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Abstract: Characterized by cardiovascular disease and diabetes, cardiometabolic diseases are a
major cause of mortality around the world. As such, there is an urgent need to understand the
pathogenesis of cardiometabolic diseases. Increasing evidence suggests that most of the mammalian
genome are transcribed as RNA, but only a few percent of them encode for proteins. All of the
RNAs that do not encode for proteins are collectively called non-protein-coding RNAs (ncRNAs).
Among these ncRNAs, long ncRNAs (lncRNAs) are considered as missing keys to understand the
pathogeneses of various diseases, including cardiometabolic diseases. Given the increased interest
in lncRNAs, in this study, we will summarize the latest trend in the lncRNA research from the
perspective of cardiometabolism and disease by focusing on the major risk factors of cardiometabolic
diseases: obesity, cholesterol, diabetes, and hypertension. Because genetic inheritance is unavoidable
in cardiometabolic diseases, we paid special attention to the genetic factors of lncRNAs that may
influence cardiometabolic diseases.
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1. Introduction

Cardiometabolic diseases (CMD) account for 31% of all global deaths [1]. These life-
long and life-threatening diseases are associated with an unhealthy lifestyle (e.g., obesity,
physical inactivity, smoking), leading to diabetes mellitus and cardiovascular disease
(CVD) [2], and more than 56,000 Danes are diagnosed with CVD annually [3]. In CMD (e.g.,
arrhythmic disorders, cardiomyopathies, Fabry disease, familial hypercholesterolemia,
thoracic aortic aneurysms and dissections [4]), the genetic inheritance is unavoidable. For
example, siblings of patients with cardiovascular disease (CVD) have a 40% increase of
risk for CVD [5]. Thus, significant efforts have been spent to understand the genetic causes
of CMD by genome sequencing the patients suffering from CMD. Through the usages
of linkage disequilibrium (LD) and genome-wide association studies (GWAS), a number
of loci are found to be associated with CMD [6–10]. Yet, only few are directly in the
exons of protein-coding genes, leaving behind the large number of CMD-suspected loci to
be unexplained.

The term junk DNA is long gone, and we now know that most of the mammalian
genome are transcribed as RNA. Yet only few percent of them correspond to the exons of
protein-coding genes, leaving behind the large number of RNAs as non-protein-coding
(ncRNAs). These ncRNAs include ribosomal RNAs (rRNAs), transfer RNAs (tRNAs),
short ncRNAs (e.g., small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs)),
microRNAs (miRNAs), and other longer ncRNAs [11]. Long non-coding RNAs (lncRNAs)
are any ncRNAs longer than 200 nucleotides (nt). Because the protein-centered research
has not been able to fully elucidate the pathogeneses of CMD nor offer an ultimate cure
for CMD, there are growing interests to study lncRNAs in the context of cardiovascular
metabolism and CMD. Because lncRNAs occupy a large part of the human genome in
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comparison to protein-coding genes, increasing evidence suggests that disease-suspected
loci based on LD and GWAS are in the loci with lncRNAs [12,13], including the well-known
example of the lncRNA, ANRIL [official gene symbol: CDKN2B-AS1 (CDKN2B antisense
RNA 1)], which corresponds to the Chr9p21 risk locus for coronary artery disease based on
GWAS studies [14–21]. Due to the decreased costs of performing both whole genome and
transcriptome sequencing (i.e., DNA sequencing (DNA-seq) and RNA-seq, respectively),
many lncRNAs have been identified in the disease-suspected loci, which calls for further
investigation on how the mutations in lncRNAs themselves affect the susceptibility of each
individual to a particular genetic disorder.

Here, we summarize the recent findings of lncRNAs in cardiovascular metabolism
and CMD. Because there are many review articles summarizing lncRNAs in CVD, we
will focus our attention on the lncRNAs that are involved in risk factors of CMD; namely,
obesity, cholesterol, diabetes, and hypertension. To cope with the growing interest to
study genetic causes of CMD, we will pay special attention to lncRNAs that lay within the
CMD-suspected loci.

