGGACGCACTGTGATT TCGTGAGGTAGGAGTTTGGTG [33]

BM053 AF324244 105 Pv01 (CT)21(CA)19
(TA)9

TGCTGACCAAGGAAATTCAG GGAGGAGGCTTAAGCACAAA [33]

BM114 AF483854 234 Pv09 (TA)8(GT)10 AGCCTGGTGAAATGCTCATAG CATGCTTGTTGCCTAACTCTCT [34]
BM137 AF483855 155 Pv06 (CT)33 CGCTTACTCACTGTACGCACG CCGTATCCGAGCACCGTAAC [34]
BM141 AF483859 218 Pv09 (GA)29 TGAGGAGGAACAATGGTGGC CTCACAAACCACAACGCACC [34]
BM143 AF483861 143 Pv02 (GA)35 GGGAAATGAACAGAGGAAA ATGTTGGGAACTTTTAGTGTG [34]
BM152 AF483868 127 Pv02 (GA)31 AAGAGGAGGTCGAAACCTTAAATCG CCGGGACTTGCCAGAAGAAC [34]

BM153 AF483869 226 Pv08 (CA)5(TG)(CA)3
CG(CA)10(TA)4

CCGTTAGGGAGTTGTTGAGG TGACAAACCATGAATATGCTAAGA [34]

BM154 AF483870 218 Pv09 (CT)17 TCTTGCGACCGAGCTTCTCC CTGAATCTGAGGAACGATGACCAG [34]
BM156 AF483872 267 Pv02 (CT)32 CTTGTTCCACCTCCCATCATAGC TGCTTGCATCTCAGCCAGAATC [34]
BM160 AF483876 211 Pv09 (GA)15(GAA)5 CGTGCTTGGCGAATAGCTTTG CGCGGTTCTGATCGTGACTTC [34]
BM161 AF483877 185 Pv04 (GA)7(GA)8 TGCAAAGGGTTGAAAGTTGAGAG TTCCAATGCACCAGACATTCC [34]
BM167 AF483881 165 Pv08 (GA)19 TCCTCAATACTACATCGTGTGACC CCTGGTGTAACCCTCGTAACAG [34]
BM175 AF483886 170 Pv05 (AT)5(GA)19 CAACAGTTAAAGGTCGTCAAATT CCACTCTTAGCATCAACTGGA [34]

PVAT001 U18791 239 Pv04 (AT)22 GGGAGGGTAGGGAAGCAGTG GCGAACCACGTTCATGAATGA [35]
PVAG004 X04660 201 Pv04 (AG)8 TTGATGACGTGGATGCATTGC AAAGGGCTAGGGAGAGTAAGTTGG [35]
PVBR14 DQ185881 196 Pv06 (AG)23 TGAGAAAGTTGATGGGATTG ACGCTGTTGAAGGCTCTAC [36]
BM183 AF483888 149 Pv07 (TC)14 CTCAAATCTATTCACTGGTCAGC TCTTACAGCCTTGCAGACATC [34]
BM188 AF483892 177 Pv09 (CA)18(TA)7 TCGCCTTGAAACTTCTTGTATC CCCTTCCAGTTAAATCAGTCG [34]
BM199 AF483896 304 Pv04 (GA)15 AAGGAGAATCAGAGAAGCCAAAAG TGAGGAATGGATGTAGCTCAGG [34]
BM200 AF483897 221 Pv01 (AG)10 TGGTGGTTGTTATGGGAGAAG ATTTGTCTCTGTCTATTCCTTCCAC [34]
BM210 AF483902 166 Pv07 (CT)15 ACCACTGCAATCCTCATCTTTG CCCTCATCCTCCATTCTTATCG [34]
BM211 AF483903 186 Pv08 (CT)16 ATACCCACATGCACAAGTTTGG CCACCATGTGCTCATGAAGAT [34]

