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Abstract: Genetic variants on non-recombining DNA and the hierarchical order in which they
accumulate are commonly of interest. This variant hierarchy can be established and combined
with information on the population and geographic origin of the individuals carrying the variants
to find population structures and infer migration patterns. Further, individuals can be assigned
to the characterized populations, which is relevant in forensic genetics, genetic genealogy, and
epidemiologic studies. However, there is currently no straightforward method to obtain such a
variant hierarchy. Here, we introduce the software SNPtotree v1.0, which uniquely determines the
hierarchical order of variants on non-recombining DNA without error-prone manual sorting. The
algorithm uses pairwise variant comparisons to infer their relationships and integrates the combined
information into a phylogenetic tree. Variants that have contradictory pairwise relationships or
ambiguous positions in the tree are removed by the software. When benchmarked using two human
Y-chromosomal massively parallel sequencing datasets, SNPtotree outperforms traditional methods
in the accuracy of phylogenetic trees for sequencing data with high amounts of missing information.
The phylogenetic trees of variants created using SNPtotree can be used to establish and maintain
publicly available phylogeny databases to further explore genetic epidemiology and genealogy, as
well as population and forensic genetics.

Keywords: phylogenetic tree; evolutionary genetics; population genetics; haploid markers; non-
recombining DNA; SNPs; software

1. Introduction

The evolutionary history of a group of taxa can be understood and recovered by
studying a set of characters, such as DNA sequences, and their evolutionary relationships.
These can be represented in a phylogenetic tree, which is a tree-shaped hypothesis of the
degree of sequence relatedness. The taxa are represented at the tree tips, and closely related
taxa progressively converge into the internal nodes of their local most recent common
ancestors (MRCAs), which ultimately converge to the root [1,2].

Phylogenetic trees that represent the hierarchical order in which genetic variants were
accumulated over time can also be generated. This is possible for variants (polymorphisms)
on DNA regions that do not undergo recombination, such as haploid pathogens or the
human Y chromosome and mitochondrial DNA. Unravelling the hierarchical order in
which variants of non-recombining DNA were accumulated over time is highly informative
and has a wide range of applications in epidemiological research [3,4], genetic genealogy [5],
forensic genetics [6], and characterizing the genetic evolution of entire species [7,8].

To generate a phylogenetic tree for variants on non-recombining DNA, current meth-
ods utilize distance-based and character-based approaches.
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Character-based approaches are more accurate and include heuristic and probabilistic
methods [9]. Maximum Parsimony (MP) belongs to the former and generates the phyloge-
netic tree with the fewest number of character changes, irrespective of the specific mutation
from one nucleotide to another—a concept that may be too simplistic to reflect reality [2,4].
Among probabilistic methods, maximum likelihood (ML) approaches (implemented in
RAxML [10], IQ-TREE [11], PhyML [12], and MEGA [13]) generate multiple phylogenetic
trees, determine their likelihoods, and select the tree with the highest likelihood. Alter-
natively, Bayesian inference (BI) uses the likelihoods of trees to update prior information,
which is iteratively used to generate a distribution of possible phylogenetic trees and to
build a consensus tree. Contrary to MP, ML and BI consider branch lengths and transition
rates [1,2,4].

The abovementioned methods assume similar transition rates at different sites. This
oversimplification disregards site-dependent structural and functional roles, constraints,
selection processes, and time-dependent changes. Using artificial neural network-based
approaches to infer phylogenetic trees, when appropriate training data are available, can
be a way to take this information into account [14–16].

The evolution of characters (i.e., genetic variants) can be extrapolated based on the
phylogenetic tree generated using MP, ML, or BI. Using ancestral state reconstruction (ASR),
the internal nodes of the phylogenetic tree can be annotated with the most likely ancestral
states, representing the character changes over time from the tree root to the tips [1,2]. ASR
is implemented in, e.g., BEAST [17], MrBayes [18], and PastML [1]. Unfortunately, current
ASR methods can process only one character per tree [2,19–21]. For nucleotide variants,
this would require one tree for each variant position [3]. Alternatively, variants exclusively
shared by sequences defining a clade in the generated phylogenetic tree can be manually
assigned to the respective tree branch or node, representing the order in which variants
were accumulated.

