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Abstract: The complete sequence of a human genome provided our first comprehensive view of the
organization of satellite DNA associated with heterochromatin. We review how our understanding
of the genetic architecture and epigenetic properties of human centromeric DNA have advanced as
a result. Preliminary studies of human and nonhuman ape centromeres reveal complex, saltatory
mutational changes organized around distinct evolutionary layers. Pockets of regional hypomethyla-
tion within higher-order α-satellite DNA, termed centromere dip regions, appear to define the site of
kinetochore attachment in all human chromosomes, although such epigenetic features can vary even
within the same chromosome. Sequence resolution of satellite DNA is providing new insights into
centromeric function with potential implications for improving our understanding of human biology
and health.
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1. Introduction

Centromeres are essential chromosomal regions that serve as the site for spindle
attachment during mitosis and meiosis and ensure the equal and accurate segregation
of chromosomes during cell division. In almost all mammalian species, centromeres are
composed of arrays of near-identical tandem repeats, which were identified in early human
DNA centrifugation experiments as AT-rich DNA fractions termed “satellite DNA” [1–3].
For the past two decades, the majority of centromeric satellite DNA have been excluded
from human reference genomes and have been, instead, represented as unfinished sequence
gaps or simulated arrays known as “reference models” or “decoys” [4]. In addition, most
sequencing-based studies have excluded these regions as part of standard human genetic
analyses. Consequently, our understanding of the sequence organization, variation, and
evolution of human centromeres has been limited, owing to their highly repetitive nature,
large size (often megabases in length), and high sequence identity.

A series of pioneering studies based on pulsed-field gel electrophoresis, Southern
blotting, and fluorescence in situ hybridizations in the late 1980s and 1990s revealed much
about the organization of human centromeric satellite DNA [5–11]. Human centromeres
are mainly composed of six classes of repetitive DNA: α-satellite, β-satellite, G-satellite,
and three shorter motifs termed HSATI, HSATII, and HSATIII (Figure 1, Table 1). While
α-satellites are found on every chromosome in association with the primary metaphase
constriction [12–15], the other satellites are restricted to a subset of chromosomes [16–20],
chromosomal regions [21–25], or secondary constrictions [26–28], also called qh regions
(Table 1). The kinetochore is largely restricted to higher-order repeat (HOR) units of the
tandemly repeating α-satellite, which are flanked on the periphery by more divergent
monomeric α-satellite DNA followed by other classes of satellites. While the chromosome-
specific α-satellite HORs in humans were all defined by the mid-1990s, only general models
existed for how centromeres are organized and have evolved [29], with a limited under-
standing of their precise sequence composition and how they vary among human and
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nonhuman primates [30–38]. Moreover, the site of kinetochore attachment was not clearly
defined, often being inferred based on lower-resolution cytogenetic and immunohisto-
chemical experiments or through limited sequence analyses [39–41]. With the application
of long-read sequencing technologies, centromeric satellites can now be fully sequenced
and assembled [42–45]. We review the complete sequence of human centromeric satellite
DNA with an emphasis on the new insights that have emerged and how our model of
centromeric DNA has been further refined, with potential implications for improving our
understanding of human biology and health.
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Figure 1. Model of human centromeric and pericentromeric regions. Schematic of the generalized
organization of human centromeres and their flanking sequence. Major components and their
structures are shown. HORs, higher-order repeats; HSAT, human satellite. Not drawn to scale.

Table 1. Composition and abundance of repeats within human centromeric and pericentromeric regions.