GATS91 AF483842 229 Pv02 (GA)17 GAGTGCGGAAGCGAGTGAG TCCGTGTTCCTCTGTCTGTG [37]
PVTTTC01 X53603 163 Pv07 (GAAT)5 TGGACTCATAGAGGCGCAGAAAG AAGGATGGGTTCCGTGCTTG [35]

2.4. Molecular Data Analysis

Scoring was given as 1 (presence) and 0 (absence) for amplified fragments at each
SSR locus, and data matrices were constructed accordingly. In this study, Phylogenetic
analysis was performed with MEGA software (v. 7.0.14). In this study, Phylogenetic
analysis was performed with MEGA 6.0 software. The dendrogram was constructed
using the neighbor-joining method of the MEGA software with the maximum composite
likelihood substitution model, and bootstrapping with 1000 replicates [38]. Marker index
for SSR markers was calculated in order to characterize the capacity of each primer to
detect polymorphic loci among the genotypes. It is the sum total of the polymorphism
information content (PIC) values of SSR markers produced by a particular primer. The PIC
value was calculated using the formula PICi = 1 − ∑ P(i)2 [39], where pi is the frequency of
the allele. The PIC values provided an estimate of the discriminatory power of any locus
by considering the number of alleles per locus and the relative frequencies of these alleles
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in the population. The genetic diversity within the genotypes was calculated from the
following equations and the PopGen program [40] using Nei’s gene diversity index [41]
and the Shannon information index [42]. Structure 2.2 program was used to determine
the genetic structure of genotypes [43]. In many genetic diversity studies with beans,
genotypes are successfully divided into groups using the Structure program [44,45]. The
F-statistics (FST) value reflects the difference between subpopulations [46]. Using the
GenAlex program, basic coordinate analysis was carried out to better understand the
diversity among genotypes. On the two-dimensional diagram obtained by covering the
total variance of the first two coordinates, groups were determined and compared with
cluster analysis. Genetic variation within and between populations was examined with
the GenAlex program [47] using the analysis of molecular variance (AMOVA) method. Fst
measures the amount of genetic variance that can be explained by population structure
based on Wright’s F-statistics. An Fst value of 0 indicates no differentiation between the
subpopulations while a value of 1 indicates complete differentiation [48]. In addition,
genetic indices such as number of loci with private allele, number of different alleles (Na),
number of effective alleles (Ne), Shannon’s information index (I), unbiased expected (uHe)
and expected (He) for each proposed geographic region using the Genalex 6.5 software [45].

3. Results and Discussion
3.1. SSR Marker Information

Twenty-seven SSR markers produced a total of 142 bands, and the number of alleles per
locus ranged from 2 (PVTT001) to 12 (BM153), with an average of 5.26. The polymorphism
rate for each SSR marker was 100%. The allele frequency varied between 0.20 (BM153) and
0.78 (BM053). The lowest genetic diversity was 0.37 (BM053) and the highest 0.87 (BM153).
Gene diversity is an important parameter used in the estimation of genetic variability
between genotypes [41,49]. In a similar study, Dutta et al. [50] obtained a total of 150 alleles
using 30 SSR markers in 52 Indian common bean genotypes. They found that the number of
alleles ranged from 1 to 19 and the number of alleles per locus was 5. Investigating genetic
variation in 60 Brazilian bean genotypes, [25] obtained 196 polymorphic alleles from 85 SSR
markers and reported the average number of alleles per locus to range from 2 to 6, with an
average of 2.8. Zhang et al. [51] investigated genetic diversity in 229 Chinese native bean
genotypes using 30 SSR markers and the number of alleles varied between 2 and 19; they
obtained an average of 5.5 alleles per locus and 116 alleles in total. The average PIC value
obtained as a result of the analysis with the SSR marker, showing the discriminatory power
of a marker, was 0.63, ranging between 0.33 (BM053) and 0.86 (BM153) depending on the
markers. Having a high PIC value for a marker is one of the most important indicators that
the marker can be used successfully in the evaluation of genetic variation [50]. Markers
with high PIC values, such as BM141 (0.81), BMd1 (0.81), BM153 (0.86), and PVAT001
(0.81), are preferred in bean genetic diversity studies (Table 3). In other studies, with SSR
markers in beans, the PIC value was 0.23–0.87 [51], 0.03–0.70 [25], 0–0.79 [37], 0.38–0.94 [50],
0.40–0.82 [52], and 0.42–0.88 [4]; these values varied widely and are consistent with our
research results.