ASR methods are highly dependent on the accuracy of phylogenetic trees, which is
defined as the similarity between the estimated tree and the true phylogeny. The tree’s accu-
racy is particularly uncertain when the datasets contain high amounts of relevant missing
data, which is typical for ancient or forensic samples and datasets compiled from different
sources. Depending on the total number of analyzed characters and the distribution of the
missing data among the characters, missing data can result in multiple taxa placements
with equal probability and, potentially, in inaccurate phylogenetic trees [22–26].

Traditional strategies for handling missing data include the selection of robust model-
based tree construction methods (ML, BI) or the filtering of missing data by excluding
certain taxa or characters. The latter also removes data that might not be missing in some
sequences, which can reduce phylogeny accuracies [22,25]. Machine learning-based impu-
tation of missing data has been explored specifically for distance-based approaches [27,28].
Data imputation for character-based approaches requires a reference dataset of a com-
prehensive set of variants that are comparable to those in the study data to extrapo-
late correlations between the variants. These are used to predict missing information
in the study data [29–32]. Although genomic imputation is commonly applied in genome-
wide association studies, an appropriate reference dataset is not always available [29–32].
Phylogeny-based data imputation of non-recombining haploid taxa determines the correla-
tions between variants based on the hypothesis that neighboring sites on a user-provided
phylogenetic tree are identical by descent [33]. If relevant data are missing, constructing an
accurate phylogenetic tree as the fundamental source of variant relationships may not be
possible [33].

Here, we introduce the software “SNPtotree v1.0”, which sorts biallelic variants on
non-recombining DNA into a phylogenetic tree. SNPtotree circumvents the uncertainties
introduced by missing data and is applicable even for sequencing data with substantial
amounts of missing information. The software further allows identification of the variants
that best explain the evolutionary relationships between the investigated taxa. SNPtotree
was validated on two different human Y-chromosomal massively parallel sequencing (MPS)
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datasets but is not restricted to this application. SNPtotree was benchmarked using a robust
and accurate ML-based approach. It facilitates easy creation and maintenance of variant tree
databases, renouncing error-prone manual sorting of variants into their hierarchical order.
The established phylogeny of variants can be combined with information on the geographic
spread of the individuals carrying the variants to reveal migration patterns of different
species [34]. This helps to better understand the evolution and relatedness of species or
populations [8,35,36], which may find application in genetic or forensic genealogy [37].
Further, establishing or expanding population databases is significant in forensic genetics,
e.g., due to population frequency estimations [38,39]. Additionally, the spread of haploid
pathogens is informative for prevention strategies in epidemiologic studies [3,4].

2. Materials and Methods
2.1. SNPtotree

The allelic information of previously called and aligned variants is entered into
SNPtotree, which organizes biallelic variants into a rooted phylogenetic tree.

The Python source code with detailed guidelines for SNPtotree v1.0 is publicly avail-
able at https://github.com/ZehraKoksal/SNPtotree (accessed on 20 August 2023), where
future updates and regular bug fixes will be found. SNPtotree can be run within the
terminal as described below:

python SNPtotree.py path_to_input_file.csv/ path_output_folder/ -contradictory_
variants -ambiguous_variants -metadata_individuals

The user needs to provide the paths for the input (path_to_input_file.csv/) and output
files (path_output_folder/), while the remaining arguments are optional (-contradictory_
variants and -ambiguous_variants for generating optional output files, including the vari-
ants removed due to their contradictory pairwise relationships or ambiguous positions
in the tree; -metadata_individuals for generating an optional output file specifying the
sequences carrying the respective variants in the different branches).