Peri/Centromere
Repeat Type

Repeat Unit
Length (bp)

GC Content
(%)

Abundance inthe
T2T-CHM13 Genome

(Mbp; %)

Chromosomal Location in the T2T-CHM13 Genome

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y
α-satellite ~171 39 85.67; 2.75
β-satellite 68 52 8.61; 0.28
G-satellite ~217 59 0.65; 0.02

HSATI
42 (1A) 22 (1A) 13.39; 0.43 (1A)

2420 (1B) 24 (1B) 15.32; 0.49 (1B)
HSATII Variable 37 28.71; 0.92
HSATIII Variable 41 69.33; 2.22

Black square: >1 Mbp of sequence is present on the indicated chromosome; dark gray square: 100 kbp–1Mbp is
present; light gray square: 10–100 kbp is present; white square: <10 kbp is present. Calculations include satellites
from chromosomes 1–22, X, and Y in the T2T-CHM13 v2.0 genome.

2. A Complete Census of Centromeric Satellite DNA from One Human Genome

The Telomere-to-Telomere (T2T) Consortium recently resolved the first complete se-
quence of a human genome (T2T-CHM13) [45], and, in doing so, unveiled the sequence
composition of all human centromeres (Figure 2) [44]. There were three advances that
made this possible: (1) the use of a complete hydatidiform mole (CHM), where no allelic
variation existed to confound assembly of highly repetitive and identical haplotypes; (2) the
use of Pacific Biosciences (PacBio) high-fidelity (HiFi) sequence data, which generated a
highly accurate sequence backbone of nearly all of the human genome; and (3) the ap-
plication of ultra-long Oxford Nanopore Technologies (UL-ONT) sequence data, which
allowed sequence contigs to be effectively scaffolded. The latter was especially critical
to traverse the megabases of repetitive DNA constituting the centromeric regions of the
human genome [42–44]. Accompanying these advances in technology were a series of
rapid-fire-in-succession genome assembly algorithms, such as HiCanu [46], hifiasm [47],
and Verkko [48] that leveraged the unique attributes of the different long-read sequencing
technologies or specialized in the characterization and validation of centromeric satellite
DNA assemblies [49–51]. It should be noted that subsequent development of methods to ac-
curately phase diploid genomes [52–54] has meant that use of a CHM is no longer necessary,
and centromeres from diploid human genomes have now been readily assembled [42,44,48].
However, centromeric regions are still preferentially associated with breaks in standard
long-read sequence assemblies, such as in the Human Pangenome Reference [55].
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Figure 2. Sequence composition, DNA methylation pattern, and CENP-A chromatin organiza-
tion of each centromere in the T2T-CHM13 genome. Tracks showing the sequence composition,
frequency of methylated CpG dinucleotides, and fold-enrichment of CENP-A ChIP-seq reads over
bulk nucleosomal reads (or in the case of chromosome Y, the number of CENP-A CUT and RUN reads)
for each centromere in the T2T-CHM13 v2.0 genome. Triangular StainedGlass [56] plots indicate the
pairwise sequence identity between 5 kbp segments along each centromeric region and are colored
by sequence identity. Warmer colors indicate higher sequence identity, and colder colors indicate
lower sequence identity (as indicated in the legend).

