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Abstract: The MYB (v-myb avian myeloblastosis viral oncogene homolog) transcription factor family
plays an important role in plant growth, development, and response to biotic and abiotic stresses.
However, the gene functions of MYB transcription factors in sweet potato (Ipomoea batatas (L.) Lam)
have not been elucidated. In this study, an MYB transcription factor gene, IbMYB308, was identified
and isolated from sweet potato. Multiple sequence alignment showed that IbMYB308 is a typical
R2R3-MYB transcription factor. Further, quantitative real-time PCR (qRT-PCR) analysis revealed
that IbMYB308 was expressed in root, stem, and, especially, leaf tissues. Moreover, it showed that
IbMYB308 had a tissue-specific profile. The experiment also showed that the expression of IbMYB308
was induced by different abiotic stresses (20% PEG-6000, 200 mM NaCl, and 20% H2O2). After a
200 mM NaCl treatment, the expression of several stress-related genes (SOD, POD, APX, and P5CS)
was upregulation in transgenic plants, and the CAT activity, POD activity, proline content, and protein
content in transgenic tobacco had increased, while MDA content had decreased. In conclusion, this
study demonstrated that IbMYB308 could improve salt stress tolerance in transgenic tobacco. These
findings lay a foundation for future studies on the R2R3-MYB gene family of sweet potato and
suggest that IbMYB308 could potentially be used as an important positive factor in transgenic plant
breeding to improve salt stress tolerance in sweet potato plants.

Keywords: IbMYB308; Ipomoea batatas; salt stress; overexpression; tobacco

1. Introduction

Sweet potato (Ipomoea batatas (L.) Lam) is the seventh most important crop in the world
and the fourth most important in China [1]. It is a primary source of starch, calories, proteins,
anthocyanin, and minerals [1]. Soil salinity and drought are the most important abiotic
stresses that limit crop growth, yield, and quality [2]. In China, sweet potato is mainly
planted in barren and arid areas. Therefore, it is critical to improve sweet potato resistance
to salt and drought. Experiments have shown that the overexpression of functional genes
in sweet potato can significantly improve its tolerance to abiotic stresses [2–6].

Transcription factors (TFs) are key regulators that have crucial functions in response
to various stresses [7]. MYB transcription factors are one of the largest protein families
in plants and are characterized by highly conserved N-terminal MYB DNA-binding do-
main repeats that form three α-helices, the second and third of which are involved in the
formation of a helix–turn–helix (HTH) fold [8,9]. A highly conserved MYB DNA-binding
domain repeat encodes proteins with 51–53 amino acids (AAs) [9]. The MYB TFs are further
divided into four groups—1R-MYB/MYB-related, R2R3-MYB, 3R-MYB (R1R2R3-MYB),
and 4R-MYB—based on the position and number of MYB domain repeats. The R2R3-MYB
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subfamily is the most abundant among the four groups and has been an important target
for improving tolerance to abiotic stresses in plants [10,11]. Members of this subfamily
are divided into 23 subgroups based on their DNA binding and their retention of amino
acid motifs in the C-terminal domain [11]. MYB genes in various plant species have been
widely reported to improve tolerance to biotic and abiotic stresses, such as Arabidopsis
thaliana [12–14], Oryza sativa [15–17], Zea mays [18–20], Triticum aestivum [21–23], Brassica
napus [24,25], Malus × domestica [26,27], Fragaria × ananassa [28], etc. An R2R3-MYB gene,
AtMYB20, enhances salt stress tolerance in Arabidopsis thaliana by downregulating the
expression of PP2Cs [29]. AtMYB2 enhances tolerance to drought mainly by activating
abscisic acid (ABA)-mediated signaling pathways [30]. The overexpression of AtMYB96
in Arabidopsis, through coordinated auxin and abscisic acid signal pathways, can increase
drought tolerance. The overexpression of GmMYB84 enhances soybean drought tolerance
by increasing antioxidant enzyme activities and root elongation [31]. Salt stress is among
the major environmental stresses that lead to plant growth restriction and yield reduc-
tion. Salt stress can lead to ionic stress, osmotic stress, and secondary stresses, especially
oxidative stress [32]. OsMYB91, an R2R3-MYB gene of Oryza sativa, was confirmed to
be involved in the tolerance to salt stress and plant growth by enhancing the capacity to
scavenge active oxygen (ROS) [33]. An R2R3-MYB gene, TaSIM, enhanced salt tolerance
when overexpressed in Arabidopsis [21]. In strawberry, the overexpression of FvMYB24
upregulated the expression of several stress-related genes in response to salt stress, thus
enhancing the tolerance of transgenic Arabidopsis [28]. Many R2R3-MYB genes have been
reported to be involved in the salt stress response of plants, but the characterization of sweet
potato MYB genes that participate in environmental stress responses has been inadequate
compared with other plant species.