Figure 1 presents the three SNPtotree algorithm steps processing the input file to
generate the output files.
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Figure 1. Workflow of the SNPtotree algorithm. An input file of the ancestral (A) or derived (D) allelic
states of the polymorphic sites is required. Missing data should be indicated using an “X”. The header
row represents the individuals’ labels (S1, S2, and S3), and the first column represents the variant
names (m1, m2, m3, and m4). The algorithm consists of three steps: first (1), all pairs of variants are
compared to each other to predict the pairwise relationships. Variants with contradictory relationships
are removed. Second (2), variants that are not separable are predicted to be equal. During the process
of finding equal variants, variants with ambiguous positions in the tree are removed. Finally (3), the

https://github.com/ZehraKoksal/SNPtotree
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hierarchical variant order is inferred, and the phylogenetic tree is generated. Additional output
files (see Section 2) provide the statistical support values for each variant in the tree, and metadata
specifies the sequences carrying the respective variants in the different branches of the csv output
tree. Optional output files are marked with an asterisk.

2.1.1. Input

SNPtotree requires a tab-separated csv file as input. This format is similar to the
fundamental character-by-taxon data matrix used in phylogenetic analysis [25,40]. The
input represents taxa (here: individuals) in columns and characters (here: variants) in rows.
Only polymorphic sites are accepted in the input file. The header row and the first (index)
column should present the individuals’ labels and the variant names, respectively (Figure 1).
The SNPtotree input matrix comprises the observed allelic states (ancestral “A” or derived
“D”), while missing data is denoted with an additional character (“X”). The user-provided
information on the observed allelic states is obtained by comparison to an outgroup with
ancestral traits (e.g., due to the reference alignment of the sequencing data). This is
comparable to rooting a phylogenetic tree using ancestral outgroups. Further information
and an example input file can be found at: https://github.com/ZehraKoksal/SNPtotree,
accessed on 20 August 2023.

2.1.2. Output Files

SNPtotree provides the hierarchical order of variants in two alternative output file
formats. The more traditional phyloxml file allows annotation of nodes, branches, and tips
with variant labels. This output file can be depicted in phylogenetic tree visualization tools
that support this file format, such as the Interactive Tree Of Life (iTOL) [41].

The variant hierarchy is also stored in a tab-separated csv file. It adopts the tree
architecture employed in the database “Y-DNA Haplogroup Tree” by the International
Society of Genetic Genealogy (ISOGG). Evolutionary older variants are positioned towards
the tree root (left) and younger variants towards the tree tips (right). A variant that is
located closer to the tree tips than another variant of the same lineage is described as
“downstream”, since it succeeds the other “upstream” variant. The divergence of a clade
to downstream variants is represented by the latter occupying cells in the csv file at the
bottom right. “Equal” variants cannot be separated based on their relative relationships
to other variants and are stored in the same cell. “Parallel” variants (in sister clades) are
presented in different cells in the same column.

Associated with the csv output tree, an (n × 2)-matrix (n = number of tree branches)
can be generated in an optional metadata file. Here, the variant(s) of each tree branch
are returned in the first column, and all individuals carrying at least one of the variants
are listed in the second column. This file allows the user to connect the constructed tree
branches and their variants with the individual sequences, providing sufficient information
to correlate sequences with variants.

Statistical support values for the position of each variant represented in the tree are
given in the ‘certainty_values.csv’ file. These certainty values correspond to the fraction of
variants in the tree that support the variant’s position based on their pairwise relationships,
if these were informative (=upstream, downstream, parallel).

For examples of all output file formats, please visit the github repository via: https:
//github.com/ZehraKoksal/SNPtotree, accessed on 20 August 2023.

