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Abstract: Phenotypicheterogeneity is a phenomenon in which distinct phenotypes can develop in
individuals bearing pathogenic variants in the same gene. Genetic factors, gene interactions, and
environmental factors are usually considered the key mechanisms of this phenomenon. Phenotypic
heterogeneity may impact the prognosis of the disease severity and symptoms. In our work, we
used publicly available data on the association between genetic variants and Mendelian disease
to investigate the genetic factors (such as the intragenic localization and type of a variant) driving
the heterogeneity of gene–disease relationships. First, we showed that genes linked to multiple
rare diseases (GMDs) are more constrained and tend to encode more transcripts with high levels
of expression across tissues. Next, we assessed the role of variant localization and variant types
in specifying the exact phenotype for GMD variants. We discovered that none of these factors is
sufficient to explain the phenomenon of such heterogeneous gene–disease relationships. In total, we
identified only 38 genes with a weak trend towards significant differences in variant localization
and 30 genes with nominal significant differences in variant type for the two associated disorders.
Remarkably, four of these genes showed significant differences in both tests. At the same time, our
analysis suggests that variant localization and type are more important for genes linked to autosomal
dominant disease. Taken together, our results emphasize the gene-level factors dissecting distinct
Mendelian diseases linked to one common gene based on open-access genetic data and highlight the
importance of exploring other factors that contributed to phenotypic heterogeneity.

Keywords: rare disease; genetic variants; phenotypic heterogeneity; variant localization; variant
interpretation

1. Introduction

Next-generation sequencing (NGS) is increasingly being utilized in biomedical re-
search as a powerful tool for identifying causal genetic variation behind hereditary diseases.
NGS results are also important for the selection of targeted therapies, prediction of treat-
ment responses for cancer, and evaluation of individual drug sensitivity. Numerous genetic
variants are discovered in a single NGS-based experiment; however, identifying the causal
variant(s) for a certain phenotype is a serious challenge in medical genetics. Thus, ∼40%
of variants are still classified as variants of uncertain significance according to internation-
ally accepted recommendations developed by the American College of Medical Genetics
(ACMG) (reviewed in [1]). The clinical classification of genetic variants includes rigorous
criteria for assessing their pathogenicity, and these criteria are based on allele frequency
data, familial segregation studies, results of computational prediction of pathogenicity, and
functional evidence, such as variant location in functionally crucial domains [2]. To clarify
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the recommendations and improve exception management, refined sets of ACMG-derived
guidelines have been proposed by Sherloc [3] and the Clinical Genome Resource Sequence
Variant Interpretation Working Group [4].

Phenotypic heterogeneity is one of the complicating factors of variant interpretation.
The term “phenotypic heterogeneity” refers to the variation in disease severity (or even the
development of distinct diseases) in individuals carrying pathogenic variants in the same
gene (or even the same genotype). The phenotypic heterogeneity has been observed in
phenotypically distinct groups of disorders. Notable examples include beta-thalassemias [5]
or different types of cardiomyopathies caused by mutations in ANKRD1 [6]. In cystic
fibrosis, for example, individuals with the same mutations in the causal CFTR gene can
exhibit varying degrees of lung disease and pancreatic insufficiency [7]. In another notable
case, divergent clinical manifestation has been observed even within family members with
Brugada syndrome [8].

A particular subtype of phenotypic heterogeneity is the phenomenon of multiple dis-
eases associated with the same gene, which we denote as heterogeneous gene–disease rela-
tionships. In some cases, a single gene can be linked to more than 5 diseases. An example of
such a gene is LMNA which encodes nuclear lamin A/C, an important structural component
involved in a wide range of molecular processes from nuclear and chromatin organization
to DNA repair [9]. There are as many as 11 distinct conditions linked to LMNA, including
muscular dystrophies (OMIM:181350, OMIM:616516, OMIM:613205), inherited cardiac
conditions (OMIM:115200) involving forms associated with hypergonadotropic hypogo-
nadism (OMIM:212112) or brachydactyly (OMIM:610140), genodermatosis (OMIM:619793),
neuropathy (OMIM:605588), lipodystrophy (OMIM:151660, OMIM:248370) and premature
aging disorders (OMIM:176670).

The medical community still lacks a consensus regarding lumping diverse phenotypic
observations associated with the same genotype into one disease with sub-types or splitting
into independent nosological entities to better reflect the disease’s nature. Several criteria
were proposed by Thaxton et al. to decide individual cases [10]. The suggestions include
the comparison of sets of phenotype features between family members and reviewing
previous findings, as well as estimating the inheritance modes and molecular mechanisms
of observed conditions.