Centromeres and their associated pericentromeric DNA are estimated to constitute
~6.2% (189 Mbp) [44] or 7.1% (221.7 Mbp, if the Y chromosome is included) [57] of the
human genome and are largely composed of megabases of α-satellite, β-satellite, G-satellite,
and three human satellites (HSATI, HSATII, HSATIII) distributed differentially among
human chromosomes (Figure 1, Table 1). It should be noted that there is no cytogenet-
ically recognized pericentromere in humans, but the term “pericentromeric DNA” was
originally used to describe the five Mbp of DNA extending on either side of the higher-
order α-satellite [36]. In humans, pericentromeric DNA contains various classes of inactive
α-satellite, almost all other forms of satellites, and large blocks of recent segmental du-
plication shared among non-homologous chromosomes [36]. It represents the transition
region to euchromatin. Later, more nuanced approaches refined this definition to represent
the haplotypes flanking the centromere, termed “cenhaps” [58], which tend to evolve as a
single chromosomal segment due to infrequent recombination and extensive linkage dise-
quilibrium [44]. In humans, α-satellite, a ~171 bp repeat, is the most abundant, spanning
85.7 Mbp (2.8%) of the human genome and almost exclusively associated with the kineto-
chore [44,45,57]. Most α-satellite DNA are organized into higher-order arrays consisting of
discrete units of monomers repeated in tandem hundreds to thousands of times and flanked
on their periphery by divergent HORs and monomeric α-satellite. While most human
chromosomes harbor more than one related α-satellite HOR array, only one HOR array is
typically associated with the kinetochore, and these are defined as “active” α-satellite HOR
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arrays. Active α-satellite HOR arrays were first identified in studies of dicentric chromo-
somes, which have one “active” and one “inactive” centromere. Using immunofluorescence
microscopy, these studies revealed that active centromeres were enriched with nucleosomes
containing the histone H3 variant CENP-A, while the inactive centromeres were not [59,60].
In general, α-satellite DNA extend contiguously with occasional interruption by mobile
element retrotransposition events or blocks of other satellite DNA (for example, the D3Z1
and D4Z1 α-satellite HOR arrays on chromosomes 3 and 4, which are disrupted by an array
of HSATI repeats). Sequence analysis reveals few examples of inversions within the HOR
units, suggesting the orientation of α-satellite is typically maintained [44].

Human centromeric α-satellites are categorized into twenty different suprachromoso-
mal families (SFs; SF1-18, SF01, and SF02), which are groups of α-satellites that are more
closely related to each other than to other groups [31,44,61–64]. The sequence identity
between α-satellite HORs in an SF is ~85–88%, and between different SFs, it is 50–85% [44].
The three main SFs, SF1-3, represent the “active” (kinetochore-binding) α-satellite HOR
arrays on all human autosomes and the X chromosome, and they are composed of either
dimeric (SF1 and SF2) or pentameric (SF3) monomer configurations [63]. The SF4 and SF5
families usually flank the active α-satellite HOR arrays and are composed of either purely
monomeric repeats (SF4) or a combination of monomeric and divergent HORs that lack
a regular repeat structure (SF5) [30,32,63]. Thirteen minor SFs (SF6-18) represent older,
more ancient α-satellite monomers that either reside on the extreme edges of centromeric
regions or are located far away from the centromere, potential relics of long-defunct ancient
centromeres [44]. Finally, SF01 and SF02 are recently defined SF classifications representing
mixtures of SFs residing in pericentromeric DNA [44,64,65].

The transition to euchromatin, based on CpG methylation profiling for most chromo-
somes, is relatively sharp [42–44,66], with the exception of the acrocentric chromosomes
(chromosomes 13, 14, 15, 21, and 22), where blocks of α-satellite extend into the short arms
of the chromosomes, interdigitating among blocks of segmental duplications (SDs) and
rDNA clusters (Figure 2). While SDs and other classes of satellite DNA map peripherally
to α-satellite centromere-associated DNA, relatively few functional protein-coding genes
have been identified within pericentromeric DNA, consistent with detailed analyses of
these regions two decades earlier, which predicted an abundance of unprocessed pseu-
dogenes [36,67]. Of the 676 potential gene annotations, only 23 correspond to validated
protein-coding genes, such as KCNJ17 and UBBP4. One of the most remarkable features
of pericentromeric DNA is the extent of interchromosomal homology among subsets of
human chromosomes (Figure 3). An analysis of various classes of satellite DNA provided
compelling evidence that β-satellite, HSATI, and HSATIII share the highest degree of
homology among the acrocentric chromosomes (Figure 3) [44]. Similarly, pericentromeric
segmental duplications are the largest and most identical among the short arms of chromo-
somes 13, 14, 15, and 22, with the intervals between the centromeric satellite and secondary
constrictions (qh regions) on chromosomes 1, 9, and 16 showing some of the highest degree
of interchromosomal homology (Figure 3) [68]. While cause and consequence are difficult
to disentangle, it is likely that this homology facilitates association of acrocentric chromo-
somes to form the nucleolus as well as ectopic exchanges and duplication among specific
subsets of nonhomologous chromosomes.