Table 3. Summary information obtained with twenty-seven 27 SSR primer pairs used in bean
accessions collected from İspir location.

Locus Allele
Number

Number of
Polymorphic

Bands

Polymorphism
Percentage (%)

Allele
Frequency

Gene
Diversity

Observed
Heterozygosity PIC *

BM053 3 3 100 0.78 0.37 0.00 0.33
BM114 6 6 100 0.36 0.74 0.93 0.69
BM137 6 6 100 0.29 0.78 0.00 0.75
BM141 7 7 100 0.22 0.83 0.98 0.81
BM143 11 11 100 0.29 0.78 0.96 0.75
BM152 6 6 100 0.33 0.75 1.00 0.71
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Table 3. Cont.

Locus Allele
Number

Number of
Polymorphic

Bands

Polymorphism
Percentage (%)

Allele
Frequency

Gene
Diversity

Observed
Heterozygosity PIC *

BM153 12 12 100 0.20 0.87 0.51 0.86
BM154 4 4 100 0.67 0.48 0.00 0.42
BM156 5 5 100 0.30 0.77 1.00 0.73
BM160 7 7 100 0.32 0.77 0.96 0.73
BM161 3 3 100 0.49 0.57 0.00 0.48
BM167 6 6 100 0.28 0.80 0.00 0.77
BM175 3 3 100 0.38 0.66 0.00 0.59
BM183 3 3 100 0.59 0.50 0.00 0.40
BM188 5 5 100 0.44 0.67 0.00 0.61
BM199 3 3 100 0.42 0.64 0.00 0.56
BM200 4 4 100 0.42 0.68 0.87 0.62
BM210 6 6 100 0.47 0.71 0.00 0.67
BM211 6 6 100 0.31 0.79 0.00 0.76
BMd1 7 7 100 0.22 0.83 1.00 0.81

BMd15 4 4 100 0.36 0.73 0.00 0.68
BMd18 3 3 100 0.58 0.56 0.00 0.49
GATS91 2 2 100 0.62 0.47 0.00 0.36

PVAG004 6 6 100 0.49 0.69 0.00 0.65
PVAT001 8 8 100 0.24 0.83 0.00 0.81
PVBR14 4 4 100 0.31 0.74 0.00 0.69
PVTT001 2 2 100 0.60 0.48 0.00 0.36

Mean 5.26 5.26 100 0.41 0.69 0.30 0.63

* PIC: polymorphism information content.

The number of effective alleles, which was 3.749 on average in the study, varied be-
tween 1.578 (BM053) and 7.864 (BM153) according to the markers (Table 4). The observed
heterozygosity was 0.30 on average. The relatively low heterozygosity seen may be due
to the autogamous structure of the bean [22,45,53]. However, compared with some other
research results, e.g., Kyrgyzstan (0.05) [45], India (0.019) [54], and Brazil (0.16) [25], our
value is higher. The expected heterozygosity, with a mean of 0.693, was lowest (0.370) at the
BM053 locus and highest (0.882) at the BM153 locus (Table 4). Similar to our findings, [44]
reported with 36 SSR markers in 104 wild bean genotypes that the mean expected heterozy-
gosity value was 0.66, and the highest expected heterozygosity value (0.96) was obtained
from the PVAT001 marker. Zargar et al. [46] determined the expected heterozygosity values
as 0.2192 in the first subpopulation, 0.2124 in the second subpopulation, and 0.2821 in the
third subpopulation, respectively, in their analysis using 15 RAPD and 23 SSR markers
in 51 Indian bean genotypes. In this study, Shannon information index (I), which ranged
from 0.663 (GATS91) to 2.202 (BM153), was found to be on average 1.343 (Table 4). The
high Shannon knowledge index in our study showed that the SSR markers employed
were useful in determining genetic diversity [55]. Gioia et al. [13] reported the Shannon
information index to range from 0.19 to 0.74 (mean 0.66) with 58 SSR markers in 192 bean
genotypes. In another study using 65 Vigna umbellata genotypes and 28 SSR markers, six
geographical groups were formed, and the Shannon information index varied between
0.845 and 1.019 [56]. On the other hand, Öztürk et al. [2] investigated genetic diversity in
75 bean genotypes using 27 iPBS markers and found the Shannon information index to
range from 0.570 to 0.636 (mean 0.599).
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Table 4. Effective number of alleles (Ne), expected heterozygosity (He) and Shannon information
index (I) based on 27 SSR loci bean accessions.