Penetrance, expressivity, and genetic pleiotropy are among the underlying contribut-
ing factors to phenotypic heterogeneity, arising from various causes, including genetic,
epigenetic, and environmental influences (reviewed in [11,12]). However, it is not clear
what features of the genes are correlated with the observed heterogeneity. At the level of
individual genetic variants, variant localization and type might be important for pheno-
type determination in genes linked to multiple diseases. For example, variants in CDC42
located in different parts of this gene can disturb the intracellular signaling function of
the gene product in different ways, thus causing various developmental phenotypes [13].
The connection between mutation type and phenotype severity can be well illustrated
by the GLUT1 deficiency syndrome, in which milder symptoms develop in patients with
missense mutations in contrast to more severe phenotype resulting from causal predicted
loss-of-function (pLoF) variants [14].

The dissection of variant features that play a role in gene–disease relationships is impor-
tant for a better understanding of the disease’s nature and more precise clinical diagnosing.
However, no systematic analysis of the relative importance of the above-mentioned gene-level
factors has yet been performed on publicly available datasets. Hence, in this study, we ex-
plored common features of genes linked to multiple rare diseases and properties of genetic
variants that might explain the phenomenon of phenotypic heterogeneity in such genes.

2. Materials and Methods
2.1. Data Collection

Information about the association between human genes and rare diseases, inheritance
patterns, and phenotypic terms associated with each disease was retrieved from the Human
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Phenotype Ontology (HPO) [15]. For further analysis, polygenic, somatic diseases, and
provisional gene–disease associations were filtered out.

For the analysis of constraint, we obtained Loss-of-function Observed/Expected Upper
Fraction (LOEUF) scores from the Genome Aggregation Database (gnomAD) gene-level
summary statistics [16]. These scores were pre-ranked and binned into deciles ranging from
0 (most pLoF-depleted/constrained) to 9 (not pLoF-depleted/constrained). Additionally,
the probability of Loss-of-function Intolerance (pLI) was used to separate genes into LoF-
tolerant (pLI ≤ 0.1) or intolerant (pLI ≥ 0.9). Genes with 0.1 < pLI < 0.9 were considered
to be ones with uncertain LoF-tolerance status.

For isoform expression analysis, we acquired the Genotype-Tissue Expression (GTEx)
V8 transcript expression dataset from the GTEx web portal [17]. The median gene expres-
sion level was employed to assess the number of expressed isoforms (expression value of
TPM > 5 in at least one tissue was used as a cutoff to designate the expressed transcripts).

Information about the genetic variants linked to rare diseases was obtained from the
NCBI ClinVar database. We extracted all variants marked as pathogenic (P) and likely
pathogenic (LP) in ClinVar as of 3 September 2023 [18]. The relationship between each
variant and disease was ascertained using the OMIM identifier provided for each variant
by ClinVar.

2.2. Gene-Set Enrichment Analysis

To explore shared biological processes and phenotypic traits for genes with multiple
diseases, we conducted an enrichment analysis using the clusterProfiler R package [19]. We
utilized the Molecular Signatures Database (MSigDB) collections for H. sapiens (canonical
pathways (C2.CP) and Human Phenotype Ontology (C5.HPO)). Term–gene associations
were retrieved by the msigdbr v. 7.5.1 R package. All genes included in our dataset were
used as a universe during enrichment testing.

2.3. Phenotypic Similarity Analysis

For each pair of diseases associated with a single gene, we estimated the similarity of
phenotypic features denoted in HPO terms. The terms were lifted to upper-level HPO terms
(i.e., direct descendants of phenotypic abnormality) by a custom script, and the Jaccard
index was estimated using sets of upper-level terms for each pair of diseases. The ontobio
package in Python 3.9 was used for this purpose (https://github.com/biolink/ontobio
(accessed on 28 September 2023)). Similarity scores for random pairs of disorders linked to
different genes were used as a baseline for comparison.

2.4. Statistical Analysis of Within-Gene Distribution and Type of Variants

We conducted a statistical analysis of the within-gene distribution of variants to
determine the impact of variant localization in the coding sequence on the development of
different diseases associated with a single gene. The analysis was restricted to genes with
two linked diseases. Two different versions of this analysis were conducted: (i) splitting
a gene’s CDS into a fixed number of intervals of equal size and (ii) using the annotated
protein domain boundaries.