In this study, we identified and isolated an R2-R3 MYB family gene, IbMYB308, from
sweet potato, and the expression pattern and function of the gene were analyzed. More-
over, we developed IbMYB308 overexpression lines, and the contribution of IbMYB308
in response to salt stress in transgenic tobacco was analyzed. This study will potentially
contribute to the improvement of sweet potato tolerance to abiotic stresses and of the
molecular breeding of crops.

2. Materials and Methods
2.1. Plant Materials

The drought-tolerant sweet potato material cv. Eshu11 was used to clone IbMYB308
and to characterize its function. Wild-type Nicotiana tabacum cv. Wisconsin 38 (W38) was
used for plant transformation. Tobacco was grown in a greenhouse (22 ◦C, 16/8 h day/night
cycle). The sweet potato material cv. Eshu11 was also cultivated in a greenhouse (28 ◦C,
16/8 h light/dark period).

2.2. Cloning and Bioinformatics Analysis of IbMYB308 and Its Promoter

The total RNA of Eshu11 was extracted using TRIzol reagent (Tiangen, Wuhan, China)
by following the manufacturer’s instructions. The genomic DNA of Eshu11 was extracted
by the CTAB method, and the genomic DNA was stored at −20 ◦C. The quality and
quantity of the RNA and DNA were visualized by 1% agarose gel electrophoresis, then a
Nano-Drop ND-1000 spectrophotometer (Thermo Fisher Scientific, Wilmington, MA, USA)
was used for quantification at optical densities of 260 and 280 nm, respectively. The first-
strand cDNA synthesis was performed using TransScript® All-in-One First-Strand cDNA
Synthesis SuperMix for qPCR (One-Step gDNA Removal) (TransGen, Wuhan, China). Each
20 µL contained 4 µL 5 × TransScript® Uni All-in-One SuperMix for qPCR, 1 µL gDNA
Remover, 1 µg total RNA, and variable amounts of RNase-free water. Then, the process
of PCR was as follows: 42 ◦C for 15 min, then 80 ◦C for 5 s. The full cDNA sequence of
IbMYB308 was obtained based on previous transcriptome sequencing. Specific primers
IbMYB308-F/R (Table S1) were designed based on IbMYB308 transcriptome sequencing.
The PCR reaction system contained 5 µL 10 × PAGE buffer (Mg2+), 8 µL dNTPs Mix,
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1 µL primer IbMYB308-F/R, 0.5 µL LA Taq polymerase, 2 µL cDNA, and 32.5 µL ddH2O.
The PCR procedure comprised an initial preheating step at 94 ◦C for 5 min, followed by
35 cycles of denaturation at 94 ◦C for 30 s, annealing at 55 ◦C for 30 s, and extension at
72 ◦C for 90 s, with a final extension at 72 ◦C for 10 min. The PCR products were separated
via electrophoresis on a 1% agarose gel, and the target DNA fragments were recovered
using an EasyPure® Quick Gel Extraction Kit (TransGen, Wuhan, China) according to the
manufacturer’s instructions. The resulting fragments were cloned into the pMD19-T vector
(TakaRa, Wuhan, China) and sequenced by TIANYI Company (TIANYI, Wuhan, China).

The IbMYB308 promoter sequence was cloned using the genomic walking method.
IbMYB308 promoter-specific primers IbMYB308pro-F/R (Table S1) were designed according
to the upstream 1431 bp sequence of IbMYB308. The PCR reaction system contained 5 µL
10 × PAGE buffer (Mg2+), 8 µL dNTPs, 1 µL primer IbMYB308pro-F/R, 0.5 µL EasyTaq®

polymerase, 2 µL genomic DNA, and 32.5 µL ddH2O. The PCR products were separated via
electrophoresis, and the target DNA fragments were recovered using an EasyPure® Quick
Gel Extraction Kit (TransGen, Wuhan, China) according to the manufacturer’s instructions.
All the resulting fragments were cloned into the pMD19-T vector (TaKaRa, Wuhan, China)
and then transformed into competent Escherichia coli strain DH5α cells and sequenced by
TIANYI Company (TIANYI, Wuhan, China).