Marker Ne * He ** I *** Marker Ne * He ** I ***

BM053 1.578 0.370 0.665 BM188 3.017 0.676 1.223
BM114 3.824 0.746 1.472 BM199 2.770 0.646 1.054
BM137 4.633 0.793 1.614 BM200 3.129 0.688 1.243
BM141 5.921 0.84 1.832 BM210 3.403 0.714 1.450
BM143 4.581 0.790 1.752 BM211 4.856 0.803 1.668
BM152 4.074 0.763 1.515 BMd1 6.026 0.843 1.841
BM153 7.864 0.882 2.202 BMd15 3.708 0.738 1.349
BM154 1.930 0.487 0.846 BMd18 2.298 0.571 0.944
BM156 4.336 0.778 1.529 GATS91 1.887 0.475 0.663
BM160 4.281 0.775 1.619 PVAG004 3.199 0.695 1.420
BM161 2.351 0.581 0.9291 PVAT001 5.973 0.841 1.895
BM167 4.930 0.806 1.6542 PVBR14 3.785 0.744 1.356
BM175 2.939 0.667 1.088 PVTT001 1.916 0.483 0.671
BM183 2.004 0.506 0.764 Mean 3.749 0.693 1.343

* Ne: effective number of alleles, ** He: expected heterozygosity and *** I: Shannon’s information index, respectively.

3.2. Cluster Analysis

Comparative analysis of molecular sequence data enables the determination of prox-
imity or distance between genotypes and displays clusters of genotypes by constructing
a phylogenetic tree. For this purpose, cluster analysis was performed among beans by
the neighbor-joining method of the maximum composite likelihood substitution model,
identifying three clustered groups. Considering the higher cophenetic correlation coeffi-
cient, the dendrogram was assumed to represent the similarity matrix very well. Cluster III
consists of two subgroups; Aras-98, Elkoca-05, Göynük-98, Yakutiye-98 and Karacaşehir-90
cultivars were included in the first subcluster, along with five Ispir bean lines, and 63, 64, 65,
69 accessions were included in the second subcluster. In addition, cluster I consisted of two
subgroups; there were twenty-three participants in the first subgroup and four participants
in the second subgroup. In the cluster II, there were eight participants. (Figure 2 and
Table 5). This clustering of genotypes showed that there was no significant relationship
between geographic origin and genetic similarity. This result suggests that there may
be some level of gene flow between genotypes or a recent introduction from a common
source. In a similar study aiming to determine genetic diversity using 30 SSR markers
in 50 bean genotypes, including 38 local bean genotypes obtained from the Northeast
Anatolia region and 12 registered varieties, the genotypes clustered into two groups [57].
However, Öztürk et al. [2], who investigated genetic diversity by using 27 iPBS markers in
71 bean genotypes and 4 commercial varieties collected from Erzincan, determined that
the genotypes clustered into two groups and both groups were further divided into two
subgroups. In a study by [58], they conducted a genetic diversity study in beans using
26 iPBS primers. At the end of the research, it was determined that the bean inclusions
were divided into three main clusters. However, while three subgroups were formed in our
study, five subgroups were identified in the findings of the researchers.