In the first case,we obtained a list of canonical transcripts of selected genes from
Ensembl BioMart [20] and collected the CDSs regions annotated for the canonical transcript
in GENCODE v. 44 genome annotation. We then divided each coding transcript sequence
into n intervals of equal length and used the BedTool package for Python to intersect each
interval with locations of ClinVar P/LP variants linked to each of the diseases separately.
This resulted in a table with the number of variants in each bin associated with each of the
two diseases. We then filtered out genes that had less than five variants associated with
each of the traits.

For the second version of the analysis, the UniProt domain mapping to the reference
genome was obtained from the UCSC table browser [21]. Genes with less than 2 and more
than 11 domains were filtered out, and P/LP variants were counted within each domain.

https://github.com/biolink/ontobio
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Fisher’s exact test was used to assess the significance of the differences in the location of
variants for diseases.

Additionally, we performed a statistical comparison of the proportion of variants of
different types (i.e., missense or pLoF) linked to different diseases in the same gene. To do
so, we calculated the total number of missense and pLoF (i.e., stop gained, splice site, or
frameshift) variants for each disease and compared them using Fisher’s exact test.

2.5. Data and Code Availability

All data and code pertinent to the analysis presented in this work are available at
https://github.com/tanya-lazareva/phenohet.git (accessed on 8 October 2023).

3. Results
3.1. Common Properties of Genes Linked to Multiple Rare Diseases

To understand the genetic basis of phenotypic heterogeneity in rare diseases, we first
attempted to identify the common features of genes linked to multiple distinct disorders. To
conduct such an analysis, we started by collecting data on gene–disease associations from
the HPO database. In total, we identified 4211 genes that are related to 5671 Mendelian
diseases from OMIM. Interestingly, 18.3% (1035) of those exhibit associations with two or
more conditions. We next went on to compare these genes (denoted as Genes with Multiple
associated Diseases, GMD) to genes linked to exactly 1 rare disease (denoted as Genes with
a Single associated Disease, GSD). We first compared the degree of constraint of these genes
using the pLI and LOEUF metrics provided by gnomAD. The comparison showed that
a greater proportion of GMDs are sensitive (or intolerant) to pLoF variants compared to
GSDs (Figure 1b) (p-value in chi-squared test = 5.5 × 10−5). Similarly, the distribution of
LOEUF for genes with phenotypic heterogeneity, as illustrated on Figure 1a, also shows a
greater degree of constraint for these genes. It suggests that GMDs are subjected to greater
constraints and are potentially involved in a broad range of biological processes. Furthermore,
the isoform expression analysis revealed that the number of expressed transcript isoforms
is consistently higher for GMDs (Figure 1c) (Wilcoxon test, p-value = 9.5 × 10−11). At the
next stage of the analysis, we compared the total number of upper-level human phenotype
terms described for GMDs and GSDs. Figure 1d shows that GMDs are associated with more
upper-level HPO terms compared to GSDs. This observation also confirms that variants in
GMDs have a greater impact on the human phenotype, in line with the greater functional
importance of these genes.

We then tried to identify the biological processes and disease groups associated with
GMDs. To do so, we performed a gene-set enrichment analysis of the complete list of
GMDs using gene annotations from MsigDB (see Section 2). The enrichment analysis
revealed that GMDs are overrepresented in gene sets associated with oncogenesis, muscle
contraction (including heart muscle contraction), tyrosine kinases receptor-mediated, and
platelet-derived growth factor signaling pathways (Figure 1e). In concordance with these
observations, a set of GMDs was enriched with genes associated with neuromuscular
abnormalities (Figure 1f).

Next, we explored the inheritance pattern of diseases associated with GMDs, focusing on
genes with exactly 2 associated diseases. We split genes into 4 groups based on the inheritance
pattern of the associated diseases (i.e., 2AD—both diseases have autosomal dominant (AD)
inheritance mode, 2AR—both are autosomal recessive (AR), AD&AR—the two diseases have
different inheritance patterns (AD and AR), and 2XL—genes with X-linked inheritance (all
genes located on the X chromosome were grouped due to their relatively low number)).
As can be seen from Figure 2a, the number of genes with mixed inheritance patterns
(AD&AR) is comparable to the number of ones with 2AD and 2AR inheritance modes of
associated diseases. This finding suggests that differences in inheritance patterns could
account only for a fraction of phenotypic heterogeneity in GMDs, and other factors are
also involved in phenotype determination. At the same time, the proportion of strictly AR

https://github.com/tanya-lazareva/phenohet.git
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genes is significantly decreased among GMDs compared to GSDs, corroborating the results
of constraint analysis (Figure 1b).