IbMYB308-F/R primers were used to amplify the genomic DNA with the following
procedure: initial preheating step at 94 ◦C for 5 min, followed by 35 cycles of denaturation
at 94 ◦C for 30 s, annealing at 55 ◦C for 60 s, and extension at 72 ◦C for 90 s, with a
final extension at 72 ◦C for 10 min. The PCR reaction system contained 5 µL 10 × PAGE
buffer (Mg2+), 8 µL dNTPs, 1 µL primer IbMYB308-F/R, 0.5 µL EasyTaq® polymerase, 2 µL
genomic DNA, and 32.5 µL ddH2O. The PCR products were separated via electrophoresis
on a 1% agarose gel, and the target DNA fragments were recovered using an EasyPure®

Quick Gel Extraction Kit (TransGen, Wuhan, China) according to the manufacturer’s
instructions. The resulting fragments were cloned into the pMD19-T vector (TakaRa,
Wuhan, China) and sequenced by TIANYI Company (TIANYI, Wuhan, China).

2.3. Bioinformatics Analysis

The IbMYB308 sequence was determined using the BLAST-Protein program in the Na-
tional Center for Biotechnology Information (NCBI) database (https://blast.ncbi.nlm.nih.
gov/Blast.cgi?PROGRAM=tblastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome ac-
cessed on 7 July 2022). DNAMAN software (version 8.0, Lynnon Biosoft, San Ramon, CA,
USA) was used to compare the homologous sequence of IbMYB308 in sweet potato and
other species. Multiple sequence alignments were performed using MEGA X, and the phy-
logenetic tree was constructed using the neighbor-joining method with the 1000 bootstrap
method. Cis-acting elements of the IbMYB308 promoter sequence were analyzed using
PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/ accessed on
7 July 2022). The conserved domain was identified using SMART (http://smart.embl-
heidelberg.de/smart/set_mode.cgi?NORMAL=1 accessed on 7 July 2022).

2.4. Expression Analysis of IbMYB308 in Sweet Potato and Transgenic Tobacco

The expression patterns of IbMYB308 were analyzed in different tissues of sweet
potato. The specific primers IbMYB308-F1/R1 (Table S1) used for qRT-PCR were designed
by Primer Premier 5. The expression profiles of IbMYB308 were determined under different
abiotic treatments. Four-week in vitro-grown Eshu11 plants were treated in half- Hoagland
solution with 200 mM NaCl, 20% polyethylene glycol-6000 (PEG-6000), and 20% H2O2,
respectively. There were three biological replicates for each experiment and three technical
replicates for each sample. Sweet potato leaves were collected at 0, 1, 3, 6, 12, and 24 h
after treatment and quickly frozen in liquid nitrogen. The timing of the stress treatments
was determined according to Zhang’s experimental methods [5]. The first-strand cDNA
synthesis was performed using TransScript® All-in-One First-Strand cDNA Synthesis Su-
perMix for qPCR (One-Step gDNA Removal) (TransGen, Wuhan, China). According to
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the manufacturer’s instructions, TransStart® Green qPCR SuperMix (50 × 20 µL reac-
tions) includes 2 × TransStart® Green qPCR SuperMix, Passive Reference Dye (50×), and
nuclease-free water. Each 10 µL mixture contained 5 µL TransStart® Green qPCR SuperMix
(TransGen, Wuhan, China), 0.4 µL of each specific primer, 3.2 µL nuclease-free water, and
1 µL cDNA. The qPCR program comprised preheating at 94 ◦C for 2 min, followed by
45 cycles of denaturation at 94 ◦C for 5 s, and annealing at 58 ◦C for 30 s. The expression
levels of IbMYB308 were detected using qRT-PCR analysis conducted on the 7500 Real-Time
PCR system (Applied Biosystems, Foster City, CA, USA). IbActin and NtActin genes were
employed as the internal reference genes of sweet potato and tobacco, respectively. The
specific primers are shown in Table S1.

2.5. Construction of Overexpression Vectors

IbMYB308-F2/R2 primers (Table S1) were used to amplify the open reading frame
(ORF) of IbMYB308, and the sequence was inserted into the pCAMBIA1300-GFP vector,
with the CaMV 35S promoter, between the KpnI and BamHI restriction sites to construct the
overexpression plasmid of IbMYB308 (Figure S1). The resulting pCAMBIA1300-IbMYB308-
GFP overexpression plasmid was confirmed by sequencing and then transformed into
tobacco (strain GV3101 competent cells) to further explore the function of IbMYB308.