2. Obesity-Associated lncRNAs

Due to the increased consumption of high energy and calorie food (e.g., fat, oil, and
sugar) coupled with physical inactivity, the number of obese people has increased dra-
matically worldwide in recent years [22–24]. Because obesity is an underlying cause and
risk factor for many diseases (e.g., type II diabetes, CVD), the interest to study obesity-
associated lnRNAs has increased recently. For example, the expression of one of the most
well-studied lncRNA, H19 imprinted maternally expressed transcript (H19), is reduced in
adipocytes of obese individuals [25]. The functional role of H19 in CMD is well described,
which includes negatively regulating hypertrophy [26–28] and pyroptosis (a form of cell
death initiated by inflammation) [29] in cardiomyocytes. The reduced expression of H19
inversely correlates with body mass index (BMI) in humans. Interestingly, H19 overexpress-
ing mice showed a protective effect against diet-induced obesity and improved insulin
sensitivity in brown but not in white adipocytes (Figure 1A). Because BMI is a measure of
body fat based on the height and weight of a person, it is used as an indicator of obesity. As
such, GWAS and LD studies have been performed to identify BMI-associated loci [30,31].
Not surprisingly, several lncRNAs are shown to be in the BMI-associated loci, such as
LncOb rs10487505 variant between BMI and leptin level in pediatric non-alcoholic fatty
liver disease [32], lncRNA transcript of the transcription factor 7 like 2 (lncRNA-TCF7L2)
between BMI and biopolar disorder [33], MCHR2 antisense RNA 1 (MCHR2-AS1) between
BMI and psychiatric patients [34], and the hypermethylation of the promoter of the lncRNA,
TSPOAP1, SUPT4H1and RNF43 antisense RNA 1 (TSPOAP1-AS1), associated with obe-
sity in overweight and obese Korean individuals [35]. These are just a few examples of
BMI-associated lncRNAs reported to date, which most likely increase as more previously
published GWAS data are re-analyzed from the standpoint of lncRNAs.

Obesity is characterized by the increased number of white adipocytes and adipocyte
gene expression [36,37]. For example, the whole-body knockout mice of the lncRNA steroid
receptor RNA activator 1 (Sra1) are resistant to high fat diet-induced obesity, with de-
creased epididymal and subcutaneous white adipose tissue (WAT) mass, and increased
lean content (i.e., decreased percent of body fat) [38]. Mechanistically, it was shown pre-
viously that Sra1 functions as a transcriptional coactivator of peroxisome proliferator-
activated receptor gamma (Pparg), which is a master regulator of adipogenesis [39]
(Figure 1B). It should be noted that SRA1 encodes for both lncRNA and protein-coding tran-
scripts (https://www.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG0
0000213523;r=5:140537340-140557677; accessed on 11 January 2023). Another example
is adipocyte associated pyruvate carboxylase interacting lncRNA (ADIPINT), whose ex-
pression is increased in obesity and linked to fat cell size, adipose insulin resistance,
and pyruvate carboxylase activity [40]. Mechanistically, ADIPINT binds to pyruvate car-
boxylase, which is a mitochondrial enzyme that catalyzes the ATP-dependent carboxy-
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lation of pyruvate to oxaloacetate in order to regulate lipid metabolism (Figure 1C). As
adipocytes can be easily isolated and cultured, there are several screening studies to find
lncRNAs associated with adipogenesis identifying hundreds of differentially expressed
lncRNAs [41–46]. Thus, further functional and mechanistic studies are needed to elucidate
the functional importance of these adipose-related lncRNAs.
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Figure 1. LncRNAs associated with obesity. (A) The H19–IGF2 locus consists of a maternal un-
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bound by the insulator protein CCCTC-binding factor (CTCF), which prevents access of the IGF2 
promoter (blue box represents the exon from the paternal chromosome) to downstream enhancers. 
The overexpression of the lncRNA H19 (pink box represents the exon from the maternal chromo-
some) in mice has a protective effect against diet-induced obesity and increased insulin sensitivity. 
In the image above, white boxes represent the repressed genes, while black lollipops represent the 
methylated CpG sites. (B) The SRA1 gene encodes for protein-coding mRNA and lncRNA Sra1. The 
lncRNA Sra1 functions as a transcription co-activator of peroxisome proliferator-activated receptor 
gamma (Pparg), which is a regulator of adipocytes differentiation and lipid accumulation. (C) The 
lncRNA ADIPINT is upregulated in obesity. This lncRNA is responsible for adipocyte size, insulin 
resistance, and pyruvate carboxylase activity. (D) Several lncRNAs have been identified to be in-
volved in the process of browning and whitening in the adipose tissue, which could serve as poten-
tial therapeutic targets. Figure created with BioRender.com (accessed on 10 January 2022). 
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Figure 1. LncRNAs associated with obesity. (A) The H19–IGF2 locus consists of a maternal unmethy-
lated (white lollipops in the image above) imprinting control region (ICR; yellow box). ICR is bound
by the insulator protein CCCTC-binding factor (CTCF), which prevents access of the IGF2 promoter
(blue box represents the exon from the paternal chromosome) to downstream enhancers. The overex-
pression of the lncRNA H19 (pink box represents the exon from the maternal chromosome) in mice
has a protective effect against diet-induced obesity and increased insulin sensitivity. In the image
above, white boxes represent the repressed genes, while black lollipops represent the methylated
CpG sites. (B) The SRA1 gene encodes for protein-coding mRNA and lncRNA Sra1. The lncRNA
Sra1 functions as a transcription co-activator of peroxisome proliferator-activated receptor gamma
(Pparg), which is a regulator of adipocytes differentiation and lipid accumulation. (C) The lncRNA
ADIPINT is upregulated in obesity. This lncRNA is responsible for adipocyte size, insulin resistance,
and pyruvate carboxylase activity. (D) Several lncRNAs have been identified to be involved in the
process of browning and whitening in the adipose tissue, which could serve as potential therapeutic
targets. Figure created with BioRender.com (accessed on 10 January 2022).