Figure 1. General description of genes linked to multiple genetic disorders. (a) A histogram showing
the number of genes in each LOEUF decile among genes with 1 (GSD) or with 2 and more associated
(GMD) rare diseases. (b) Proportion of genes that are tolerant (pLI ≤ 0.1) or intolerant (pLI ≥ 0.9) to
loss-of-function mutations for genes linked to strictly 1 disease or 2 and more diseases. (c) Histogram
showing the distribution of the number of expressed transcripts (>5 TPM in at least one tissue according
to the Genotype-Tissue Expression (GTEx) data) for GSDs and GMDs. (d) Plots representing the number
of upper-level Human Phenotype Ontology (HPO) terms annotated for the two groups of genes. (e,f) Dot
plots showing the results of enrichment analysis of genes linked to 2 or more rare diseases. Enrichment
analysis against genes from MSigDB-derived canonical pathways (e) or HPO terms (f) are shown.
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Figure 2. The proportion of shared pathogenic variants does not correlate with inheritance patterns
or phenotypic similarity of the diseases linked to GMDs. (a) A bar plot showing the number of genes
linked to two autosomal recessive (AR), one autosomal dominant and autosomal recessive (AD&AR),
two autosomal dominant (AD), X-linked (XL) diseases and diseases with uncertain inheritance mode
in GMDs and GSDs. (b) Plots representing the proportion of variants linked to both diseases for
genes in each inheritance pattern group. (c) Correlation between the phenotypic similarity between
the two diseases linked to the same gene in each inheritance pattern group and abundance of P/LP
variants described for two disorders. (d) Review status of P/LP ClinVar variants associated with one
or both diseases linked to genes with exactly 2 described rare disorders.

During our analysis, we noticed that pathogenic (P) and likely pathogenic (LP) variants
linked to both diseases in a GMD have been described in ClinVar for 458 genes. We hy-
pothesized that these variants, termed “pleiotropic”, could be prevalent in genes associated
with two diseases that possess distinct inheritance patterns, namely AD and AR. In other
words, if the zygosity of the pathogenic allele is important for phenotype specification,
more pathogenic alleles should be shared between the two diseases in the AD&AR genes.
However, the proportion of shared pathogenic alleles was the greatest for the 2AR genes
(Figure 2b). This suggests that the abundance of “pleiotropic” variants does not depend on
the inheritance pattern of the associated disorders. We next hypothesized that the share of
pleiotropic variants should be higher for GMDs with greater phenotypic similarity of the
corresponding diseases. However, as can be seen in Figure 2c, no correlation was observed
between phenotypic similarity and the percent of shared P/LP variants between pairs of
monogenic disorders linked to one GMD. Therefore, we can assume that the abundance of
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“pleiotropic” variants can be explained by inaccuracies in variant annotation in open-access
datasets, despite the fact that most P/LP variants in GMDs are supported by assertion
criteria of from multiple submitters (Figure 2d).

3.2. The Effects of Variant Localization and Type on the Phenotypic Outcome

Having characterized the properties of GMDs and the associated disorders, we next
went on to assess the contribution of different genetic factors to phenotypic heterogeneity in
such genes. We decided to limit our analysis to two clearly defined properties of a genetic
variant: its intragenic localization and functional type.

Different parts of the same gene may encode distinct functional domains of the protein
product. Consequently, the impact of variants located in various domains may differently
influence the development of particular phenotypes [22]. To examine the effect of variant
localization within coding sequence on disease development, we analyzed GMDs linked to
exactly 2 conditions that have 5 or more variants annotated as causal for each disease in ClinVar.
As a first step in our analysis, we evaluated the effect of variant localization by splitting the
CDS of a gene into 5 equally sized bins and calculating the number of variants in each bin
(Figure 3a, see Section 2 for a more detailed description of the procedure).