Knowing the genetic distances between genotypes provides an enormous advantage
in selecting suitable parents for bean breeding programs. In this study, the greatest genetic
distance (0.83) was determined between the Karacaşehir-90 variety and Ispir bean lines 49,
50, and 53. The shortest genetic distance was observed between lines 6 and 26 and lines 27
and 28 (0.08 and 0.09, respectively) (Table S1).
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Figure 2. Dendrogram showing the genetic relationship between 45 bean genotypes generated by the
neighbor-joining method of the MEGA software with the maximum composite likelihood substitution
model using 27 SSR markers.

Table 5. Groups and subgroups of P. vulgaris accessions determined as a result of Neighbor Joining
(NJ) cluster analysis.

Group Subgroup Genotype Total Genotype Number

I
1 2, 3, 4, 5, 6, 10, 12, 14, 15, 16, 17, 19, 20,

21, 26, 27, 28, 32, 33, 35, 39, 40, 41 23

2 42, 45, 47, 49 4
II - 50, 53, 54, 57, 59, 60, 61, 62 8

III
1 63, 64, 65, 67, 69 5

2 Aras-98, Elkoca-05, Göynük-98,
Yakutiye-98, Karacaşehir-90 5

3.3. Determination of Genetic Diversity Based on Principal Coordinate Analysis

Principal coordinate analysis (PCoA) is a multivariate dataset that provides the ability
to find and archive key patterns in multiple loci and multiple samples. With this technique,
the distances between the groups, which are based on the two-dimensional diagram formed
by the similarity or distance matrix between the individuals, reflect actual distances [59].
PCoA is used to provide a spatial representation of the relative genetic distances between
populations [60].
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In our study, the baseline coordinate analysis was performed using the neutral genetic
distance of Nei. The percentage of genetic diversity explained by each of the three main
coordinates of the basic coordinate analysis was 20.57, 16.96, and 13.33; together, these three
components explained 50.85% of the diversity. Although the groups were not completely
separated in the two-dimensional diagram obtained over the first two components, the dis-
tribution of genotypes on the diagram indicated the presence of genetic diversity (Figure 3).
Genotypes taken from the Gaziler District of Ispir center are located on the upper left, the
Maden village and Elmalı Town Ağıldere village genotypes on the lower left, and commer-
cial varieties and Kirazlı village and Maden Köprübaşı Town Akbağ District genotypes on
the lower right of Axis 1. The remaining genotypes are distributed over several sections of
the diagram. For example, genotypes collected from Öztoprak village are clustered on the
upper left and upper right sides of Axis 1, while Ulubel Village genotypes are distributed
over all parts of the diagram. Yeşilyurt Village genotypes were located on the lower left
sections of Axis 1 (Figure 3). This distribution of genotypes on the diagram shows that
genetic diversity is weak both between commercial varieties and between Maden Village
genotypes and Elmalı Town Ağıldere Village genotypes. Klaedtke et al. [60] reported that
the baseline coordinate analysis they applied on 15 bean genotypes using the SSR marker
grouped the genotypes in a meaningful way and the first two components explained 77.7%
of the total variation. In their study using SSR markers in 349 wild and cultivated bean
genotypes from the Andean and Mesoamerican gene pools, Kwak and Gepts [53] found
that the results of basic coordinate analysis and genetic structure analysis were similar,
and the first two components explained 66% of the total variation.

Figure 3. Principal coordinate analysis using SSR primer and separation on a two-dimensional
diagram. The numbers in this figure represent the code numbers of the bean accessions presented in
Table 1.