2.1.3. Algorithm
Pairwise Variant Comparison and Removal of Variants with Contradictory Predictions

The initial step in establishing a phylogenetic tree of variants is to determine the
hierarchical order of each pair of variants. Using the example dataset presented in Table 1,
it is demonstrated whether the variants M1 and M3 are located downstream/upstream of

https://github.com/ZehraKoksal/SNPtotree
https://github.com/ZehraKoksal/SNPtotree
https://github.com/ZehraKoksal/SNPtotree
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each other (Figure 2A), parallel to each other (Figure 2B), or equal/not separable (located
on the same branch) (Figure 2C). To establish this relationship, the allelic states between
variants M1 and M3 are compared among all sequences in a two-way pairwise comparison
(Figure 2D). Firstly, all sequences in which M1 is in the derived state are considered. For
these sequences, the observations in M3 (derived, ancestral, and missing data) can be used
for a preliminary assessment of the pairwise relationship between the two variants. This
assessment follows the rules presented in Table 2 of observable allelic states in variant
2 when considering only sequences with a derived variant 1. In the example presented,
for sequences with a derived allelic state of variant M1, the allelic state of M3 is derived,
ancestral, or missing, which indicates that M1 is upstream of M3 (Figure 2D, Table 2).
When repeating the comparison, considering sequences with derived allelic states in M3,
M1 is found in the derived state, indicating equal upstream or downstream relationships.
Finally, the consensus between both assessments is that M1 is upstream of M3. For some
variant pairs, however, the information may not be as clear. For example, in cases where the
available data was not able to fully ascertain the hierarchy of the variants, the relationship
between two variants will be characterized as “equal”. Adding more data (e.g., re-typing
sequences) could potentially help to resolve the hierarchy of variants.

Table 1. Example of an input dataset with twelve sequences and 16 variants, sorted into three main
branches (highlighted in gray).

Sequences

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

V
ar

ia
nt

s

M1 D D D A A A A A A A A A

M2 D A A A A A A A A A A A

M3 D A X A A A A A A A A A

M4 D D D A A A A A A A A A

M5 A A A D D D A A A A A A

M6 A A A D A A A A A A A A

M7 A A A D A X A A A A A A

M8 A A A D X D A A A A A A

M9 A A A A A A D D D D D X

M10 A A A A A A D A A D D A

M11 A A A A A A A A D A A A

M12 A A A A A A D A A A D A

M13 A A A A A A X D D X X D

M14 A A A A A A X D X X X A

M15 A A A A A A D X A X D A

M16 D D D D D D A X A X D A

Based on the conditions in Table 2, two-way pairwise comparisons were conducted for
all variants, and the resulting relationships between variants were analyzed to determine if
the results were consistent. When inconsistencies are observed, the involved variants have
contradictory relationships, which can be explained by recurrent mutations, backmutations,
or sequencing errors (elaborated in Supplementary Material 1.1). When contradictory find-
ings are observed, the variants causing the most contradictions are successively removed
from further analyses until no contradictory findings are observed among the remaining
variants and stored in the “contradictory variants” output file for manual inspection.
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All pairwise variant comparisons were summarized in a table that stores each vari-
ant and all its downstream variants (Table 3). Each row in Table 3 can be considered a
preliminary branch of a phylogenetic tree.
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Figure 2. To determine whether variants M1 and M3 are (A) upstream/downstream, (B) parallel,
or (C) equal to each other, (D) their pairwise relationships are assessed in a two-way comparison.
Among all sequences (S1–S12), only those sequences that have a derived allelic state for M1 (or M3
in the second comparison) are considered. All observed allelic states of the remaining variant M3
(or M1) are documented, and the resulting relationships are compared. The consensus relationship
defines the final pairwise relationship between variants M1 and M3.

Table 2. Assessment of pairwise variant relationships based on observed allelic states of variant 2
when considering sequences in which variant 1 is in the derived allelic state.

All Sequences Where Variant 1 is Derived

Variant 1 Variant 2 Variant 1 Compared to Variant 2 Is. . .

D D equal, downstream, or upstream

D D + A upstream

D A parallel or upstream

D X parallel, upstream, downstream, or equal

D D + X equal, downstream, or upstream

D A + X parallel or upstream

D A + D + X upstream
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Table 3. Each variant’s downstream variant(s) result from the two-way pairwise comparisons and
represent preliminary tree branches.