Inspection of the results of the test using quantile-quantile plot (Supplementary Figure S2a)
showed only a slight deviation from the expectation, suggesting that the effects of variant
localization are either low or masked by other confounding factors. At the same time, we
managed to identify several genes that reached FDR-adjusted statistical significance in the
test, namely CDKN1C, CREBBP, OCRL, and SPTB. Moreover, when pleiotropic (i.e., linked
to both diseases) variants were removed, much greater inflation of the test statistic was
observed (Supplementary Figure S2b), and 13 genes reached FDR-adjusted significance.
This observation suggests that the effects of variant localization are pronounced, but masked
by noise in variant–disease annotations (Table 1, Supplementary Table S2).

We next went on to investigate which properties of the genes correlate with the effect
of variant localization on phenotype. To this end, we split all GMDs into two groups based
on the nominal p-value of the variant localization test. Such analysis showed that 2AD
genes, as well as more constrained genes according to pLI (Figure 3b,c), appear to be more
abundant in the group GMDs with a significant effect of variant localization. Given this
relationship between the AD inheritance pattern and the impact of variant localization on
the phenotype, we next compared the phenotypic similarity between diseases linked to
GMDs in the 2AD inheritance pattern category. Remarkably, diseases linked to genes with
significant effects of variant position exhibited lower similarity (Supplementary Figure S3).
This result suggests that different AD diseases caused by variants in different parts of the
same gene tend to have different phenotypic manifestations.

Given the aforementioned result, we next questioned whether a more significant
effect of variant localization on phenotypic heterogeneity can be observed when splitting
the transcript length into two parts instead of five. Our analysis revealed that splitting
the coding region into two parts did not result in significant differences compared to the
previously described 5-bin test. However, four genes (ATM, DHH, EYA4, NALCN) showed
significant differences in the localization of causal variants for the two associated diseases
only when the coding sequence was split into two parts. At the same time, the significance
of variant localization differences was lost for 14 genes (CENPJ, DEAF1, DMD, HTRA1,
KCNQ2, KLHL7, MADD, NOTCH1, NOTCH2, OCRL, ROR2, SETBP1, SPTBN2, STUB1)
when splitting the CDS into two parts instead of five (Supplementary Figure S2c). This
suggests that more complex gene structures rather than N- and C-terminal regions might
be involved in the pathogenesis of different diseases linked to GMDs.



Genes 2023, 14, 2100 8 of 15

Figure 3. The influence of the variant localization on the observed phenotype. (a) A schematic
illustration of the workflow of analysis of variant distribution within the coding sequence of the genes
with 2 associated diseases. (b,c) The proportion of genes in different inheritance pattern categories
(2AD, AD&AR, 2AR, 2XL) (b) or different LoF-tolerance groups (c) for genes with or without weak
nominally significant (p < 0.1) differences in the distribution of variants for the two associated diseases.

Next, we hypothesized that the detection of differences in the localization of causal
variants for distinct diseases associated with a common gene would be facilitated by
considering the protein domain structure. Assuming that protein domains have different
functions, one could expect that variants associated with different disorders could be in
different domains of the same protein. Therefore, we tried to compare the number of
P/LP variants associated with each disease that are in different domains of the same GMD
(Figure 4a, see Section 2 for a more detailed description of the procedure). We anticipated
that the test would identify more GMDs with significant differences in disease-causing
variants abundance across domains. We were able to retrieve protein domain coordinates
for 362 genes linked to exactly two rare diseases, and 2 or more domains were annotated
for 217 of these genes (Figure 4b). Contrary to our expectations, only FLT4 reached FDR-
adjusted statistical significance in the test, and only 6 genes reached nominal significance
(ABCA12, CREBBP, HSD17B4, OCRL, SMARCA2, TEK) (Supplementary Figure S4a). A
slightly better result was achieved when removing the pleiotropic variants, with two genes
exhibiting FDR-adjusted statistical significance (CREBBP and FLT4) and 6 genes showing
nominal significance (ABCA12, BTK, OCRL, PDE10A, SMARCA2, and TEK) (Supplementary
Figure S4b).
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Table 1. Genes that show significant differences (FDR-adjusted p-value < 0.05) in analysis of causal
variant localization for 2 associated monogenic diseases.

