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Abstract: The genome-wide association study (GWAS) is a popular genomic approach that identifies
genomic regions associated with a phenotype and, thus, aims to discover causative mutations (CM)
in the genes underlying the phenotype. However, GWAS discoveries are limited by many factors and
typically identify associated genomic regions without the further ability to compare the viability of
candidate genes and actual CMs. Therefore, the current methodology is limited to CM identification.
In our recent work, we presented a novel approach to an empowered “GWAS to Genes” strategy
that we named Synthetic phenotype to causative mutation (SP2CM). We established this strategy to
identify CMs in soybean genes and developed a web-based tool for accuracy calculation (AccuTool)
for a reference panel of soybean accessions. Here, we describe our further development of the tool
that extends its utilization for other species and named it AccuCalc. We enhanced the tool for the
analysis of datasets with a low-frequency distribution of a rare phenotype by automated formatting of
a synthetic phenotype and added another accuracy-based GWAS evaluation criterion to the accuracy
calculation. We designed AccuCalc as a Python package for GWAS data analysis for any user-defined
species-independent variant calling format (vcf) or HapMap format (hmp) as input data. AccuCalc
saves analysis outputs in user-friendly tab-delimited formats and also offers visualization of the
GWAS results as Manhattan plots accentuated by accuracy. Under the hood of Python, AccuCalc
is publicly available and, thus, can be used conveniently for the SP2CM strategy utilization for
every species.

Keywords: python package; GWAS; accuracy; causative mutation; SP2CM; Manhattan plot

1. Introduction

Genome-wide association study (GWAS) is a widely-used statistical method for finding
associations between phenotype and genotype. The analysis fits the data into one of the
mathematical models (typically the linear regression model) and discovers genomic regions
linked with a phenotype. Within GWAS, the p-value is traditionally calculated for every
genetic variant present in the genotype data as a statistical measure of an association with
a phenotype [1,2]. Due to linkage disequilibrium, the associated genetic variants usually
form regions [3]. These associated regions can be the first step in discovering the phenotype
marker or causal gene responsible for the observed phenotype [1]. Nevertheless, the real
meaning of the p-value is the probability of seeing the observed data or even more extreme
data in the case that the null hypothesis (H0) is true. The typical H0 is that the experimental
genetic variant does not affect the observed trait. Thus, the contribution to the model is
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none. For the alternative hypothesis, H1, the observed genetic variant affects the observed
trait; thus, it contributes to the model. The lower p-value than a set threshold is then
taken as an indication of the H1 validity [4,5]. However, even though GWAS successfully
identified causative mutations (CMs) [6,7], the genetic variant with the lowest p-value is not
always the most highly-associated variant with phenotype [8]. This is due to the following
complicating factors: fitting models (only a simplified version of the actual situation),
genetic complexity of traits, the density of genotype data, the distribution of phenotypes,
or multiallelic origins of CMs. Thus, GWAS serves only as a mathematical approximation
of the relationship between genotype and phenotype that can be far from perfect [8].

There are more types of genotype data used for GWAS, but generally, we can classify
them into one of two types: genotyping data and resequenced data. Genotyping data are
of low density and thus cover only a small percentage of the whole genetic variation that
is represented only by a subset of the SNPs. Obtaining genotyping data is easier, faster,
and less costly than in the case of resequenced data. These advantages allow the analysis
of a larger number of samples within a single study. However, genotyping-data-based
GWAS discoveries rarely lead to direct CM identification. In comparison to genotyping,
resequencing can reveal the majority of total genetic variation if a sufficient number of
diverse samples is present in a dataset and resequencing quality parameters and depth are
high. Nevertheless, obtaining sufficient amounts of high-quality resequenced genotype
data for a larger number of samples is still limited by its cost and tedious process of data
generation, processing, and curation. Therefore, GWAS analysis of larger resequenced
datasets is less affordable, thus, limiting CM identification [3,4,9–11].