As mentioned above, there are two types of adipocytes: brown and white adipocytes.
While white adipocytes store excessive energy as trigycerides, brown adipocytes have sig-
nificantly more mitochondria than white adipocytes and burn energy to generate heat [47].
Because of the benefits of having more brown adipocytes over white ones for reducing
obesity, the interest to study brown adipose tissue (BAT) has increased in recent years [48].
For example, another well-studied lncRNA, X inactive specific transcript (XIST), regu-
lates brown preadipocytes differentiation by directly binding to CCAAT enhancer binding
protein alpha (CEBPA, also known as C/EBPα) [49]. Besides BAT, browning of WAT
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(also called as adipose tissue browning) is gaining attention as a potential therapeutic
target to induce thermogenically active adipocytes in WAT to increase energy expenditure
and counteract weight gain [50]. During adipose tissue browning, several lncRNAs have
been identified and functionally studied, including CCCTC-binding factor (zinc finger
protein)-like, opposite strand (Ctcflos) [51], FOXC2 antisense RNA 1 (FOXC2-AS1) [52], and
predicted gene 13133 (Gm13133) [53] (Figure 1D). Thus, lncRNAs might hold keys to reduce
obesity, thereby reducing CMD.

3. Cholesterol-Associated lncRNAs

Although cholesterol is needed for our body, an excessive amount of cholesterol in
blood leads to coronary artery disease (CAD, also known as atherosclerosis, a type of
cardiovascular disease), which is caused by the blockade of arteries by cholesterol and
other substances that form atherosclerotic plaques [54]. Because CAD is the third leading
cause of mortality worldwide [55], there is a high interest to understand the pathogen-
esis and potentially find cures for CAD. Besides the most well-known CAD-associated
lncRNA, ANRIL, as mentioned in the Introduction section, there are several lncRNAs
associated with CAD [56,57]. For example, the expression of the lncRNA FXYD6 anti-
sense RNA 1 (FXYD6-AS1, also known as RP11-728F11.4), is increased in atherosclerosis
plaques [58] (Figure 2A). In the cultured monocyte-derived macrophages (THP-1 cells),
lentivirus-induced overexpression of FXYD6-AS1 resulted in higher sodium–potassium
adenosine triphosphatase (Na+/K+-ATPase) activity, intracellular cholesterol accumulation,
and increased proinflammatory cytokine production. These phenotypes were also observed
in apolipoprotein E deficient (apoE)−/−mice on a C57BL/6J genetic background fed with
a Western diet (a defined mouse model of atherosclerosis as well as non-alcoholic steatohep-
atitis [59,60]), where overexpression of FXYD6-AS1 increased proinflammatory cytokine
production and augmented atherosclerotic lesions. Mechanistically, FXYD6-AS1 binds EWS
RNA-binding protein 1 (EWSR1), which binds to the promoter region of FXYD domain-
containing ion transport regulator 6 (FXYD6), the modulator of Na+/K+-ATPase. Using the
similar in vitro and in vivo experimental systems, another well-known lncRNA, KCNQ1
opposite strand/antisense transcript 1 (KCNQ1OT1), was also shown to be involved in
CAD. KCNQ1OT1 functions as a microRNA (miRNA) sponge to sequester miR-452-3p,
which binds to histone deacetylase 3 (HDAC3) and thereby inhibits the expression of ATP
binding cassette subfamily A member 1 (ABCA1) (Figure 2B). This coordinated pathway
in macrophages results in lipid accumulation and accelerates the atherosclerosis develop-
ment [61].