3.4. Molecular Variance Analysis

Analysis of molecular variance (AMOVA) revealed that within-population variance
(66%) was higher than between-population variance (34%) (Table 6). This result indicates
that there is gene flow between populations [45]. Blair et al. [44] in their study with 36 SSR
markers in 104 wild bean genotypes determined that the variance within populations was
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98%. Another study using 11 SSR markers in 28 bean genotypes grown in Kyrgyzstan [45]
reported that the variance between populations was higher, contrary to our research
findings. Rebaa et al. [55] who used 21 genotypes and 8 SSR markers in broad beans noted
an intra-population variance of 83% and an inter-population variance of 17%, and their
molecular variance analysis using SSR data revealed a significant intra-population genetic
variation. Similarly, research results have been reported in which the within-population
variance is higher than the between-population variance in different plant species such as
apple [61] and lettuce [62].

Table 6. Analysis of molecular variance (AMOVA) among and within the bean genotypes, using
SSR marker.

Source Degree of
Freedom (DF)

Sum of
Squares (SS)

Variance
Component

% of Total
Variance p-Value

Among Population 8 410.408 7.876 34% 0.339
Within Population 36 537.774 15.365 66% 0.001

Total 44 948.182 23.241 100%

The summary statistics for nine populations are listed in Table 7. We determined that
the He value ranged from 0.038 (Ic) to 0.189 (Ov) (Mean 0.115), while the uHe value ranged
from 0.051 (Ic) to 0.196 (Ov) (Mean 0.131). The I value among the nine populations ranged
from 0.055 (Ic) to 0.290 (Ov) (Mean 0.173). The percentage of polymorphic loci (PPL) for
bean was lowest at 9.15% (Ic) and 15.49% (Mka). Among the nine populations of bean, the
PPL value ranged from 9.15% (Ic) to 64.08% (Ov) (Mean 33.41%). The Nei genetic (h) values
of the nine bean populations are presented in Table 8. Among the nine populations of bean
from Ispir, the smallest h values observed were in Ev/Mv (0.087), while the greatest were
observed in Mka/Ic (0.341).

Table 7. Estimates of genetic diversity and distribution of gene diversity between the populations of
P. vulgaris L. assessed with twenty-seven SSR primers.

Population N Na Ne I He uHe PPL (%)

Ov 14 1.289 1.311 0.290 0.189 0.196 64.08%
Ic 3 0.387 1.065 0.055 0.038 0.051 9.15%
Yv 3 0.697 1.197 0.168 0.114 0.137 29.58%
Mv 4 0.831 1.212 0.193 0.127 0.145 37.32%
Eav 6 0.880 1.242 0.215 0.143 0.156 40.85%
Uv 6 0.845 1.228 0.202 0.134 0.147 38.73%
Kv 2 0.500 1.120 0.102 0.070 0.093 16.90%

Mka 2 0.472 1.110 0.094 0.064 0.086 15.49%
Com 5 1.014 1.259 0.238 0.156 0.173 48.59%
Mean 0.768 1.194 0.173 0.115 0.131 33.41%

N: number of sample size, Na: number of distinct alleles, Ne: effective number of alleles, I: Shannon’s information
index, He: expected heterozygosity, uHe: unbiased expected heterozygosity, PPL: percentage of polymorphic
loci; Ov: Oztoprak Village; Ic: Ispir Center, Yv: Yesilyurt Village, Mv: Maden Village, Eav: Elmali Town Agildere
Village, Uv: Ulubel Village, Kv: Kirazli Village; Mka: Maden Koprubasi Town Akbag District, Com: Commercial.

Table 8. Pairwise population matrix of Nei genetic (h) distance for nine groups of beans (P. vulgaris L.)
genotypes.

Ov Ic Yv Mv Ev Uv Kv Mka Com

Ov 0.000
Ic 0.170 0.000
Yv 0.124 0.134 0.000
Mv 0.129 0.153 0.089 0.000
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Table 8. Cont.

Ov Ic Yv Mv Ev Uv Kv Mka Com

Ev 0.118 0.196 0.155 0.087 0.000
Uv 0.098 0.245 0.201 0.177 0.111 0.000
Kv 0.195 0.309 0.278 0.234 0.213 0.113 0.000

Mka 0.195 0.341 0.258 0.225 0.237 0.172 0.111 0.000
Com 0.125 0.283 0.190 0.166 0.181 0.154 0.178 0.128 0.000

Ov: Oztoprak Village; Ic: Ispir Center, Yv: Yesilyurt Village, Mv: Maden Village, Eav: Elmali Town Agildere
Village, Uv: Ulubel Village, Kv: Kirazli Village; Mka: Maden Koprubasi Town Akbag District, Com: Commercial.