Gene Associated Disease OMIM Identifier

CDS Quintiles
with Causal Vari-
ants Prevalence
†

CDKN1C Beckwith–Wiedemann syndrome OMIM:130650 II,IV,V
IMAGE syndrome OMIM:614732 I

CREBBP Rubinstein–Taybi syndrome 1 OMIM:180849 II, III, V
Menke–Hennekam syndrome 1 OMIM:618332 II

DEAF1 ‡ Neurodevelopmental disorder with hypotonia, impaired expressive lan-
guage, and with or without seizures

OMIM:617171 II, IV

Vulto–van Silfout–de Vries syndrome OMIM:615828 III
FLT4 ‡ Lymphatic malformation 1 OMIM:153100 I, II

Congenital heart defects, multiple types, 7 OMIM:618780 I,IV
FN1 ‡ Glomerulopathy with fibronectin deposits 2 OMIM:601894 II

Spondylometaphyseal dysplasia, corner fracture type OMIM:184255 V
F8 ‡ Hemophilia A OMIM:306700 I, V

Thrombophilia 13, X-linked, due to factor VIII defect OMIM:301071 I
KMT2D ‡ Branchial arch abnormalities, choanal atresia, athelia, hearing loss, and

hypothyroidism syndrome
OMIM:620186 II

Kabuki syndrome 1 OMIM:147920 I, II, IV
MAF ‡ Ayme-Gripp syndrome OMIM:601088 II, V

Cataract 21, multiple types OMIM:610202 II
NFIX ‡ Marshall-Smith syndrome OMIM:602535 I, IV

Malan syndrome OMIM:614753 I, II
OCRL Dent disease 2 OMIM:300555 I, III

Lowe syndrome OMIM:309000 II, III
SETBP1 ‡ Intellectual developmental disorder, autosomal dominant 29 OMIM:616078 II

Schinzel-Giedion midface retraction syndrome OMIM:269150 III
SPTB Spherocytosis type 2 OMIM:616649 II, IV, V

Elliptocytosis-3 OMIM:617948 I
SRCAP ‡ Developmental delay, hypotonia, musculoskeletal defects, and behavioral

abnormalities
OMIM:619595 -

Floating-Harbor syndrome OMIM:136140 IV
† Coding region in which causal variants are more prevalent for a particular disease compared to a uniform
expectation. ‡ Genes that show significant differences in localization of causal variants only after removal of
pleiotropic variants from the dataset.

The last factor that may determine the development of a specific disease associated
with GMDs is the type of causal variant. To test the relevance of this factor for phenotype
determination, we compared the proportion of missense and pLoF variants between two dis-
eases linked to the same GMD (Figure 5a, see Section 2 for a more detailed description of the
procedure). As can be seen from the quantile-quantile plot in Supplementary Figure S2d,
more substantial deviations from the expectation were observed in the variant type-
based test compared to the variant localization-based case. In total, 13 genes reached
FDR-adjusted statistical significance (CAPN3, CDKN1C, COL4A3, CREBBP, FLT4, KCNQ2,
KMT2D, NALCN, NOTCH2, SLC12A6, SLC26A4, SMARCA4, SMC1A). The predominant
type of causal variants for each disease linked to GMDs could be observed in Table 2. In-
significant association of the test result with the constraint metrics (p-value in chi-squared
test = 0.0522) have been observed (Figure 5c). At the same time, differences in the type of
causal variants also show a significant association with the mode of inheritance of associ-
ated diseases (p-value in chi-squared test = 0.0043) (Figure 5b), especially for genes linked
to AD diseases, which is consistent with previous studies [23].
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Figure 4. The influence of the variant distribution within protein domains on the observed phenotype.
(a) A schematic illustration of the workflow of analysis of variant distribution within protein domains
in GMDs with exactly 2 associated diseases. (b) Histogram showing the number of domains annotated
to coordinates of GMDs with exactly 2 associated conditions. (c) Venn diagram illustrating the
intersection between genes showed “nominal” significant differences in P/LP variants localization
when CDS was split into 5 bins (5 bins), 2 parts (2 bins), and based on protein domains (domain
boundaries).

Table 2. Genes that show significant differences (FDR-adjusted p-value < 0.05) in analysis of causal
variant type proportions for 2 associated monogenic diseases.