Consistent with original theoretical expectations and subsequent phylogenetic analy-
ses [29,32,34], most centromeric α-satellite HORs are organized into evolutionary layers,
with divergent α-satellites residing on the periphery and becoming increasingly more
homogenous and displaying high sequence identity within the interior [42,44]. Layers
are distinguished from more gradual decay or divergence of HORs by relatively sharp
transitions of sequence homology (see numbered arrows for Figure 4a). For some chro-
mosomes, the organization appears highly symmetrical, creating a mirror-like perspective
as first noted for chromosome 8 [42] and subsequently observed for chromosomes 17, 18,
and 19 [44]. For other centromeres, the α-satellite HOR array is more homogeneously
or asymmetrically distributed, although it should be stressed that most of our current
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understanding has been shaped by the analysis of one human genome. Given the amount
of variation observed in sequence and structure among human haplotypes, many more
complete centromeres will need to be surveyed. New analytical (e.g., NTPrism [44], HOR-
mon [69], and CentromereArchitect [70]) and visualization (e.g., StainedGlass [56]) tools
that were developed to facilitate the identification of these even higher-order patterns
within α-satellite and other satellite DNA will be important for future studies of satellite
DNA variation and evolution.
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tromeric segmental duplications. Circos plots showing sequence relationships among four different
satellite families as well as pericentromeric segmental duplications in the T2T-CHM13 genome. Con-
necting line widths for satellite families indicate the proportion of 75-mers shared between arrays
(i.e., thicker lines indicate greater overall sequence similarity between different arrays of the same
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plots indicate specificity of 75-mers proportionally, with white indicating 75-mers unique to the array,
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shows pairwise alignments between pericentromeric regions that are >1 kbp and >90% identical.
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Figure 4. The site of kinetochore attachment within the chromosome 8 centromere. (a) Schematic
showing the sequence composition, α-satellite structure, CpG methylation frequency, and CENP-A
chromatin organization of the chromosome 8 centromere in the T2T-CHM13 genome. The D8Z2
α-satellite HOR array is 2.08 Mbp long and is generally methylated, except for a 73 kbp region
enriched with nucleosomes containing the histone H3 variant CENP-A. CENP-A chromatin resides
on structurally diverse α-satellite HORs. (b) Representative images of a CHM13 chromatin fiber
showing CENP-A enrichment in a hypomethylated region. Scale bar, 1 µm. Adapted from [42].
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3. CpG Methylation and the Discovery of the DNA Site of Kinetochore Attachment

In addition to facilitating the assembly of centromeric regions, long-read sequencing
also allowed direct detection of CpG-methylated base pairs from native DNA. Initial studies
of chromosome 8 and X centromeres both observed a conspicuous region of hypomethy-
lation (approximately 61–73 kbp in length) buried within the hypermethylated active
α-satellite HOR array [42,43]. Using chromatin immunoprecipitation followed by sequenc-
ing (ChIP-seq) experiments, Logsdon was the first to show that this region was enriched for
the centromeric histone CENP-A—an observation validated by CENP-A immunostaining
on chromatin fibers [42] (Figure 4). In the case of chromosome 8, CENP-A enrichment
extended over a broader stretch of 632 kbp, but the peak enrichment centered over the
hypomethylated α-satellite HORs. Because CENP-A is a histone H3 variant specifically
associated with the centromere [71], these observations suggested that the hypomethylated
pocket represents the binding site of the functional kinetochore. The broader CENP-A
chromatin peak may represent variability in the position of CENP-A nucleosomes among a
population of cells, which has been observed on individual chromatin fibers from native
centromeres [72]. Subsequent follow-up experiments, including CUT&RUN, confirmed
these general properties on the remainder of the centromeres within the T2T-CHM13
genome [44,66]. The conspicuous hypomethylated region on each centromere was later
termed the “centromere dip region” or CDR [44,66]. Genome-wide analyses showed that
CDRs were typically constrained to 26–423 kbp in length with CENP-A enrichment ex-
tending 190–570 kbp within the active α-satellite HOR array [44]. CDRs mapped only to
the active α-satellite HOR arrays, which are typically among the largest and show the
highest degree of CpG methylation [66]. In many cases, the CDR and CENP-A enrichment
was associated with the evolutionarily youngest and recently expanded α-satellite HOR
array, although this was not a universal observation for all centromeres [44]. In the case
of chromosome 8, both the CDR and the CENP-A-enriched region mapped to a more
diverse set of α-satellite HORs (Figure 4). Similar offsets with respect to the most recently
expanded α-satellite HORs were observed for chromosomes 5, 7, and 13. Because the site
of kinetochore attachment and hypomethylation are epigenetic properties, caution should
be exercised in drawing genetic correlations with the composition of the α-satellite HORs
until more genomes and tissues have been examined. Preliminary analyses suggest that the
site of kinetochore may, in fact, vary considerably depending on the haplotype in question.