3.5. Genetic Structure Analysis

In many genetic diversity studies with beans, genotypes are successfully separated
into groups using the structure program [44,45]. In this study, the population structure
of accession in 45 bean genotypes was classified according to the SSR data, and three
subpopulations were obtained with little mixing of genotypes regardless of geographical
distribution (Figure 4). Geographical distribution is an important factor in terms of the
genetic diversity of species [2,63]. In this study, the proximity of the places where the
samples were collected can be counted as the reason for the mixing of these three popula-
tions [46]. The low number of populations in our study (K = 3) is due to the high rate of
gene flow between the regions where the samples were taken [2,23]. According to these
data, there are 17 local genotypes in the first subpopulation, 9 local genotypes together
with the 5 commercial varieties in the second subpopulation, and 14 local genotypes in the
third subpopulation (Table 9). Bean genotypes and geographic distributions of populations
are presented in Figure 5. The FST (F-statistic) value was determined as 0.34, 0.26, and 0.41
in the first, second, and third subpopulations, respectively, and the mean FST (F-statistic)
value of 0.34 confirmed the segregation of all subpopulations and the diversity into SSR
alleles [44] (Table 10). Evaluating genetic diversity in 149 common bean genotypes using
24 SSR markers, Sharma et al. [54] determined that the genotypes were divided in three
subpopulations. Zargar et al. [46] who performed genetic structure analysis and UPGMA
clustering analysis on 51 Indian bean genotypes using 15 RAPD and 23 SSR markers stated
that three groups were formed in both analyses. They emphasized that the FST values
obtained as a result of the genetic structure analysis (0.4047, 0.3799, and 0.2059 for the 1st,
2nd, and 3rd subgroups, respectively) are a strong indicator of the effective separation of
the subpopulations and the diversity in the SSR alleles. The results of the study reported
by Khaidizar et al. [57] showed higher genetic polymorphism when they used SSR to inves-
tigate the level of polymorphism in Turkish common bean genotypes, which includes most
of the genotypes used in Ceylan et al. [19] study. Consistent with several previous studies,
cluster analysis revealed that it resulted in two major clusters, possibly representing two
major gene pools, namely Andean and Mesoamerican. It was stated that these small-seeded
cultivars, which clustered separately from the others in both plastid and nuclear marker
analysis, may belong to the Mesoamerican gene pool.

Figure 4. Graphic representation of population structure according to SSR data [For each bean
genotype, subgroup 1 (red), subgroup 2 (green), and subgroup 3 (blue) are indicated by a vertical line
representing the genotypes (K = 3)].
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Table 9. Membership coefficient of bean genotypes in three subpopulations.

No. Genotype
Subpopulation

No. Genotype
Subpopulation

I II III I II III

1 Line-2 0.026 0.551 * 0.422 24 Line-42 0.987 * 0.007 0.006
2 Line-3 0.009 0.216 0.775 * 25 Line-45 0.970 * 0.016 0.015
3 Line-4 0.008 0.349 0.643 * 26 Line-47 0.991 * 0.005 0.004
4 Line-5 0.01 0.027 0.963 * 27 Line-49 0.987 * 0.006 0.007
5 Line-6 0.085 0.005 0.910 * 28 Line-50 0.951 * 0.029 0.02
6 Line-10 0.007 0.017 0.975 * 29 Line-53 0.947 * 0.034 0.019
7 Line-12 0.006 0.006 0.988 * 30 Line-54 0.808 * 0.124 0.068
8 Line-14 0.005 0.004 0.99 * 31 Line-57 0.826 * 0.161 0.013
9 Line-15 0.04 0.01 0.95 * 32 Line-59 0.599 * 0.323 0.078