Gene Associated Disease OMIM Identifier Causal Variant Count
Missense pLoF

CAPN3 Muscular dystrophy, limb-girdle, autosomal recessive 1 OMIM:253600 67 109
Muscular dystrophy, limb-girdle, autosomal dominant 4 OMIM:618129 15 3

CDKN1C Beckwith–Wiedemann syndrome OMIM:130650 5 55
IMAGE syndrome OMIM:614732 7 1

COL4A3 Alport syndrome 3, autosomal dominant OMIM:104200 68 23
Alport syndrome 2, autosomal recessive OMIM:203780 51 65

CREBBP Rubinstein–Taybi syndrome 1 OMIM:180849 8 76
Menke–Hennekam syndrome 1 OMIM:618332 5 1

FLT4 Lymphatic malformation 1 OMIM:153100 13 0
Congenital heart defects, multiple types, 7 OMIM:618780 0 7

KCNQ2 Seizures, benign neonatal, 1 OMIM:121200 69 25
Developmental and epileptic encephalopathy 7 OMIM:613720 115 13

KMT2D Kabuki syndrome 1 OMIM:147920 42 221
Branchial arch abnormalities, choanal atresia, athelia, hearing
loss, and hypothyroidism syndrome

OMIM:620186 6 0

NALCN Hypotonia, infantile, with psychomotor retardation and char-
acteristic facies 1

OMIM:615419 5 11

Congenital contractures of the limbs and face, hypotonia, and
developmental delay

OMIM:616266 31 2
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Table 2. Cont.

Gene Associated Disease OMIM Identifier Causal Variant Count
Missense pLoF

NOTCH2 Hajdu-Cheney syndrome OMIM:102500 0 15
Alagille syndrome-2 OMIM:610205 5 1

SLC12A6 Agenesis of the corpus callosum with peripheral neuropathy OMIM:218000 0 42
Charcot-Marie-Tooth disease, axonal, type 2 OMIM:620068 5 0

SLC26A4 Pendred syndrome OMIM:274600 71 49
Deafness, autosomal recessive 4, with enlarged vestibular
aqueduct

OMIM:600791 96 21

SMARCA4 Rhabdoid tumor predisposition syndrome-2 OMIM:613325 2 38
Coffin-Siris syndrome-4 OMIM:614609 8 0

SMC1A Cornelia de Lange syndrome 2 OMIM:300590 49 21
Developmental and epileptic encephalopathy 85, with or with-
out midline brain defects

OMIM:301044 2 10

Figure 5. The influence of the variant type on the observed phenotype. (a) A schematic illustration
of the workflow of analysis of variant type proportion within the coding sequence of the genes
with 2 associated diseases. (b,c) The proportion of genes in different inheritance pattern categories
(2AD, AD&AR, 2AR, 2XL) (b) or different LoF-tolerance groups (c) for genes with or without weak
nominally significant (p < 0.1) differences in variant type proportions.

4. Discussion

Identifying the causal variant among hundreds of thousands detected by NGS meth-
ods remains a significant challenge in medical genetics. The issue is complicated by the
phenotypic heterogeneity, which hinders the ascertainment of the link between pathogenic
variant(s) and the observed phenotype. In our work, we made an effort to dissect the molec-
ular mechanisms of this phenomenon by investigating the properties of genetic variation
in GMDs.
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Our analysis revealed that around 20% of Mendelian disease genes are associated with
two or more diseases according to the OMIM/HPO data. These GMDs are more conserved
compared to GSDs and are significantly enriched for genes involved in muscle contraction and
dilated and hypertrophic cardiomyopathy pathways (Figure 1e,f). These findings corroborate
previous studies of inherited cardiac disorders [6,8,24] and movements disorders [25].

To elucidate the origin of the phenomenon, we analyzed genetic factors that could
influence the phenotypic outcome. Specifically, we examined the type of causal variant
and its location within a coding sequence. These two factors are arguably the most clearly
defined properties of a genetic variant; however, it appears likely that other variant features
may play a role in phenotypic heterogeneity. For example, the exact conformational changes
imposed by a variant may affect the function of the protein and, hence, be important for
phenotypic heterogeneity [26]. However, estimation of the degree of influence of a variant
on conformation requires a systematic study involving in silico protein folding tools.

The evaluation of the intragenic distribution of disease-specific variants in GMDs
confirmed that variant localization is an important factor for phenotype determination
in genes linked to two AD diseases. This observation is consistent with previous find-
ings of pathogenic missense variants clustering, which was predominantly observed in
single-disease genes linked to AD rather than AR disease [23]. The relationship between
intragenic variant localization and phenotype is important for accurate variant annotation
and prioritization. For example, some studies have described scores for improving the
prediction of variant pathogenicity based on analysis of pathogenic variants clustering in
regions encoding functional protein domains [27].