As exemplified by ANRIL, there are several polymorphisms in lncRNA genes as-
sociated with CAD [62,63], including growth arrest specific 5 (GAS5) [64], H19 [65–67],
HOX transcript antisense RNA (HOTAIR) [68], metastasis-associated lung adenocarci-
noma transcript 1 (MALAT1) [69–71], and tumor protein p53 pathway corepressor 1
(TP53COR1, also known as lincRNA-p21) [72]. According to the latest annotation pro-
vided by the Ensembl database [73] (https://www.ensembl.org/Homo_sapiens/Gene/
Summary?db=core;g=ENSG00000251562;r=11:65497688-65506516; accessed on 11 January
2023), there are 17 transcripts (isoforms) of MALAT1. The length of the longest transcript is
8762 nucleotides (nt). As such, a simple search of the NCBI database of genetic variation,
dbSNP database [74] (https://www.ncbi.nlm.nih.gov/snp/?term=malat1; accessed on
11 January 2023), indicates that there are 7341 records (dbSNP RefSNP IDs), suggesting
that there are many sequence variants within MALAT1 because it is a long transcript.
When the term MALAT1 was searched via the ClinVar database [75] (freely available,
public archive of human genetic variants and interpretations of their significance to dis-
ease) (https://www.ncbi.nlm.nih.gov/clinvar/?term=malat1%5Bgene%5D&redir=gene;
accessed on 11 January 2023), 14 records (e.g., ependymoma and glycogen storage disease,
type V, Bardet-Biedl syndrome) were found, further suggesting that the lncRNA polymor-
phisms are associated with various diseases, not only CAD. Not surprisingly, the longer
the lncRNA, the more genetic variations are found, which increases the chance of finding
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associated diseases. To this end, re-analysis of published GWAS studies and their data sets
is important to further identify lncRNAs in disease-suspected loci.
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Figure 2. LncRNAs associated with atherosclerosis development. (A) The lncRNA FXYD6-AS1 is
overexpressed in the patients with atherosclerosis as well as in the apoE deficient mice fed with a
Western diet. Together with EWS RNA binding protein 1 (EWSR1), FXYD6-AS1 regulates the expres-
sion of the protein-coding gene FXYD6, which is the main modulator of Na+/K+-ATPase activity.
(B) The lncRNA KCNQ1OT1 functions as a miRNA sponge. This lncRNA sequesters miR-452-3p,
which binds to histone deacetylase 3 (HDAC3) and thus inhibits the expression of ATP binding cas-
sette subfamily A member 1 (ABCA1). Phenotypically, this cascade results in lipid accumulation and
proinflammatory cytokine release in macrophages and accelerates the atherosclerotic development.
Figure created with BioRender.com (accessed on 9 December 2022).