2.6. Generation of Transgenic Tobacco

Transgenic tobacco overexpression lines (OE lines) were obtained by transferring
the pCAMBIA1300-IbMYB308-GFP with CaMV 35S promoter recombinant plasmid into
Agrobacterium tumefaciens EHA105 using the freeze–thaw method. The tobacco was trans-
formed by the leaf disc method [5]. Infected tobacco leaf discs were inoculated on MS
medium containing 15 mg/L Hyg, 400 mg/L cephalexin, 1.0 mg/L 6-BA, and 0.1 mg/L
NAA in the dark at 27 ± 1 ◦C for 30 d, and then the regenerated shoots were transferred
to 1/2 MS medium with 25 mg/L Hyg and 100 mg/L Carb for the formation of whole
plants. Primers 35S-F/1300-R (Table S1) were used to detect IbMYB308 overexpression
in the tobacco plants. Genomic DNA was extracted from the leaves of transgenic and
wild-type (WT) plants and amplified under the following conditions: preheating at 95 ◦C
for 5 min, followed by 35 cycles of denaturation at 95 ◦C for 30 s, annealing at 62 ◦C for 30 s,
extension at 72 ◦C for 1 min, and finally extension at 72 ◦C for 10 min. The PCR products
were detected by 1% agarose gel electrophoresis to confirm the insertion of IbMYB308 into
the transgenic plants. Further, qRT-PCR was used to detect the expression of IbMYB308 in
transgenic plants, with the NtActin gene used as the internal reference gene of Nicotiana
tabacum [34]. Transgenic lines were selected for phenotypic investigation and WT tobacco
was used as the control.

In vitro identification of the salt tolerance of the transgenic tobacco plants was based
on the method of Zhang [5]. The transgenic and WT tobacco plants were grown in normal
conditions and in MS medium with 200 mM NaCl. The culture conditions were 27 ± 1 ◦C,
13 h per day. After being cultured with a NaCl treatment for four weeks, the growth status
of the transgenic plants was observed, and the content of proline and protein and the
activity of CAT, MDA, and POD were determined. The expression levels of the abiotic
stress-responsive genes were determined in the transgenic tobacco plants both under
normal conditions and with a 200 mM NaCl treatment. The abiotic stress-responsive genes
included SOD, POD, APX, and the proline synthesis-related gene, P5CS. The genes’ specific
primers were designed by Primer Premier 5. The primer sequences are shown in Table S1.

2.7. Data Analysis

The experiments were set in three biological replicates for each experiment and three
technical replicates for each sample. IBM SPSS Statistics 26 software was used for statistical
analysis; the data were analyzed using one-way ANOVA, two-way ANOVA, or Student’s
two-tailed t-test, and the results are presented as the mean ± standard deviation, with the
significance level at p < 0.05 or p < 0.01.
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3. Results
3.1. Isolation and Characterization of IbMYB308

One differential expressed sequence selected from the transcriptome sequence data
of drought-tolerant sweet potato Eshu11 was used to clone the IbMYB308 gene by the
amplification of cDNA. The 844 bp full-length cDNA of IbMYB308 contains a 768 bp open
reading frame (ORF) that encodes 255 amino acids. The predicted molecular weight (MW)
of the resulting protein was 28.95 KDa, and the deduced isoelectric point (PI) and instability
index were 6.99 and 56.80, respectively. The genomic sequence of IbMYB308 is 1101 bp
in length and contains two exons and one intron (Figure 1a). The subcellular localization
prediction analysis of the protein encoded by the IbMYB308 gene in sweet potato showed
that the protein was mainly distributed in the nucleus.
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ing domains in Olea europaea (accession number CAA2964916.1), Pistacia vera (XP_031265728.1), 
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(NP_001311732.1), Prunus persica (XP_007200603.1), Solanum pennellii (XP_015066308.1), Jatropha cur-
cas (XP_012081759.1), Juglans regia (XP_018823839.1), Hibiscus syriacus (XP_039065864.1), and Euca-
lyptus grandis (XP_039166990.1). The identical and similar amino acids are shaded in black, pink, 
and light blue, and conserved domains are marked by black lines. (c) Phylogenetic analysis of 