4. Variation in Centromeric Satellite Sequence and Structure

Centromeric satellites are prone to single-nucleotide and structural variation induced
by mutational processes such as unequal crossover [29] and gene conversion [73]. These
processes can result in rapid changes in satellite sequence composition, repeat structure,
and copy number. Early studies using cytogenetic and gel-based techniques revealed
that centromeric satellites often undergo repeat amplifications and contractions, which
can result in dramatic changes in satellite array size on the order of tens to thousands of
kilobases [74,75]. While the detection of large-scale variation in satellite array structure
is feasible with cytogenetic and gel-based techniques, discovery of finer-scale variation,
such as changes in satellite sequence composition or repeat structure, has been historically
difficult to achieve. With complete sequence assemblies of centromeres from multiple
human genomes [42,44,76], however, detection of these more fine-scale variants has re-
cently become attainable. A comparison of the chromosome Y DYZ3 α-satellite HOR
array from 21 diverse human genomes using high-quality sequence assemblies, for ex-
ample, recently enabled the discovery of a 36-mer α-satellite HOR in 52.4% of human
haplotypes [76] (Figure 5a). This α-satellite HOR is thought to be an ancestral version
of the canonical 34-mer α-satellite HOR, which was born out of repeated deletions of
α-satellite monomers at the 22nd monomer position. Similarly, a comparison of the chro-
mosome X DXZ1 α-satellite HOR array from seven diverse human genomes revealed the
presence of duplications spanning hundreds of kilobases in two human genomes (HG01109
and HG03492) as well as the emergence of an α-satellite HOR haplotype predominantly
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in those with African ancestry [44] (Figure 5b). Finally, pairwise sequence comparisons
of the chromosome 8 centromeric region from three human haplotypes revealed gross
variation in the sequence and structure of the D8Z2 α-satellite HOR array, with the pairwise
single-nucleotide variant sequence identity dropping down to 99.6% on average, signifi-
cantly lower than that of the pericentromeric flanking sequences [42] (Figure 5c). As more
and more human genomes are sequenced and assembled, the catalog of novel α-satellite
sequence and structural variants will become more complete, facilitating more sophisti-
cated models of human centromeric satellite variation. Such models should ultimately
distinguish both hypervariable and conserved structural features relevant to chromosome
segregation and disease.
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Figure 5. Sequence and structural variation within centromeric α-satellite HOR arrays. (a) Plots
showing the structure of the chromosome Y DYZ3 α-satellite HOR array in ten diverse hu-
man genomes, highlighting the presence of a 36-mer α-satellite HOR variant in four haplotypes
(HG002, HG01109, HG03248, and HG02572) [76]. (b) Plots showing the α-satellite HOR haplotypes
(HOR-haps) present in the chromosome X DXZ2 α-satellite HOR array in seven diverse human
genomes. Two genomes (HG01109 and HG03492) harbor a haplotype with a recent duplication,
while three others (HG01243, HG02055, and HG03098) harbor a haplotype that is especially prevalent
among those with African ancestry. Adapted from [44]. (c) Plots showing the pairwise sequence
identity between chromosome 8 centromeric regions from three human haplotypes (CHM13 and
two haplotypes from HG00733). The D8Z2 α-satellite HOR array shows variation in sequence and
structure, while the flanking sequences do not. Adapted from [42].