In our previous work [12], we developed a new strategy for leveraging both low-
density genotype and resequenced data for CM discovery through the “Synthetic phenotype
association study” (SPAS). This approach subsidizes missing phenotype information of
publicly available resequenced soybean datasets by a high-accuracy, low-density genotype
marker that is used as a synthetic phenotype in GWAS. Whilst SPAS reveals the landscape
of association for genomic variants and phenotypes; accuracy serves as a measure of
direct correspondence between every variant position and phenotype. Therefore, SPAS,
empowered by accuracy calculation, extends the analysis beyond a threshold of statistical
significance of a fitting model used for GWAS, limits the number of false negatives [12], and
thus overcomes some of the GWAS limitations [8]. For soybean, we introduced a web-based
AccuTool for a reference diversity panel of resequenced soybean accessions (Soy775) that
automatically calculates the accuracy for 35.7 M curated variant positions [12] that are
publicly available via SoyKB [13]. To extend this accuracy calculation for other soybean
genotype datasets with more or different variant positions, to make accuracy calculation
more effective for disproportional phenotype datasets, and, also, to enable SP2CM for other
species, we developed AccuCalc as a Python-based package. In comparison to AccuTool,
the AccuCalc package presented in this work contains all previously described functions
and options related to accuracy calculation and, further, is empowered by additional
accuracy types that are more suitable for disproportional data. AccuCalc is enriched
by synthetic phenotype formatting from user-provided genotype and genome-localized
association study (GLAS) visualization. AccuCalc is GWAS fitting model-independent
since it uses GWAS results provided by a user as input. The AccuCalc package design
accepts either variant calling format (vcf) or HapMap (hmp) genotype format and can
be used for any species. AccuCalc offers the ability to extend the use of whole genome
sequence data that are becoming more available from previous and new studies [13–15].

Our previously developed AccuTool is a web-based tool that allows users to interact
with its web interfaces to perform an analysis on one soybean dataset. The performance of
AccuTool is bounded by the hosting machine/services, the R-shiny framework, and stable
internet connections for which AccuTool necessitates being online and publicly accessible.
AccuTool needs the hosting machine’s random-access memory (RAM) and storage space to
function properly. The R-shiny framework limits the data upload size, which can negatively
impact the user experience. AccuCalc, on the other hand, is a package developed using the
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Python programming language, and users can interact with scripts within the package in
the console/terminal to perform analysis. With this approach, users not only do not need
to rely on the R-shiny framework but also have more control over the console/terminal.
AccuCalc can be run on any Linux or Windows machine that has enough RAM and disk
space. Data that feeds into AccuCalc also do not need to go through a time-intensive data
upload process. Upon completion of data analysis, users can also choose the data to keep
or transfer to any other data-storing infrastructures or services.

In this work, we document the development and utilization of AccuCalc. Further, we
present two examples of AccuCalc utilization: A case study of a high-accuracy tagging
marker identification for soybean flower color as an example of Synthetic phenotype
to causative mutation (SP2CM) Part1 accuracy-based identification with proportional
distribution of phenotypes and a case study of CM identification for a rare phenotype of
soybean trichome loss, known as a glabrous phenotype for the pubescence density trait.

2. Materials and Methods

The AccuCalc design is based on the analytic approach previously published by our
group [12]. The genetic variants with significant p-value calculated in GWAS for the trait of
interest are evaluated by the accuracy calculation that reflects the direct correspondence
to selected phenotypes arranged into a binary phenotype. The accuracy calculation is
computed in four distinct ways to cover more types of data structure. The average accuracy
realistic (Avr_acc) is calculated according to Equation (1):

Avr_acc =
Acc_MUT + Acc_WT

2
× 100 (1)

A strict measure of direct correspondence between known phenotype and genotype
values of accessions with matching WT and MUT phenotypes to genotype, where WT
accuracy (Acc_WT) and MUT accuracy (Acc_MUT) are given by the Equations (2) and (3).
NWT-REF represents the count of variants with WT phenotype and Ref allele, and NWT-ALT
represents the count of variants with WT phenotype and Alt allele. Similarly, NMUT-ALT rep-
resents the count of variants with MUT phenotype and Alt allele, and NMUT-REF represents
the count of variants with MUT phenotype and Ref allele:

Acc_WT =
NWT−REF

NWT−REF + NWT−ALT
× 100 (2)

Acc_MUT =
NMUT−ALT

NMUT−REF + NMUT−ALT
× 100 (3)

Combined accuracy (Comb_acc_real) summarizes only the available phenotype and
genotype data for every variant and ignores the sample distribution and missing informa-
tion, according to Equation (4). The variables in the equation are the same as in the case of
Equations (2) and (3):

Comb_acc_real =
NWT−REF + NMUT−ALT

NWT−REF + NWT−ALT + NMUT−REF + NMUT−ALT
× 100 (4)

The optimistic mode of combined accuracy calculation assumes that the structure and
distribution of information in missing data are the same as in the known data. However,
the optimistic assumption did not prove to always be a significant measure according to
our previous work [12]. The average accuracy gives a better evaluation of the dataset with
a strongly disproportional phenotype.