Figure 1. Characterization of IbMYB308. (a) Genomic structures of IbMYB308. Boxes indi-
cate exons, and lines indicate introns. (b) Multiple protein sequence of IbMYB308 with R2R3-
MYB DNA binding domains in Olea europaea (accession number CAA2964916.1), Pistacia vera
(XP_031265728.1), Mangifera indica (XP_044488236.1), Gossypium hirsutum (XP_016708004.1), Nico-
tiana tabacum (NP_001311732.1), Prunus persica (XP_007200603.1), Solanum pennellii (XP_015066308.1),
Jatropha curcas (XP_012081759.1), Juglans regia (XP_018823839.1), Hibiscus syriacus (XP_039065864.1),
and Eucalyptus grandis (XP_039166990.1). The identical and similar amino acids are shaded in black,
pink, and light blue, and conserved domains are marked by black lines. (c) Phylogenetic analysis
of IbMYB308. MEGA X software with the neighbor-joining (NJ) method (1000 bootstrap repeats)
was used to construct the phylogenetic tree. IbMYB308 is marked with a red box. (d) The cis-acting
elements of the IbMYB308 promoter.
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Protein sequence alignment analysis showed that the IbMYB308 protein sequence was
highly homologous to the MYB308 or MYB308-like protein of Olea europaea, Pistacia vera,
Gossypium hirsutum, and Juglans regia, indicating that MYB308 was conserved in plants. The
IbMYB308 protein contained two typical SANT (R2, R3) domains at the N-terminus, but
there was sequence diversity at the C-terminus, indicating that IbMYB308 is an R2R3-type
transcriptions factor. To identify the evolutionary relationship of IbMYB308, a phylogenetic
tree containing 34 AtMYBs from Arabidopsis thaliana, seven OsMYBs from Oryza sativa, one
ItMYB from Ipomoea triloba, one InMYB from Ipomoea nil, and one NtMYB from Nicotiana
tabacum was constructed with MEGA X (Figure 1b). IbMYB308 belonged to the I subfamily.
Furthermore, the promoter of IbMYB308 was cloned and analyzed. The full length of the
IbMYB308 promoter was 1431 bp, and it contained one element involved in light respon-
siveness (G-box), one light-responsive element (3-AF1 binding site), one element involved
in abscisic acid responsiveness (ABRE), one gibberellin-responsive element (GARE-motif),
one element involved in salicylic acid responsiveness (TCA-element), three Myb-binding
sites, and one element related to meristem expression (CAT-box), indicating that IbMYB308
may be related to plant stress response (Table S2).

The motifs of IbMYB308 and other MYB308 or MYB308-like species were identified
by MEME software. The six motifs comprised between 11 and 50 amino acids. Sequence
analysis showed that motif one and motif two each contained the complete structure
of the Myb-like DNA binding domain. Other motifs were conserved domains of MYB
transcription factors. It was revealed that IbMYB308 was a typical R2R32-MYB transcription
factor (Figure 2).
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3.2. Expression Analysis of the IbMYB308 in Sweet Potato

The expression patterns of IbMYB308 were analyzed by qRT-PCR, which showed
that IbMYB308 was expressed in the root, stem, and leaf tissues of sweet potato, but the
expression levels differed among tissues. The expression level of IbMYB308 in the leaf were
significantly higher than in the root and stem (Figure 3).
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3.3. Expression Profiles of IbMYB308 under Abiotic Stress

To explore the effect of stress on IbMYB308 expression, qRT-PCR was used to determine
the expression levels of IbMYB308 in sweet potato under different abiotic stresses. There
were three stress treatments—200 mM NaCl, 20% PEG-6000, and 20% H2O2—for analysing
the expression profiles of IbMYB308. For the 200 mM NaCl treatment, the expression
increased, reaching a peak at 3 h, and then gradually decreased, though remained higher
than expression at 0 h (Figure 4b). The expression of IbMYB308 was significantly higher
at 3 h and 6 h than at 0 h. Under 20% H2O2 treatment, the expression levels decreased at
1 h, then increased at 3 h, 6 h, and 12 h, reaching its peak at 12 h, and then decreased, with
expression lower at 24 h than 0 h. The expression of IbMYB308 was significantly higher at
6 h and 12 h than 0 h (Figure 4c). Under PEG-6000 treatment, expression of IbMYB308 was
lower at 1 h, 3 h, 6 h, 12 h, and 24 h than 0 h (Figure 4a).

3.4. Overexpression of IbMYB308 Improves Tolerance to Salt Stress in Transgenic Plants

To further analyze the function of IbMYB308, the overexpression vector pCAMBIA1300-
IbMYB308-GFP was constructed and transferred into the WT tobacco plants. DNA extracted
from the leaves of transgenic lines was used as templates; the IbMYB308 overexpression
lines were identified by PCR, and the WT plants, IbMYB308 plasmid, and ddH2O were
used as controls (Figure S2). Three lines with high expression levels (OE-3, OE-6, and
OE-7; Figure 5) were selected for further functional analysis. The WT plants were used as
a control.
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Figure 4. Expression profiles of IbMYB308 in response to abiotic stress treatments. Sweet potato 
under (a) 20% PEG-6000, (b) 200 mM NaCl, and (c) 20% H2O2. IbActin was used as an internal refer-
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Figure 4. Expression profiles of IbMYB308 in response to abiotic stress treatments. Sweet potato
under (a) 20% PEG-6000, (b) 200 mM NaCl, and (c) 20% H2O2. IbActin was used as an internal
reference gene. Data are presented as the means of three biological replicates ± SD (n = 3). Error lines
indicate standard deviations. Different lowercase letters (a–c, ab, bc) on the bars indicate significant
differences at p < 0.01.
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Figure 5. Identification by qRT-PCR of IbMYB308 transcript in the six overexpression tobacco lines
and the WT. NtActin was used as the internal reference gene. Bars represent SE from the mean of
three technical replicates and three biological replicates. Data are presented as the means of three
biological replicates ± SD (n = 3).