5. Human Centromere Evolution

Numerous comparative sequence studies between human and nonhuman genomes
have shown that centromeric satellites evolve at an accelerated pace due to the action of
mutational processes, including concerted gene evolution, saltatory amplification, and
unequal crossover [30,32,33]. Estimating the actual increase in mutation rate, however,
remains challenging due to the difficulty of sequence alignment [49], even when ortholo-
gous centromeres are completely sequenced among closely related species. Comparing the
human and chimpanzee chromosome 8 centromeres, for example, the α-satellite HOR array
is too divergent to generate a simple pairwise alignment that would permit the computation
of a mutation rate over the last six million years since speciation [42] (Figure 6a). Reliable
one-to-one alignments, however, have been made spanning the α-satellite monomeric
transition regions and, even in these more tractable portions, we find evidence of increased
allelic divergence of at least 2.2-fold. Phylogenetic reconstructions focused on the 171 bp
α-satellite monomer itself clearly show that the peripheral α-satellite repeats evolve more
slowly than the α-satellite HORs, revealing phylogenetic relationships between macaques
and humans (~25 million years ago) and defining potential ancestral centromere regions
shared among these diverse lineages [32,42]. The analysis also reveals distinct evolutionary
trajectories for the emergence of both the dimeric α-satellite (predominant among Old
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World monkeys) and the higher-order α-satellite (common to the great ape lineages). The
evolutionary turnover of α-satellite HORs is extraordinary as novel α-satellite repeats
emerge, amplify, and homogenize through mechanisms such as unequal crossover and
gene conversion—a common feature among many species [77]. Different lineages ap-
pear to have different characteristics with respect to higher levels of organization; among
orangutans, for example, composite HORs have been noted where the HOR layers show
relatively little sequence homology among themselves (Figure 6b), in contrast to Old World
monkeys, where dimeric repeat structures are distributed among all autosomes [42]. This
rapid and stereotypic evolution of centromeres has been described as a potential driving
force for speciation, due to the accumulation of sequence differences that result in highly
divergent α-satellite HOR sequences and, subsequently, cause incompatibility and repro-
ductive barrier in hybrids between closely related species [78,79]. Even within a species,
however, there is extraordinary single-nucleotide and structural variant diversity, possibly
as a result of ongoing centromeric meiotic drive to segregate more efficiently [80]. Without
this selection, centromeric satellites degrade very quickly, as is evidenced by the structure
of the inactivated human chromosome 2 centromere, which reduced from 4.04 Mbp of
α-satellite HORs to 41 kbp of divergent α-satellite monomers after the chromosome 2p/2q
fusion occurred in the ancestral human lineage (Figure 6c). In this light, it is interesting
that sequence comparisons among three human centromere 8 haplotypes show regions of
excess allelic variation and structural divergence, although the location and composition of
HORs differ among haplotypes [42] (Figure 5c). It is likely that evolutionary reconstructions
among different species will be preceded by first reconstructing the dynamic mutational
changes that distinguish major haplotypes within species and relating these changes to
relocations of kinetochore attachment. Such analyses should, in turn, lead to improved
assembly algorithms and improvements in mutational modeling of such complex regions.
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Figure 6. Evolution of centromeric satellite regions. (a) Dot matrix plot showing pairwise sequence
identity between human (CHM13) and chimpanzee chromosome 8 centromeric regions. While there
is >95% sequence identity in the monomeric α-satellite sequences and 70–80% sequence identity in the
transition regions between monomeric α-satellite and α-satellite HORs, there is almost no sequence
identity shared between sequences in the α-satellite HOR array. Despite being similar in size, the
two apes show nearly complete turnover of their α-satellite HORs, with best matches occurring at
the periphery (horizontal lines). (b) StainedGlass view [56] showing the organization and pairwise
sequence identity among 5 kbp segments across an orangutan orthologous chromosome 8 centromere.
Orangutan α-satellite HOR arrays are composed of mosaic blocks of α-satellite HORs with <95%
sequence identity shared between them. Adapted from [42]. (c,d) StainedGlass view [56] showing
the organization and pairwise sequence identity among 5 kbp segments across (c) the functional
human (CHM13) chromosome 2 centromere and (d) the vestigial human (CHM13) chromosome
2 centromere. The vestigial centromere is a remnant of the chromosome 2B centromere present in
chimpanzee. It is highly degraded and reduced in size with little obvious α-satellite HOR structure,
owing to its inactivity.