Variant Downstream Variant(s)

M1 M2, M3

M4 M2, M3

M5 M6, M7

M8 M6

M9 M10, M11, M12, M15

M10 M12

M13 M11, M14

Combining Equal Variants and the Removal of Variants with Ambiguous Results

Variants in parallel preliminary branches are compared for overlapping information
to connect clades.

Variants with identical relationships are combined and considered “equal” (i.e., located
in the same branch). Variants that have several possible (thereby “ambiguous”) positions
in the tree are removed.

Firstly, SNPtotree ensures that every variant occurs no more than once in the tree. If
possible, SNPtotree merges parallel branches that contain shared variants by combining
their preceding variants to be equal. Alternatively, the branch with lower resolution is
removed to avoid ambiguity in the tree while maximizing the tree resolution. Secondly,
SNPtotree guarantees that variants found in one individual are located on one branch and
not on several parallel branches. Variants located at branch tips are combined into a single
tree position if they are observed in derived states in the same sequence. If necessary, single
variants are removed if they are in branches parallel to the most resolved branch containing
variants of the same sequence. These conditions are integrated into the four possible
scenarios in Figure 3, where equal variants are combined and variants with ambiguous
positions in the tree are removed.
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The relationships between the 15 variants (M1 to M15) are based on the dataset in Table 1. Variants
reported in the same sequence but presented in parallel branches are highlighted in gray boxes. In
the first example (1), M1 and M4 are always found in the same allelic state in the sequences where
both variants have been typed. Since M1 and M4 have the same downstream variants (M2 and M3),
SNPtotree will consider M1 and M4 as equal. Furthermore, SNPtotree universally joins all branch tip
variants (i.e., without any downstream variants) that are sharing their immediate upstream variant to
groups of “equal” variants. Thus, M2 and M3 are considered equal as well. In the second example
(2), M5 and M8 share one of their downstream variants (M6), and M5 has the unique downstream
variant (M7). To avoid double entries, the upstream variant with fewer downstream variants (M8) is
removed if its relationships to the residual variants (M5, M7) are unknown. In the third example (3),
variants M9 and M13 share the downstream variant M11. Additionally, M9 and M13 have unique
downstream variants (M10, M12, and M14). However, there is insufficient information connecting the
two subtrees. To avoid the introduction of incorrect phylogenetic relationships, SNPtotree removes
variants with several possible positions in the tree (M13). The final example (4) presents a rule for
variants (M10 and M15), which were reported in the same state in all sequences but did not share
any downstream variants. In this example, M10, M12, and M15 are downstream of M9 (Table 1).
However, the relationship between M15 and the other variants is unknown because of missing data
from M15 in some sequences. SNPtotree removes M15 to maintain maximum depth in the tree.

Generating the Phylogenetic Tree

The updated pairwise predictions are combined to infer the most parsimonious hierar-
chical order of the variants, from the most upstream variant (root/base) to the downstream
tree branch tips. Finally, the phylogenetic tree is generated and saved in a phyloxml file
and in a tab-separated csv file.

2.2. Datasets and Nomenclature

SNPtotree was validated using two datasets of human Y-chromosomal variants with
different amounts of missing data.

The first dataset was generated from 195 individuals of the human Y-chromosomal
clade “Q”, with missing data ranging from 0 to 68% untyped bases per individual [42]. A
total of 22 variants were detected in the dataset. For ML tree construction, only unique
sequences may be included, which reduced the dataset to 51 individuals.

The second dataset comprised 46 individuals of a clade within the human Y chromo-
some, called “C”. The dataset was combined from two different sources [36,43], and the
percentages of missing data were approximately 65% and 20% in the respective sources. A
total of 4348 variants were detected in the combined dataset.