10 Line-16 0.102 0.018 0.88 * 33 Line-60 0.466 0.488 * 0.046
11 Line-17 0.014 0.064 0.922 * 34 Line-61 0.102 0.644 * 0.254
12 Line-19 0.167 0.025 0.808 * 35 Line-62 0.035 0.820 * 0.145
13 Line-20 0.208 0.007 0.785 * 36 Line-63 0.006 0.970 * 0.024
14 Line-21 0.218 0.009 0.773 * 37 Line-64 0.057 0.931 * 0.013
15 Line-26 0.387 0.006 0.607 * 38 Line-65 0.006 0.989 * 0.005
16 Line-27 0.880 * 0.005 0.115 39 Line-67 0.01 0.983 * 0.007
17 Line-28 0.885 * 0.006 0.108 40 Line-69 0.02 0.974 * 0.006
18 Line-32 0.853 * 0.01 0.137 41 Aras-98 0.005 0.990 * 0.004
19 Line-33 0.746 * 0.016 0.238 42 Elkoca-05 0.01 0.984 * 0.006
20 Line-35 0.977 * 0.01 0.013 43 Göynük-98 0.012 0.982 * 0.007
21 Line-39 0.971 * 0.018 0.012 44 Karacaşehir-90 0.069 0.879 * 0.053
22 Line-40 0.969 * 0.015 0.016 45 Yakutiye-98 0.028 0.957 * 0.015
23 Line-41 0.980 * 0.007 0.014

* in the table used to highlight which subgroup the participants belong to.

Figure 5. Geographical distribution of 45 bean genotypes identified by the STRUCTURE program
using 27 SSR markers by region (1: Öztoprak, 2: Ispir Center Gaziler Neighborhood, 3: Yeşilyurt
Village, 4: Maden Village, 5: Elmalı District Ağıldere Village, 6: Ulubel Village, 7: Kirazlı Village,
8: Maden Köprübaşı District Akbağ Neighborhood, 9: Commercial varieties. Commercial varieties
are shown off the map as they are not local genotypes).

Table 10. Expected heterozygosity and FST values in bean subpopulations.

Subpopulation (K) Expected Heterozygosity FST

1 0.243 0.34
2 0.269 0.26
3 0.228 0.41

Mean 0.247 0.34
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4. Conclusions

Assessment of genetic variability of the germplasm is the first step, termed pre-
breeding, for the improvement and development of superior cultivars. In the present study,
genotypes collected from the Erzurum-Ispir region, located in the Northeastern Anatolia
region of Türkiye, were evaluated at the molecular level. Our results showed a high level
of genetic diversity within the population. It is important to collect local varieties and
determine their genetic diversity in order to protect bean genetic resources and use them
in breeding studies. An acquaintance of the genetic diversity and population structure of
these genotypes may assist in the efficient management of these natural germplasms of
beans. The results of this research have shown that the SSR marker system can be used
successfully in determining genetic diversity among Ispir bean genotypes. These results
are anticipated to guide the selection of appropriate markers in genetic diversity studies
in beans.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes13081410/s1, Table S1: Nei’s genetic distance based on SSR
marker for 45 common bean genotypes.
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2. Öztürk, H.İ.; Dursun, A.; Hosseinpour, A.; Haliloğlu, K. Genetic diversity of pinto and fresh bean (Phaseolus vulgaris L.) germplasm
collected from Erzincan province of Turkey by inter-primer binding site (iPBS) retrotransposon markers. Turk. J. Agric. For. 2020,
44, 417–427. [CrossRef]

3. Rodríguez, L.; Mendez, D.; Montecino, H.; Carrasco, B.; Arevalo, B.; Palomo, I.; Fuentes, E. Role of Phaseolus vulgaris L. in the
prevention of cardiovascular diseases—cardioprotective potential of bioactive compounds. Plants 2022, 11, 186. [CrossRef]
[PubMed]
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