The factor of missing information is included in the average accuracy pessimistic
(Avr_acc_pes) calculated according to Equation (5):

Avr_acc_pes =
Acc_pes_MUT + Acc_pes_WT

2
× 100 (5)
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where WT accuracy pessimistic (Acc_pes_WT) and MUT accuracy pessimistic (Acc_pess_MUT)
are given by Equations (6) and (7). NWT-REF represents the count of variants with WT phe-
notype and Ref allele, and NWT-ALT represents the count of variants with WT phenotype
and Alt allele. Similarly, NMUT-ALT represents the count of variants with MUT phenotype
and Alt allele, and NMUT-REF represents the count of variants with MUT phenotype and
Ref allele. NMUT represents the count of all variants with the MUT phenotype, and NWT
represents the count of all variants with the WT phenotype.

Acc_pes_WT =
NWT−REF

NWT
× 100 (6)

Acc_pes_MUT =
NMUT−ALT

NMUT
× 100 (7)

The combined accuracy pessimistic (Comb_acc_pes) is calculated according to
Equation (8):

Comb_acc_pes =
NWT−REF + NMUT−ALT

NALL
× 100 (8)

In this work, we tested that this type of accuracy is an ideal evaluation criterion,
especially for disproportional datasets. The difference in the equations for pessimistic
calculation is the same as in the case of the optimistic variant. The pessimistic accuracy
calculations serve as a simple measurement of the missing information in the selected area,
as results with a high amount of missing information may not be as reliable. The combined
accuracy calculation can serve as an overview of all samples at a variant position. However,
in the case of a disproportional dataset (for example, a lot of controls and only a few cases),
the more numerous sample type can skew the combined accuracy. In that case, when
there is missing sample data in the selected region in the low-frequency phenotype, it can
cause the reliability of the results to drop dramatically because of an insufficient number of
samples (Figure 1).

1 

 

 
1 

 

 
4 

 

Figure 1. A comparison of proportional and disproportional data based on the accuracies. The
figure shows a comparison of two types of datasets with proportional and disproportional data by
phenotype. The disproportional data simulates the cases with only a small number of samples with
mutant phenotypes available. Plot (A) shows the sample distribution transformed into percentages
from sample counts. The counts are available in the table below plot (A). They represent the number
of samples in groups defined by a phenotype and genotype pair. Plot (B) shows the difference in four
types of accuracy calculations (values available in the table below the plot) according to the dataset
type. The accuracy calculations are counted from sample counts shown in plot (A).
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Beyond the main function for accuracy calculation and synthetic phenotype creation,
the AccuCalc package includes other functions. These auxiliary functions help users to
upload, process, analyze, and plot their data seamlessly.

3. Results

The AccuCalc package was created and tested with Python (https://www.python.
org/, accessed on 27 December 2022), version 3.7.4., and hosted at https://github.com/
Biovja/AccuCalc, accessed on 27 December 2022. The package requires the following
Python packages and libraries: pandas (https://pandas.pydata.org/, accessed on 27 De-
cember 2022, tested with ver. 1.3.3), NumPy (https://numpy.org/, accessed on 27 Decem-
ber 2022) and Matplotlib (https://matplotlib.org/, accessed on 27 December 2022, tested
with ver. 3.2.2). For the opening of compressed Variant Call Format files (vcf) (vcf.gz or
vcf.bgz) the gzip (https://docs.python.org/3/package/gzip.html, accessed on 27 Decem-
ber 2022, tested with ver. 1.9.0) package was tested and is used in the usage example.
The AccuCalc package was tested in environments of both Linux and Windows operation
systems and is developed by using stable and widely used Python packages. The package
diagram (Figure 2) shows the main functions and their connections.
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Figure 2. The AccuCalc workflow. Inputs (orange), outputs (blue), and AccuCalc follow the same
logic as published in our former work [12].