To verify the response of overexpressing IbMYB308 tobacco to salt stress, the three
transgenic lines (OE-3, OE-6, and OE-7) and the WT plants were grown both in MS medium
with 200 mM NaCl and in stress-free conditions for four weeks. The WT and transgenic
lines showed no significant difference in growth status under stress-free conditions, but
the growth status of the transgenic lines was better than that of the WT under salt stress
(Figure 6a). Malondialdehyde (MDA) content in plants reflected the degree of plant
damage [35,36]. CAT activity, POD activity, and proline content in plants reflected the
antioxidant capacity of plants [37]. Under salt treatment, the content of MDA in the
transgenic lines and the WT was elevated compared with that under normal treatment,
and the content of MDA in the three transgenic lines (47.710 ± 1.020, 44.992 ± 1.668, and
42.390 ± 1.102 µmol/g·Fw, respectively) was significantly lower than that in the WT
(55.6827 ± 2.067 µmol/g·Fw) (Figure 6d). The CAT activity in the three transgenic lines was
higher than in the WT under normal treatment. Moreover, under NaCl treatment the CAT
activity in the three transgenic lines (2.133 ± 0.015, 2.217 ± 0.015, and 2.380 ± 0.069 U/g·Fw,
respectively) was significantly higher than in the WT (Figure 6b). The POD activity in the
transgenic lines was markedly higher than in the WT under NaCl treatment (Figure 6c).
Among the three transgenic lines, the POD activity of OE-7 (203.56667 ± 1.925 103 U/g·Fw)
was twice that of the other lines. The proline content of transgenic lines and the WT were
approximately at the same level under normal treatment (Figure 6e). Transgenic lines OE-6
(61.110 ± 1.593 µg/g·Fw) and OE-7 (70.111 ± 1.736 µg/g·Fw) had significantly higher
proline content than the WT under NaCl treatment. Under normal treatment, the transgenic
and WT tobacco had similar proline content. However, the protein content in the transgenic
lines was higher than that in the WT under salt stress (Figure 6f). These results showed
that transgenic lines have better resistance to salt stress and damage than WT plants.
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with 200 mM NaCl. (b) CAT activity. (c) POD activity. (d) MDA content. (e) Proline content. (f) 
Protein contents of OE-lines and the WT under normal and 200 mM NaCl treatments. Data are pre-
sented as the means of three biological replicates ± SD (n = 3). * and ** indicate significant differences 
at p < 0.05 and p < 0.01, respectively. 
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Figure 6. IbMYB308 improves salt tolerance in transgenic tobacco plants. (a) Performance of Ib-
MYB308 transgenic tobacco and WT cultured for four weeks on MS medium without stress or with
200 mM NaCl. (b) CAT activity. (c) POD activity. (d) MDA content. (e) Proline content. (f) Protein
contents of OE-lines and the WT under normal and 200 mM NaCl treatments. Data are presented as
the means of three biological replicates ± SD (n = 3). ** indicates significant differences at p < 0.01.
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Under the stress of a 200 mM NaCl treatment, the expression levels of the abiotic
stress-responsive genes, SOD, POD, and APX, and the proline synthesis-related gene, P5CS,
were upregulated in OE-lines compared with those in WT plants (Figure 7).
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4. Discussion

Transcription factors are key in regulating gene expression. Abiotic stress is one of
the most important factors that limit plant growth and productivity worldwide. Plants
have evolved various mechanisms to adapt to environmental changes at different lev-
els, including pressure signal sensing and transduction, the activation of specific tran-
scription factors, and the expression of related genes [36]. Therefore, the breeding of
plant cultivars resistant to abiotic stresses has become a major goal for agricultural de-
velopment. R2R3-type MYB family members have been identified in Arabidopsis [11],
Oryza sativa [38], Ananas comosus [39], Nicotiana tabacum [40], Dimocarpus longan [41], and
Camellia sinensis [42]. However, sweet potato R2R3-MYB genes associated with salt toler-
ance have rarely been studied. In this study, an R2R3-MYB transcription factor, IbMYB308,
was isolated from sweet potato, which was strongly induced by NaCl (Figure 4b). Accord-
ing to the phylogenetic analysis, IbMYB308 was clustered into group I and classified with
MYBs from Ipomoea triloba ItMYB308 (Figure 1c). Multiple sequence analysis revealed that
the IbMYB308 protein shared two Myb-like DNA binding domains with the MYB308 or
MYB308-like protein sequence of other plants. It was revealed that IbMYB308 was a typical
R2R3-MYB transcription factor (Figure 2). Prediction of subcellular localization suggests
that IbMYB308 is located in the nucleus; it is speculated that the transcription factor may
be involved in the transcription levels of other genes.