To determine the accuracy of the generated phylogenetic trees, only single nucleotide
polymorphisms (SNPs) with reported phylogenetic relationships in the ISOGG Y-DNA
Haplogroup Tree 2019–2020 (Version: 15.73) were compared. Further, to make the phylo-
genetic relationships comprehensible to the reader, the variant names (e.g., Q L232) were
labeled with the SNP names (e.g., L232) preceded by the respective branch name (e.g., Q)
as defined in the database ISOGG Y-DNA Haplogroup Tree 2019–2020 (Version: 15.73).
The nomenclature of the branches follows these rules: Within a clade, the naming of a
subsequent branch follows the pattern of adding numbers or letters lexicographically to
the name of the ancestral node, e.g., branch C1 bifurcates to C1a and C1b, and C1a splits
into C1a1, C1a2, and C1a3. Variants that were not previously reported were presented by
the GRCh37 positions in the Y chromosome.
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2.3. Maximum Likelihood Phylogenetic Trees Using RAxML

ML-based phylogenetic trees were generated using RAxML v8.2.12 [10] for both
datasets by transposing all polymorphic positions to a fasta file. The ML phylogenies were
built using the General Time-Reversible (GTR) Model with the γ model of rate heterogeneity
“ASC_GTRGAMMA” with the Lewis ascertainment bias correction to prevent an overesti-
mation of differences between sequences when using only variable sites (Supplementary
Material 1.2).

The resulting RAxML_bipartitions.X file that contains the input tree with confidence
values (0–100) on the nodes was used to illustrate the tree in the software FigTree v.1.4.4.
The trees were manually rooted in FigTree using outgroups with ancestral characters.

3. Results and Discussion
3.1. Comparing SNP Phylogeny Trees of Testdata 1 by Using SNPtotree and Maximum Likelihood
(ML) Trees

The phylogenetic hierarchy of the 22 variants identified in testdata 1 is publicly
available (ISOGG Y-DNA Haplogroup Tree 2019–2020) and presented in Figure 4A. The
figure shows that all 22 variants belong to clade Q and are presented as twelve tree branches.

The SNP phylogeny resulting from the SNPtotree analysis of testdata 1 is presented in
Figure 4B and successfully represents the hierarchy of the main branches. Of the 22 variants,
17 variants were represented in seven branches of the phylogenetic tree, which corresponds
to a resolution of 58% (7 out of 12 tree branches) compared to the database. A reduced
resolution was expected since the ISOGG Y-DNA Haplogroup Tree 2019–2020 is composed
of more sequences, representing the current understanding of the hierarchy of these SNPs.
The 17 SNPs had certainty values ranging from 0.75 to 1.0 (median = 0.88), implying
overall reliability of the SNP phylogenies that corresponded to that in the ISOGG Y-DNA
Haplogroup Tree 2019–2020 (Figure 4A).

The phylogeny of the sequences from testdata 1 based on ML analysis is presented in
Supplementary Figure S1. Phylogeny confirms that all sequences were members of clade Q1.
Bootstrap (BS) values were presented in a cladogram in Supplementary Figure S2. For most
nodes, BS values were rather low, with a predominance of BS values of 0. The BS values
increased (ranging from 7 to 100) for the split-off clades Q1a/Q1a1, Q1b1a2, and Q1b1a3.
The hierarchical order of SNPs and their five tree branches (42% resolution) is presented in
Figure 4C. It becomes evident that this approach fails to present an early separation of the
Q1a/Q1a1 clade from Q1b. The latter should instead be split into Q1b1a1(a1i2~), Q1b1a2,
and Q1b1a3. Further, the tree does not truthfully capture that the Q1b1a1a1i2~ clade has a
higher resolution compared to clades Q1a/Q1a1, Q1b1a2, and Q1b1a3.