4. Diabetes-Associated lncRNAs

Type II diabetes (T2D) is a chronic disease condition with high blood glucose level
caused by the inability of the pancreas to produce enough insulin to regulate glucose
level [76,77]. The prevalence of T2D is high, affecting approximately 6.28% of the world’s
population [78]. The causes of T2D include obesity, physical inactivity, and genetic fac-
tors [79–81]. If left untreated, T2D can cause other health problems, including CVD [82],
high blood pressure (hypertension) [83], vision loss (diabetic retinopathy) [84], and kidney
disease [85]. Thus, intensive T2D research is ongoing to understand the impact of T2D to
other health problems, including CMD. Not surprisingly, several lncRNAs are implicated
to be involved in the pathogenesis of T2D [86–89]. For example, the lncRNA, antisense
Igf2r RNA (Airn, also known as Air), is a paternally imprinted gene located in antisense
orientation to the imprinted, but maternally derived, insulin-like growth factor 2 recep-
tor (Igf2r) protein-coding gene (Figure 3A). We previously showed that Airn binds to the
RNA-binding protein, insulin-like growth factor 2 mRNA binding protein 2 (Igf2bp2, also
known as IMP2), and controls the translation of messenger RNAs (mRNAs) (e.g., biglycan,
inhibin β-A) to regulate the cardiomyocyte resistance to stress [90]. Recently, another
group reported that Airn alleviates diabetic cardiac fibrosis by regulating degradation of
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transformation-related protein 53 (Trp53, also known as p53) mRNA in N6-methyladenosine
(m6A) RNA methylation manner because Igf2bp2 is a m6A reader [91]. This study and oth-
ers clearly link the importance of lncRNAs in pathogenesis of T2D. Furthermore, lncRNAs
can be the determinants to understand how RNA metabolisms are regulated through RNA
modifications (epitranscriptomics), as we recently reviewed [92].
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Figure 3. LncRNAs associated with diabetes. (A) The lncRNA Airn is paternally imprinted and
located in antisense orientation to the maternally imprinted derived protein-coding gene Igf2r. Airn
binds to the RNA-binding protein Igf2bp2 and controls the translation of mRNAs (e.g., biglycan
and inhibin β-A) to modulate the resistance to stress in cardiomyocytes. Similarly, in diabetic
cardiac fibrosis, Airn binds to Igf2bp2 to regulate the degradation of Trp53 mRNA in a m6A manner.
(B) Several lncRNAs are involved in diabetic cardiomyopathy (DCM) by functioning as miRNA
sponges. The lncRNA DCRF sequester miR551b-5p targets protocadherin 17 mRNA to regulate
autophagy in rat cardiomyocytes. The upregulation of the lncRNA Tug1 in the DCM streptozotocin-
based mouse model leads to an increasing level of extracellular matrix and myocardial fibrosis
development. Figure created with BioRender.com (accessed on 9 December 2022).

Diabetic cardiomyopathy (DCM) is a type of CVD caused by diabetes, resulting in
contractile dysfunction and leading to heart failure [93]. Several lncRNAs have been
identified to be involved in the pathogenesis of DCM (Figure 3B). For example, the lncRNA
DCM-related factor (DCRF) functions as a miRNA sponge to sequester miR-551b-5p, which
targets protocadherin 17 (Pcdh17) to regulate autophagy in rat cardiomyocytes [94]. Another
example is the lncRNA taurine upregulated gene 1 (Tug1). It is up-regulated in the DCM
mouse model based on the intraperitoneally injection of streptozotocin (an antibiotic that
produces pancreatic islet β-cell destruction [95]), while down-regulation of Tug1 improved
cardiac function and myocardial fibrosis in the DCM mice by decreasing the levels of
extracellular matrices (e.g., collagens). Mechanistically, Tug1 binds miR-145a-5p, which
targets cofilin 2, muscle (Cfl2) [96]. Besides these two lncRNAs, there are other lncRNAs
reported to function as miRNA sponges in DCM [97–100], suggesting a popular mechanism
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of action of lncRNAs to be investigated. In this regard, several screening studies to identify
lncRNAs functioning as miRNA sponges in DCM have been conducted [101–103]. However,
it should be noted that many lncRNAs are lowly expressed compared to mRNAs and
miRNAs. Thus, it is advised that researchers investigating lncRNAs as miRNA sponges to
report the copy numbers of lncRNAs and their target miRNAs to be sure that it is possible
for the target lncRNA to be abundantly present in a target cell compared to the available
miRNA in the corresponding cell to sequester the target miRNA, which gives rise to the
phenotypes that are observed in their experimental systems.