Gene function can be reflected, to some extent, in the expression patterns of the
gene [43]. NsMYB1 had a higher transcription level in fruit and a lower expression level
in root and leaf tissues, but it was hardly expressed in stem tissue [44]. AtMYB74 was
expressed in the root, stem, rosette leaf, cauline leaf, flower, and silique tissues of Arabidopsis.
The expression levels were highest in flower, rosette leaf, and cauline leaf tissues [14].
OsMYBc had the highest expression in the leaf blade and lower expressions in leaf sheath,
basal stem, and, especially, root tissues [45]. In Gerbera hybrida, the expression locations
of GhMYB1a included bract, old leaf, young leaf, and stamen tissues, but the expression
levels in young root, old root, scape, and pappus tissues were lowest [46]. In this study,
the expression levels of IbMYB308 were analyzed in root, stem, and leaf tissues. The
expression levels of IbMYB308 were significantly higher in leaf than root and stem tissues
(Figure 3). The expression patterns of IbMYB308 were not the same as AtMYB71, OsMYBc,
and GhMYB1a, but all four genes showed higher expression levels in the leaf. The expression
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patterns of the MYB308 genes varied from species to species. PgMYB308-like had a higher
expression level in the root [47]; PlMYB308 was expressed in petal, sepal, pistil, leaf, stamen,
and stem tissues, with the expression levels in petals higher than in other tissues [48]. In
sweet potato, the expression patterns of IbMYB1 and IbMYB116 were different. IbMYB1 was
involved in the regulation of anthocyanin biosynthesis in the leaves and storage roots, and
IbMYB116 was associated with drought resistance in sweet potato [49,50]. In the current
study, IbMYB308, IbMYB116, and IbMAM1.1 [51] had very similar expression patterns,
and the expression levels were higher in leaf than root and stem tissues. High expression
levels of IbMYB308 were detected in leaf tissue. This gene may be related to the protection
mechanism of sweet potato stress resistance. Moreover, it may be involved in the relevant
regulatory network to enhance the stress resistance of leaf organs.

Promoters are gene switches, located upstream of gene coding regions, and contain spe-
cific cis-acting elements that play a crucial role in gene transcription and expression [52,53].
The main active position of cis-acting elements with a biological function is 50 bp upstream
of the transcription start sites (TSS), and most transcription factor binding sites (TFBS) are
in the region of −1000 bp to +200 bp relative to the TSS [54]. In this study, the 1431 bp
upstream sequence of the IbMYB308 promoter was cloned (Figure 1d). There were many
TATA-boxes on the promoter of IbMYB308, which is a core promoter element located 25–35
bp upstream of the TSS [55]. A CAAT-box, which is a ubiquitous cis-acting element in pro-
moters and located 75 bp upstream of the TSS, was present in the IbMYB308 promoter [56].
There were other cis-acting elements present: G-box, ARE, ABRE, AT~TATA-box, MYB,
CAT-box, and TCA-element (Figure 1d, Table S2). These cis-acting elements were associ-
ated with abiotic stress and hormonal response. The IbMYB308 promoter also contained
Myb-binding sites. This too indicated that IbMYB308 may be involved in abiotic stress
and hormonal response, and in the binding of target genes. In wheat, TaMYB344 and
TaMYB67 were induced by drought and salt stress [22]. The expression patterns of the MYB
gene family in Nicotiana tabacum were different: NtMYB38 and NtMYB46 were induced by
drought and salt stress, whereas NtMYB36, NtMYB45, and NtMYB110 were induced by
cold stress [40]. In pigeon pea, CcMYB5 and CcMYB14b were strongly induced by drought,
CcCHS3 was induced under GA3 treatment, CcCAD6 was induced by drought and salt
stress, and, conversely, CcCCR12 and CcLAC1 were only induced by drought and salt stress,
respectively [57]. The expression levels of MYB genes were different under different abiotic
stresses (such as drought, cold, and salt stress), and the expression level also differed with
the length of processing time [58]. HpMYB48, HpMYB70, and HpMYB102 were upregulated
by NaCl and drought at different points. For example, the expression levels of HpMYB70
were highest after 3 h under NaCl treatment [59]. IbMYB308 was induced by abiotic stress,
NaCl, H2O2, and drought (Figure 4). Under the treatment of 200 mM NaCl, expression
levels were upregulated and reached their peak after 3 h of treatment (Figure 4b). The
expression levels of IbMYB308 were induced by 20% H2O2, and the expression levels were
upregulated at 3 h, 6 h, and 12 h. Compared with the expression levels at 0 h, the expression
levels at 1 h and 24 h were downregulated (Figure 4c). However, the expression levels of
IbMYB308 were downregulated under 20% PEG-6000 treatment (Figure 4a). Moreover, the
expression patterns of genes were different under the same treatments [59]. For example,
GhCBS4, GhCBS15, and GhCBS45 downregulated under PEG treatments. The expression
levels of GhCBS32 were upregulated under NaCl treatment and reached their highest levels
at 4 h, then decreased [60]. In Populus, PtMYBR133 and PtMYBR056 were downregulated
under drought stress; however, the expression levels of PtMYBR133 were upregulated
in the cold compared with the control [61]. These results suggested that IbMYB308 have
different expression patterns under different abiotic stresses and also provided a deeper
understanding of MYB gene expression patterns in plants.