6. Future Directions

The complete sequence of a human genome has significantly advanced our understand-
ing of the sequence composition, organization, DNA methylation patterns, and chromatin
landscape of satellite DNA, but these findings only reflect that of a single human genome.
The dynamic nature (Figure 5) and rapid evolution (Figure 6) of human satellite DNA
suggest that these sequences are likely to be among the most variable among humans. As
such, one representation of satellite sequence and structure is far from sufficient, and many
more genomes will need to be sequenced to accurately model genetic variation in these re-
gions. Efforts to assess the variation of satellite sequences among the human population are
currently underway, with the Human Pangenome Reference Consortium (HPRC) expected
to sequence at least 350 diverse human genomes [81] and the T2T Consortium proposing to
finish a subset of these. Given the considerable single-nucleotide and structural variation
already observed among a subset of human centromeric haplotypes [42,44,46], it is likely
that many more genomes will need to be sequenced and assembled for the genetic diversity
of these regions to be sufficiently represented and understood. Accurately representing the
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complex forms of genetic variation in a graph-based pangenome reference, however, is an
unmet challenge requiring significant algorithmic development [82–85]. Other efforts to
generate complete and accurate assemblies of nonhuman primates are also ongoing, which
will provide the necessary outgroups to reconstruct the evolutionary history of these and
other highly dynamic regions. As the cost for long-read sequencing continues to plummet
and a USD 1000-long-read-sequenced genome comes within reach [86], we anticipate that
the generation of nearly complete, phased human genome assemblies will also become
routine. This development is especially important for individuals who have rare or complex
diseases with no known genetic or epigenetic cause, who stand to benefit from complete
sequence resolution of satellite DNA and other previously unresolved regions of their
human genome.

The availability of hundreds of thousands of genomes from both healthy and diseased
individuals will also advance our understanding of centromere biology. In particular, it
will allow one to delineate the genetic relationship between satellite DNA variation and
the site of kinetochore attachment, if one exists. It is possible and even likely that variation
in the α-satellite HOR array structure and/or chromatin landscape affects the accuracy
of chromosome segregation during cell division, and such differences may contribute
to infertility, trisomy disorders, and aneuploidy associated with cancer. Detection of
pathogenic variants within these regions, whether genetic or epigenetic, will also benefit
from combining long-read sequencing data with electronic health records from thousands
of individuals to discover significant associations with disease. Federally funded efforts,
such as the NIH All of Us Research Program, which aims to make de-identified genomic
sequencing data and medical records available, has recently embarked on a long-read
sequencing initiative to generate data from more than 10,000 genomes [87]. Such efforts
promise to accelerate research into these more complex regions of the genome and will
serve as a model for other biobank efforts in the future. Critical to this is the continued
commitment that genomic data, once de-identified, should become publicly available in
order to advance both basic and translational biomedical research. This approach, which
was initiated and widely accepted in the early days of the Human Genome Project, has
benefitted the greater scientific research communities and will continue to accelerate and
democratize genomic research as we begin to access some of the most genetically complex
and dynamic regions of our genomes.
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