5. Hypertension-Associated lncRNAs

Hypertension (high blood pressure) is a condition in which blood pressure is higher
than normal. According to the current guideline by the American College of Cardiol-
ogy/American Heart Association, hypertension is defined as a cut point of systolic blood
pressure (SBP) ≥130 mm Hg and/or diastolic blood pressure (DBP) ≥80 mm Hg [104]. As
the risk of hypertension increases due to the underlying conditions (e.g., diabetes and obe-
sity), it is no surprise that several lncRNAs are identified to be linked to hypertension. For
example, angiotensin II (AngII)-induced lncRNA Alivec [Angiotensin II-induced lncRNA
in vascular smooth muscle cells (VSMCs) eliciting chondrogenic phenotype] is shown to be
induced by the growth factors AngII and platelet-derived growth factor (PDGF) and the
inflammatory cytokine tumor necrosis factor α (TNF-α) via the action of the transcription
factor SRY-box transcription factor 9 (Sox9) in rat VSMCs [105] (Figure 4A). Mechanistically,
Alivec binds tropomyosin 3 (Tpm3) and heterogeneous nuclear ribonucleoprotein A2/B1
(Hnrnpa2b1) to regulate chondrogenic transformation of VSMCs implicated in vascular
dysfunction and hypertension.

Pulmonary hypertension is caused by high pressure in the blood vessels from the
heart to the lungs, which affects both the lungs and the heart [106,107]. It is characterized
by pathological changes to signaling pathways (e.g., endothelin, nitric oxide, prostacyclin,
transforming growth factor β (TGFB) signaling pathways) [108,109], and a number of lncR-
NAs have been identified to play key roles in these signaling pathways [110–113]. Besides
binding to miRNAs and RNA-binding proteins, lncRNAs can interact with DNA to regulate
the binding of epigenetic and/or transcription factors to the genome, thereby, regulating
epitranscriptomic and/or transcriptomic changes (Figure 4B). Increasing evidence suggests
that lncRNAs interact with DNA by forming triplex structures [114,115]. Recently, an inter-
esting study was published. In this study, the authors conducted a functional screening
of DNA:DNA:RNA triplex-forming lncRNA in human endothelial cells to identify the
lncRNA HIF1A antisense RNA 1 (HIF1A-AS1) [116]. HIF1A-AS1 is down-regulated in
patients suffering from pulmonary hypertension. Mechanistically, HIF1A-AS1 acts as an
adapter for the repressive human silencing hub complex (HUSH). Originally identified
as an essential lncRNA gene for the normal development of the heart and body wall in
mice [117], FOXF1 adjacent non-coding developmental regulatory RNA (FENDRR) is re-
cently shown to act in a similar mechanism as HIF1A-AS1 by forming triplex structure
in the promoter region of dynamin 1 like (DNM1L, also known as DRP1) [118]. These
two studies exemplified how the field of lncRNAs has moved from simply identifying
the binding partners (e.g., DNA, RNA, and proteins) to detailed mechanistic studies. Al-
though it has not been discussed in these original studies, an open question is whether in
such genomic regions that lncRNAs show any disease-specific or -associated mutations
or not. It is speculated that bioinformatic analysis by combining genomic mutation data
and the binding sites of lncRNAs might reveal further involvement of lncRNAs in disease
pathogeneses, including pulmonary hypertension.
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adapter for the repressive human silencing hub complex (HUSH). Another lncRNA, FENDRR, 
forms a triplex structure in the promotor region of dynamin 1 like (DNM1L). Figure created withBi-
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the repressive human silencing hub complex (HUSH). Another lncRNA, FENDRR, forms a triplex
structure in the promotor region of dynamin 1 like (DNM1L). Figure created with BioRender.com
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6. Conclusions

As summarized above, lncRNAs can be the key to unravel the pathogeneses of CMD,
which may lead to the potential cures for CMD [119]. As increasing evidence suggests
that genetic factors of CMD are important, understanding how single nucleotide poly-
morphisms (SNPs) in lncRNAs are linked to various diseases, including CMD, is urgently
needed. For this purpose, the readers are advised to explore lncRNA polymorphisms
associated with diseases through the NHGRI-EBI Catalog of human genome-wide associa-
tion studies (https://www.ebi.ac.uk/gwas/search?query=BMI) (accessed on 5 December
2022). Although there are several clinical trials underway to investigate the correlation of
lncRNA expression to different diseases as potential diagnostic biomarkers [120–123], the
therapeutic approach to use lncRNAs is still not in any clinical trials [119]. Thus, the further
mechanistic investigation of each lncRNA is necessary to advance the lncRNA therapeutics
in near future.
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