Under salt or drought stress, plants often produce a large amount of reactive oxygen
species (ROS), such as superoxide anion (O2−) and hydrogen peroxide (H2O2) [62,63]. SOD
and POD scavenging systems can detoxify ROS to reduce oxidation damage in plant cells
and enhance the resistance to stresses [64,65]. Proline can regulate the pH of plant cytoplasm
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and protect the integrity of cell membranes. Proline also has the function of scavenging
reactive oxygen species (ROS) [66]. MDA content can lead to cell membrane damage and
reduced salt and drought tolerance in plants [36,67]. The activity and content of plant
physiological indicators (CAT activity, PDO activity, MDA content, and proline content) can
reflect the resistance to adversity and stresses [68]. In this study, IbMYB308 overexpression
tobacco plants were obtained to analyze the function of IbMYB308. Three transgenic lines
(OE-3, OE-6, and OE-7) were selected for functional analysis (Figure 5). It was found that
the transgenic and WT plants had the same growth status under normal treatment, but
the growth of transgenic lines was better than that of the WT plant under NaCl treatment
(Figure 6a). In this study, under salt stress conditions, transgenic tobacco plants with
overexpression of IbMYB308 had upregulation in several abiotic stress-responsive genes
(SOD, POD, and APX), and a proline synthesis-related gene, P5CS (Figure 7). Under salt
stress, both transgenic and WT lines were impaired, but there were huge differences in
CAT activity, POD activity, MDA content, and proline content. CAT activity, POD activity,
and proline content were higher in transgenic lines than in the WT, and MDA content
was lower in transgenic lines than in the WT (Figure 6b–e). Protein plays an important
role in plant response to adversity [69]. Transgenic lines have higher protein content than
the WT plants under NaCl treatment (Figure 6f). Furthermore, it was verified that the
IbMYB308 overexpression in tobacco improved the salt stress tolerance compared with the
WT. A simple hypothetical model of the regulatory mechanism of IbMYB308 involved in
the response to abiotic stress is shown in Figure 8. The function of IbMYB308 was similar
to other R2R3-MYB genes. GhMYB73 transgenic Arabidopsis was more tolerant to salt
stress [70]. Overexpression of ThMYB8 improved the salt stress tolerance of transgenic
Arabidopsis [71]. Heterologous expression of CsMYB30 enhanced the tolerance of transgenic
Arabidopsis thaliana to salt and drought stress [72].
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In general, these data revealed that overexpression of IbMYB308 enhanced the salt
tolerance of transgenic tobacco.

5. Conclusions

R2R3-MYB transcription factors are one of the most important classes of transcriptional
regulators in plants. In this study, an R2R3-MYB transcription factor gene from sweet
potato, IbMYB308, was isolated from Eshu11. The expression patterns and functional
characteristics of IbMYB308 were investigated, and the expression levels of IbMYB308 were
induced with NaCl, H2O2, and PEG-6000 treatments. The overexpression of IbMYB308 in
tobacco improved the tolerance of transgenic tobacco plants to salt stress. These findings
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suggest that IbMYB308 plays a role in salt stress responses. Moreover, this study is of
potential value as a resource for salt-tolerant sweet potato breeding.
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(b) recombinantplasmid pCAMBIA-IbMYB308-GFP. Figure S2. PCR Detection of IbMYB308
overexpression tobacco. Table S1. Primers used in this experiment. Table S2. Cis-acting elements
of the IbMYB308 promoter.
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