In general, the SNP phylogeny resulting from the SNPtotree v1.0 software was closer to
the expected phylogeny compared to the one resulting from the ML-constructed tree. Both
trees separated the sister clades Q1a/Q1a1, Q1b1a2, and Q1b1a3 (Figure 4B,C). Interestingly,
these branches had rather high BS values in Supplementary Figure S2, and the sequences
comprising these branches had low amounts of missing data (Q1a/Q1a1 median: 11%;
Q1b1a2 median: 9%; Q1b1a3 median: 11%). The correlation between the amount of missing
data, BS values, and resolution of the tree branches was further investigated with a more
comprehensive dataset (see below).
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Figure 4. (A) True phylogeny of the 22 variants given in testdata 1 (taken from the ISOGG Y-DNA
Haplogroup Tree 2019–2020). Clade names, which precede the SNP names, are highlighted in bold.
Please note that a speciation event results in a split into at least two sister lineages. Testdata 1 only
contained a small subset of clade Q lineages, and only these were presented here. (B) Phylogeny of
clade Q SNPs and lineages resulting from the SNPtotree analysis. (C) Phylogeny of clade Q SNPs
and lineages resulting from ML tree construction and manual sorting.

3.2. Exploring the Correlation and Extent of Missing Data and Tree Resolution Using the
Comprehensive Testdata 2

Testdata 2 comprised 4348 variants, 2117 of which were reported SNPs with a known
phylogenetic hierarchy and 2231 of which were novel variants.

SNPtotree separated 4071 variants (out of the 4348 variants) into 81 different branches.
The phylogenetic tree was combined with the metadata output file and presented in
Supplementary Table S1. For each tree branch containing a single variant or a group of
equal variants, Supplementary Table S1 presents the corresponding individual(s) in which
at least one of these variants was found.

The phylogeny of all Y-chromosomal clade C sequences from testdata 2 based on ML
tree construction is presented in Supplementary Figure S3. The presence of known SNPs
assigned to certain clades supported the overall tree structure. The BS values ranged from
quite confident values for some clades to very low values for other clades (Supplementary
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Figure S4). In the clade introduced by the SNP AM00694 (clade C1b1), very low BS values
predominated. Interestingly, this clade consisted of sequences with a high number of
missing bases (marked in red in Supplementary Figures S3 and S4). These sequences
had missing data of 78% instead of 20% as for the majority of the sequences. This was
the consequence of combining data from different sources. The five sequences with a
high amount of missing data assigned to the C1b1-AM00694 clade were misplaced in the
presented branches and should be placed in parallel branches instead.

Sequences with high percentages of missing data cause low BS values in ML trees
because the best ML tree is generated based on a set of aligned sequences that, by chance,
will differ from those selected for the bootstrapping. When sequences contain very different
information (e.g., resulting from a large amount of missing data in the sequences), the
information contained in the best ML tree and the BS trees may also differ significantly.
A small number or total absence of overlapping tree substructures between the best ML
tree and the BS trees results in BS values that are small or 0. The consequence is an
unreliable hierarchical order of variants inferred from the sequences with lower BS values.
To illustrate this, clades with moderate BS values (clade C2b1a) and low BS values (clade
C1b1) in Supplementary Figures S3 and S4 were selected. The hierarchical order of the
variants in the respective clades was inferred from the ML-based subtrees and compared to
the hierarchies taken from the SNPtotree-based tree in Supplementary Table S1.

For the analysis of clade C2b1a, both SNPtotree and RAxML gave the same hierarchical
order of known SNPs (Supplementary Figure S5), which supports the expected phylogeny
of all known branches from testdata 2 (Supplementary Figure S6). In other words, for se-
quences with a uniform and low amount of missing data per individual (~20%), SNPtotree
and RAxML produced the same well-resolved and accurate phylogenetic tree. The same
was observed for nested clades within clade C1b1 with low amounts of missing data and
high BS values (Figure 5B,C), which were colored purple and green (according to Supple-
mentary Figures S3 and S4). For sequences with higher amounts of missing data, SNPtotree
showed higher resolution compared to ML (black-colored branches in Figure 5B,C).

In both generated SNP phylogenies (Figure 5B,C), some SNPs were located in unex-
pected positions of the tree, e.g., S10738.2 (clade C2b1a2a1a2) and Y148127 (clade C2a1a3a6)
were located within the C1b1 clade (Figure 5B,C). These may be recurrent mutations in
all individuals or sequencing errors that were not filtered out since they did not cause
contradictory relationships between markers or ambiguous positions.