3.1. Accuracy Calculation

One of the main points in the analytic approach covered in AccuCalc is the accuracy
calculation. The accuracy calculation is performed by a function called acc_cal(). It takes
two compulsory arguments. The first one is called gen_tab and represents an object with
genotype information in a proper data format. The second is called phen_tab, which
represents an object with phenotype information in proper data format. The optional
arguments manage the accuracy calculation settings. The “cal” parameter enables the
user to set the phenotype value (Wild type or Mutant) for a reference genome. The
“flip” parameter enables the automatic setting of the reference genome according to the
best average accuracy. The function generates an Acc_tab. Similarly, as the function
input, the Acc_tab is a pandas.DataFrame-based object. The first six columns contain
information about individual loci (“#CHROM”, ”POS”, ”ID”, ”REF”, ”ALT”, ”INFO”), and
the subsequent columns contain the results of accuracy calculations and additional statistic
information for the loci.

https://www.python.org/
https://www.python.org/
https://github.com/Biovja/AccuCalc
https://github.com/Biovja/AccuCalc
https://pandas.pydata.org/
https://numpy.org/
https://matplotlib.org/
https://docs.python.org/3/package/gzip.html


Genes 2023, 14, 123 6 of 13

3.2. Synthetic Phenotype

The second key part of the model analytic approach for AccuCalc is the synthetic
phenotype. The synthetic phenotype is provided by the synthetic_phen_from_tab() or
synthetic_phen_from_vcf() functions. Both functions generate a pandas.DataFrame-based
phen_tab object. The synthetic_phen_from_tab() function serves to create the synthetic
phenotype from the existing gen_tab, which is the first mandatory argument of the function.
The synthetic_phen_from_vcf() serves to create the synthetic phenotype from the vcf
file with the file name and path as the first mandatory argument. The other mandatory
arguments in both functions specify the chosen locus and the synthetic phenotype.

The AccuCalc package includes an auxiliary function export_phen_tab(). This function
exports the synthetic phenotype as a simple tab-divided text file with the first row as
the header and two columns. The first contains the sample’s names, and the second
their synthetic phenotype. The mandatory arguments are the phen_tab representing the
synthetic phenotype and the string name representing the result file name (the .txt suffix is
added automatically).

3.3. Import

For importing data into a format suitable for the operations described above the
imp_vcf_tab(), imp_hmp_tab(), imp_phen_tab(), and add_pval () functions are contained
in the AccuCalc package.

The imp_vcf_tab()/imp_hmp_tab() function creates a simple pandas data frame object
gen_tab with a similar structure as the traditional Variant Call Format (vcf) file from a vcf
file or hapmap file (viz GAPIT manual). Thus, the first nine columns provide information
describing each genetic variant (“#CHROM”, ”POS”, ”ID”, ”REF”, ”ALT”, ”QUAL”, ”FIL-
TER”, ”INFO”, ”FORMAT”) followed by genotype calls for each sample. In gen_tab, the
reference alleles are represented by numerical value 0, the alternative alleles are represented
by numerical value 1, and the missing or not included in analysis alleles are represented by
value −2. This simple format build commonly used in Python object pandas.DataFrame is
advantageous for two main reasons. It allows the calculation of the accuracy calculation
in a simple way using the NumPy Python package, and it is straightforward for a user to
transform their own data into this widely known object in an accessible format. This may
be of interest to the user if their genomic data are of a different format type than the vcf
file format.

The imp_phen_tab() function creates a simple pandas.DataFrame object phen_tab.
The columns represent individual samples, and the only existing row contains the sample
phenotype/trait value. As the accuracy calculation is programmed for binary phenotype,
phen_tab keeps the phenotype/trait as a simple numerical value. The Wild-type (WT)
phenotype is represented by 0, the Mutant type (MUT) is represented by 1, and the missing
or not included in analysis phenotypes are represented by −2.