Importantly, our observations are in good concordance with several gene-level studies.
One example is the SRCAP gene linked to Floating-Harbor syndrome (FHS, OMIM 136140),
in which causal variants have been identified only in 33rd and 34th exons [28]. At the
same time, pathogenic variants outside of this hotspot region have been described in
association with developmental delay, hypotonia, musculoskeletal defects, and behavioral
abnormalities (DEHMBA, OMIM 619595) [29]. Another notable example is the CDKN1C
gene, which, among several others, showed FDR-adjusted significant differences in variant
localization for the two corresponding diseases—the IMAGE syndrome (OMIM:614732)
and the Beckwith–Wiedemann syndrome (OMIM:130650). IMAGE syndrome is caused
by a mutation in a specific replication accessory protein binding domain, as reported by
Arboleda et al., 2012 [30]. On the other hand, causal variants of Beckwith–Wiedemann
syndrome are scattered across the coding sequence.

It is also important to note that we identified more genes with significant differences
in variant localization between diseases when splitting the CDS into equally sized parts
rather than actual protein domains. As protein domains usually have distinct functions,
variants located in different domains should confer different molecular changes resulting
in distinct phenotypic outcomes [31]. The lower number of significant genes in the domain
boundary-based test of variant localization indicates that either (i) currently available
data are insufficient to identify domain-specific localization of variants linked to different
diseases or (ii) structural elements other than single domains contribute to phenotypic
heterogeneity in GMDs. Still, our analysis identified domain-specific variant localization of
disease-specific variants in some GMDs. For example, FLT4 gene solely shows significant
differences in P/LP variants distribution across domains. Although defects in the lymphatic
system (OMIM:153100) are primarily caused by variants at the protein kinase domain, the
variants leading to congenital heart defects are in 6 different domains, including Ig-like
and kinase domains.

Our analysis indicates that variation in the proportions of missense and pLoF causal
variants between two diseases linked to a single gene seems to be of relatively greater
importance compared to variant localization (Supplementary Figure S2). Indeed, the
variant type may modulate the phenotype by affecting the quantity or quantity of the gene
product. Although missense variants are likely to result in quantitative changes in gene
product level or its activity, pLoF variants are more likely to lead to complete loss of gene
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product function [25]. However, the exact relationship between these properties of genetic
variants and specific traits in the phenotype remains to be established.

In summary, our analysis allowed us to dissect the determinants of heterogeneous
gene–disease relationships for 49 out of 670 GMDs that are linked to exactly 2 conditions.
We detect a significant impact of variant type on phenotype determination for 30 genes
(Supplementary Table S2) and of variant localization—for 38 genes (Figure 4c, Supplemen-
tary Table S2). Notably, 19 GMDs with 2 associated disorders show differences both in
variant localization and variant type proportions for the two associated diseases (Supple-
mentary Table S2). We believe that the aforementioned results obtained in our analysis
might be used to improve the quality of variant annotation and prediction of the variant’s
pathogenicity.

It is important to note, however, that the overall power of our analysis of disease-specific
variant localization was not sufficient to detect a substantial number of significant genes. It
might be partially explained by limitations that arise when conducting analysis solely using
public data. Our study was based only on genes and P/LP variants with reported associated
rare diseases in ClinVar. However, a substantial fraction of P/LP variants are annotated as
causal for all diseases associated with a specific gene (Figure 2), and the lack of correlation of
such variants’ proportion with inheritance patterns or phenotypic similarities raises doubts
about the validity of the variant–disease association. Moreover, even if data quality is
not considered, the study remains biased toward existing knowledge about gene–disease
and variant–disease associations, and some relevant information might be missed by such
an approach. Hence, further studies based on larger curated datasets are necessary to
comprehensively characterize the factors contributing to phenotypic heterogeneity in GMDs.
It is also important to note that the determinants of phenotypic heterogeneity may be
different in complex traits, in which genetic interactions and the environment play a much
greater role. Thus, further integration of results obtained in monogenic and complex traits
is required to fully understand the complex nature of genotype-to-phenotype relationships.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes14112100/s1, Figure S1: Phenotypic similarity between 2
diseases associated with one common gene; Figure S2: Results of statistical analysis of within-gene
distribution and type of variants; Figure S3: Distribution of phenotypic similarity in genes with and
without significant differences in variant localization between associated diseases; Figure S4: Results
of statistical analysis of variant distribution within protein domain boundaries; Table S1: GMDs
linked to exactly 2 conditions with more than 50% of shared causal variants.; Table S2: List of GMDs
with significant and nominally significant differences in variant type proportions of variants for the
two associated diseases; variant localization for the two associated diseases.
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