Generally, we were able to show very similar or even equal SNP phylogenies resulting
from ML-constructed trees and SNPtotree when the sequences had a small number of
missing bases. However, SNPtotree requires less manual work, which reduces the risk of
human error. For sequences with a moderate to high number of missing bases, SNPtotree
presented a better-resolved SNP phylogeny.
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4. Conclusions

To date, there is no straightforward software available that sorts variants of non-
recombining DNA into their hierarchical order. When the phylogeny of linked SNPs
is of interest, maximum likelihood calculations and manual sorting of SNPs are often
performed [44,45]. However, high numbers of missing data can complicate the data analysis.
SNPtotree enables reliable sorting of SNPs into a hierarchical phylogenetic tree, even in the
presence of high numbers of missing data, since it is based on pairwise variant comparisons
that allow to extract all available information between variants. Thus, sequencing datasets
of different qualities and completeness can be combined so that SNPtotree can be used to
maintain or create phylogeny databases. These databases contribute to the understanding
of populations, species, and their respective histories by finding substructures within or
between populations. The characterization of populations may help to assign individuals
to populations, which is applicable in forensic genetics or in pathogen analysis. The latter
allows an analysis of the development of pathogens in epidemics, like those of the haploid
SARS-CoV-2 variant genomes, particularly when considering the geographic origin of
variants. This information is also relevant for migration pattern analyses in animals, which
may reveal information on an individual’s genetic genealogy and the evolution of a species.
While SNPtotree requires prior knowledge of the analyzed species, this is worth adjusting
in a future version, where sequencing data of the studied species and a reference sequence
of any ancestral species should be accepted to extend the applicability of SNPtotree to
rather unexplored species.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes14101837/s1. Supplementary Material 1.1.: Filtered recurrent
and backmutated variants; Supplementary Material 1.2.: RAxML settings; Supplementary Figure S1:
Maximum likelihood phylogeny of the Y-chromosomal clade Q presented in testdata 1. The tip labels
present one individual each and are composed of the highest resolution (or most downstream) clade
and the sequence name. Clades and tip labels highlighted in colors present clearly separated sub-
lineages. SNPs shared only by sequences of certain clades are labeled at the respective clade branch or
node. The tree was manually rooted with an ancestral outgroup (sample HGDP00449); Supplementary
Figure S2: Maximum likelihood phylogeny of the Y-chromosomal clade Q from testdata 1 shown
as a cladogram to present the bootstrap values; Supplementary Figure S3: Maximum likelihood
phylogeny of the Y-chromosomal clade C from testdata 2. The tip labels present one individual each
and are composed of the highest resolution (or most downstream) clade and the sequence name.
Branches that are highlighted in color present clearly separated sub-lineages. One SNP shared only
by sequences of certain sub-lineages is labeled at the respective clade branches or nodes. A total of
eight sequences with a missing data fraction of 76% (instead of the usual 20% per sequence) were
marked in red. SNPs were exclusively reported in sequences of a clade, except for the red-marked
sequences. In these cases, the SNP label is followed by an asterisk. The tree was manually rooted
with four ancestral outgroup sequences; Supplementary Figure S4: Maximum likelihood phylogeny
of the Y-chromosomal clade C from testdata 2 shown as a cladogram to present the bootstrap values;
Supplementary Figure S5: Phylogeny of clade C2b1a from dataset 2 as an example of a clade with
moderate bootstrapping values in a ML-based phylogenetic tree. The same phylogeny was obtained
using softwares SNPtotree v1.0 and RAxML v8.2.12; Supplementary Figure S6: True phylogeny of
the already reported SNPs from the nested clade C2b1a from dataset 2 (taken from ISOGG Y-DNA
Haplogroup Tree 2019–2020). For each clade, only one SNP is reported for simplification of the tree;
Supplementary Table S1: Phylogeny of human Y-chromosomal clade C resulting from SNPtotree
analysis.
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