The minor additional function add_pval () adds p-values for individual loci from
GWAS results values into an existing accu_tab. The function takes two compulsory argu-
ments: acc_tab and pval_file. The acc_tab argument represents a pandas.DataFrame object
created during the accuracy calculation by the acc_cal() function. The pval_file argument
represents the text or comma-separated values (CSV) file with the results from GWAS
analysis for the genome region of interest. The optional arguments serve to specify the
format of the GWAS results file as the files differ according to the chosen GWAS tool.

The second auxiliary function is sort_names(). The function sorts the phen_tab ac-
cording to the order of samples in gen_tab. If the sample from geno_tab is not included in
phen_tab, NA is added.

3.4. Plotting

The addition of the p-values into Accu_tab is a necessary step before plot creation. The
function plot_accuracy() generates standardized plots for data in Accu_tab object, which is
the only compulsory argument for the function.
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3.5. Example Cases

The usage of the AccuCalc package requires basic Python. From importing the data to
its processing and obtaining the results, only a few common Python commands, together
with the AccuCalc function, are needed, as demonstrated in the package usage example
script (Figure 3).
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Figure 3. Example of the AccuCalc script. The AccuCalc script section describes the accuracy
calculation and accentuation of the Manhattan plot with average accuracy for the case study of the
flower color-associated region on chromosome 13. The option to filter based on average accuracy
values >80% is shown.

The script shows the usage of the package from importing the genotype and phenotype
data, counting their accuracy, and saving the results. The results are presented in the form
of a text table (in a csv file) and a predefined Manhattan plot (both genome-wise and
chromosome-wise variants) supplemented with the accuracy information visualized with a
color scale.

3.5.1. Case Study 1: High-Accuracy Tagging Marker Identification

The first key decision that is required for the SP2CM strategy is to select the most
accurate, highly associated tagging marker (SP2CM-Part 1). In this work, this step is
demonstrated on soybean, but the approach was also tested on other organisms (rice,
cotton, and Arabidopsis; non-public data and not part of this publication). We used
the previously described flower color trait as an example of a simple qualitative binary
phenotype with proportional distribution, where the disturbed biosynthesis of purple
pigments in flowers causes white flower color [16]. In this work, we utilized AccuCalc to
assess the accuracy of the associated low-density markers in predicting purple or white
flower colors on a test dataset (42 accessions with WT purple flowers, 98 accessions with
MUT white flowers, and 7 with unknown NA phenotypes are publicly available at https:
//soykb.org/, accessed on 27 December 2022 and https://soybase.org/, accessed on
27 December 2022). This phenotype underlies the W1 gene [17] on chromosome 13, where

https://soykb.org/
https://soykb.org/
https://soybase.org/
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a SNP at position 17,316,756 (Glyma.13.072100—Williams 82.a2v1) is associated with the
causative Indel [12,18]. For genotype data, we used low-density Illumina SoySNP50K DNA
bead chip [19] genotyping data that are publicly available at USDA Soybean Germplasm
Collection (GRIN, Urbana, IL, USA), and accuracy to the CM associated SNP, as described
in our previous work [12]. Figure 4 documents the genome-wide Manhattan plot with a
detected W1-associated region on chromosome 13, and Figure 5 illustrates the zoomed
W1 region with accentuated Avr_acc to the real flower color phenotype (the AccuCalc
output file is available at https://github.com/Biovj/AccuCalc/tree/main/publication_
files, accessed on 27 December 2022).

1 

 

 
1 

 

 
4 

 Figure 4. The AccuCalc genome-wise view of genome-wide association study data accentuated with
calculated accuracy. The Manhattan plot for soybean data (Illumina SoySNP50K DNA bead chip
genotyping data and purple/white flower color phenotype data). The Manhattan plot is accentuated
with the average accuracy of the causative mutation-associated SNP on chromosome 13 at position
17,316,756: even chromosomes (blue-gray scale), odd chromosomes (red-gray scale). AccuCalc
enables the accuracy Manhattan plot creation and provides a table with the accuracy calculation and
summary information for every included variant in the analysis. 

2 

 
5 

 
6 

Figure 5. The AccuCalc chromosome-wise view of the associated region with flower color on chro-
mosome 13 accentuated with calculated accuracy. The Manhattan plot for soybean data (SoySNP50K
chip genomic data and purple/white flower color phenotype data) with average accuracy to the
causative mutation-associated SNP on chromosome 13 at position 17,316,756. In this example, the
markers with the highest accuracy (shown for the three top points in parentheses) are also the markers
with the highest −log10 (p-values).

https://github.com/Biovj/AccuCalc/tree/main/publication_files
https://github.com/Biovj/AccuCalc/tree/main/publication_files
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3.5.2. Case Study 2: CM Identification for a Rare Phenotype

Here, we demonstrate that AccuCalc can identify a CM for a very rare phenotype
without the need to resequence additional accessions. Pubescence density is controlled
by many alleles, where P1/p1 was confirmed to be Glyma.09g278000 (Williams 82.a2.v1),
where a missense CM A25T determines the complete loss of pubescence, known as the
glabrous phenotype [20]. In our previous work, we used the USB15x(302) subset of USB481-
resequenced accessions [21] as a model dataset. In this dataset, there is a single glabrous
accession (USB-251 PI 548178) with the missense CM A25T on chromosome 09 caused by
SNP G>A at position 49,336,581 Williams 82.a2.v1. Therefore, we used this dataset as an
example of extremely disproportional data where GWAS cannot be performed. Here we
used a previously identified tagging marker (SoySNP50K DNA bead chip) for glabrous
versus normal pubescence density ss715604810 (chr09: 47,548,832 T>C) [16] as a synthetic
phenotype (241 REF allele T, 53 MUT C, 6 NA) in GLAS) of SP2CM-Part 2 [12] on a 4 M
bp genomic region (centered on the ss715604810 marker) and calculated the accuracy for
glabrous (n = 1)/pubescent (n = 299) phenotypes (the AccuCalc output file is available at
https://github.com/Biovj/AccuCalc/tree/main/publication_files, accessed on 27 Decem-
ber 2022). Figure 6 documents the ss715604810-associated region with accentuated Avr_acc
to the glabrous/pubescent phenotype with the position of the P1 CM highlighted. There
are 50,912 total variant positions in the analyzed 4M bp genomic region of the USB15x(302)
on chromosome 09, where only 12 variant positions possess the highest (100%) Avr_acc
(Table 1) with varying pessimistic accuracies. Here, among the 12 highest Avr_acc variant
positions, only 1 variant position causes an amino acid change in the translated protein
and, therefore, is considered the candidate CM with the highest probability. This CM was
experimentally proven by constructing loss-of-function mutants [20].

 

2 

 
5 

 
6 Figure 6. The AccuCalc chromosome-wise view of the 4 M bp region on chromosome 09 with the asso-

ciated region to ss715604810, P1 tagging marker [16]. The Manhattan plot for the soybean USB15x(302)
resequenced data and ss715604810 synthetic phenotype with Avr_accu of the glabrous/pubescent
phenotype. The arrow points to the Glyma.09g278000-A25T causative mutation.

https://github.com/Biovj/AccuCalc/tree/main/publication_files


Genes 2023, 14, 123 10 of 13

Table 1. Selection of the highest Avr_accu (100%) variant positions to the glabrous/pubescent phenotype in the 4M bp genomic region on chromosome 09. The
table was derived from the AccuCalc analysis output (at https://github.com/Biovj/AccuCalc/tree/main/publication_files, accessed on 27 December 2022) and
simplified. The causative mutation position of Glyma.09g278000-A25T is in bold.

Chr Position
Distance to
ss715604810

(bp)
REF ALT Gene ID Effect −log10

(p)
Avr_acc

(%)
Avr_acc_pes

(%)
Acc_pes_WT

(%)
Comb_acc_real

(%)
Comb_acc_pes

(%)
Missing

_WT
_gen (%)

Count
WT

Count
MUT

9 46,340,547 1,208,285 A G, C Glyma.09g241100 intron_variant 0.26 100 99.33 98.66 100 98.67 1.34 299 1
9 47,953,315 404,483 G A Glyma.09g261600 upstream_gene_variant 0.26 100 99.33 98.66 100 98.67 1.34 299 1
9 47,318,232 230,600 G A Glyma.09g253300 upstream_gene_variant 0.26 100 99.16 98.33 100 98.33 1.67 299 1
9 47,124,449 424,383 C G Glyma.09g250500 intron_variant 0.26 100 99.16 98.33 100 98.33 1.67 299 1
9 48,649,742 1,100,910 G C Glyma.09g269100 downstream_gene_variant 0.26 100 99.16 98.33 100 98.33 1.67 299 1
9 49,336,581 1,787,749 G A Glyma.09g278000 missense_variant A25T 0.26 100 99.16 98.33 100 98.33 1.67 299 1
9 48,879,536 1,330,704 C T Glyma.09g272300 intron_variant 0.26 100 99.16 98.33 100 98.33 1.67 299 1
9 45,868,448 1,680,384 G A . intergenic_region 0.27 100 98.83 97.66 100 97.67 2.34 299 1
9 46,493,848 1,054,984 A G . intergenic_region 0.22 100 98.16 96.32 100 96.33 3.68 299 1
9 46,863,256 685,576 A G Glyma.09g247100 upstream_gene_variant 0.01 100 91.64 83.28 100 83.33 16.72 299 1
9 46,897,306 651,526 A C Glyma.09g247500 intron_variant 0.23 100 90.47 80.94 100 81 19.06 299 1

9 47,196,829 352,003 T
TATGA,
TATG-

TATATGA
Glyma.09g251500 intron_variant 0.43 100 89.46 78.93 100 79 21.07 299 1
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4. Discussion

AccuCalc enables the utilization of the SP2CM strategy for various genotype data
inputs without the need for non-public data uploads or access to high-computing clusters.
In comparison to our previously developed AccuTool [12], AccuCalc works on custom
datasets, offers an option to prepare the synthetic phenotype from a user-defined variant
position present in the dataset, and calculates accuracy to both real and synthetic pheno-
types. AccuCalc produces Manhattan plots with accentuated accuracy and saves results in
a user-friendly tabular format for further analysis. We demonstrated two major AccuCalc
analyses: (1) identification of high-accuracy tagging markers for SP2CM—Part 1, and (2)
SP2CM—Part 2, CM identification.

Regardless of the GWAS fitting model used, AccuCalc calculates the direct correspon-
dence between markers and phenotypes and assists in the identification of the highest accu-
racy markers for subsequent SP2CM—Part 2. The case study with flower color shows that
regardless of the p-value obtained by GWAS, among 2684 marker positions on chromosome
13 where the W1 is located, only 18 markers possessed >80% Avr_accu to purple/white
flower color with a single marker with the highest Avr_accu value (87.47%). Further, there
were 34 marker positions with Avr_acc 80–75%, 2525 marker positions with Avr_accu
between 75% and 50%, and only 106 marker positions with 50% Avr_acc. The AccuCalc out-
put file is available at https://github.com/Biovj/AccuCalc/tree/main/publication_files,
accessed on 27 December 2022.

The extreme case of the disproportionate distribution of phenotypes in the dataset, for
the example of glabrous versus pubescent phenotypes, has shown that AccuCalc can easily
identify the CM in cases where GWAS cannot be applied.

The computational cost is indeed variable depending on the computation power
available (common PC station versus a high computing cluster). However, since AccuCalc
is intended to be executed on a PC, we calculated the running time for accuracy analysis
and plotting of genome-wide GWAS data for SoySNP50K DNA bead chip low-density
genotype data for the flower color case study for a common Intel(R) Core(TM) i7-1065G7
CPU @ 1.30 GHz 1.50 GHz processor, RAM 16.0 GB, on a Windows ×64 platform. The
process was successfully completed in 2 min.

The AccuCalc package helps users process the GWAS results in conjunction with
binary or binned phenotypes. The first challenge for users may be the proper categorization
of the phenotype into a binary format of two bins in the context of the knowledge of the
genomic complexity of the trait. Within our future tool development, we would like to
focus on accessible phenotype categorization.

5. Conclusions

We have developed a new Python package called AccuCalc for the evaluation of GWAS
results. The package provides functions for mathematical evaluation through accuracy
calculation for GWAS results for binary and binned phenotypes. It also includes functions
for synthetic phenotype formatting, a way to leverage both resequenced datasets with
missing phenotype info and genotyping data limited by the number of variant positions on
a chip. AccuCalc is publicly available at https://github.com/Biovja/AccuCalc, accessed
on 27 December 2022.
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