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Abstract: The aim of this study was to establish and evaluate a structural equation model to infer
causal relationships among environmental and genetic factors on udder health. For this purpose,
537 Holstein Friesian cows were genotyped, and milk samples were analyzed for novel traits including
differential somatic cell counts and specific mastitis pathogens. In the structural model, four latent
variables (intramammary infection (IMI), production, time and genetics) were defined, which were
explained using manifest measurable variables. The measurable variables included udder pathogens
and somatic differential cell counts, milk composition, as well as significant SNP markers from
previous genome-wide associations for major and minor pathogens. The housing system effect
(i.e., compost-bedded pack barns versus cubicle barns) indicated a small influence on IMI with a path
coefficient of −0.05. However, housing system significantly affected production (0.37), with ongoing
causal effects on IMI (0.17). Thus, indirect associations between housing and udder health could be
inferred via structural equation modeling. Furthermore, genotype by environment interactions on
IMI can be represented, i.e., the detection of specific latent variables such as significant SNP markers
only for specific housing systems. For the latent variable genetics, especially one SNP is of primary
interest. This SNP is located in the EVA1A gene, which plays a fundamental role in the MAPK1
signaling pathway. Other identified genes (e.g., CTNNA3 and CHL1) support results from previous
studies, and this gene also contributes to mechanisms of the MAPK1 signaling pathway.

Keywords: dairy cow; udder heath; structural equation model; compost-bedded pack barns;
differential somatic cell count; specific mastitis pathogens; genomic data

1. Introduction

Diseases of the udder are considered as one of the most important clinical infections
in dairy cows with strong detrimental effects on farm economy [1]. However, in terms
of underlying genetic and physiological mechanisms and with regard to pathogenesis,
udder infections are very complex and depend on a variety of factors, including milk yield,
lactation stage, genetics, type of pathogens, and also on farm-specific characteristics [2,3].
Farm characteristics address alternative animal friendly housing systems appreciated by
the society, such as compost-bedded pack barns. From an animal perspective, compost-
bedded pack barns improve animal welfare, animal health and longevity [4]. On the other
hand, due to the mixture of the substrate of bedding materials and manure, there may be
an increased risk of bacterial infections in the udder [5].

As pointed out in some publications [6], the cow milk quality requirements as defined
by the European Union are based on herd averages for somatic cell count (SCC) with a
maximum of 400,000 cells/mL and a bacterial standard plate count. However, the type
of pathogens can greatly vary. The type of pathogens not only determine whether an
intramammary infection induces an acute or a subclinical mastitis but also has specific
effects on the overall immune system. Specific defense mechanisms might be activated,

Genes 2023, 14, 2102. https://doi.org/10.3390/genes14112102 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes14112102
https://doi.org/10.3390/genes14112102
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0001-7532-8906
https://orcid.org/0000-0003-4226-3696
https://doi.org/10.3390/genes14112102
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes14112102?type=check_update&version=1


Genes 2023, 14, 2102 2 of 15

thus affecting the somatic cell count in milk, which is the standard parameter for indicating
udder health status [7]. However, the composition of the somatic cells might also vary
depending on the type of infection, suggesting differential somatic cell count analyses.
Furthermore, genetic cascades are triggered by the immune system, which can vary indi-
vidually. Intramammary infection impairs milk yield and milk composition. Additionally,
in recursive biological systems, the level of milk yield and composition might influence the
susceptibility of an udder infection [8,9]. In addition, from an “environmental” perspective,
the age of the animal, the status of nutrition and many other factors such as climate play a
role in determining an animal’s susceptibility for an infection [2,3].

In order to fully understand and resolve such complex and various influencing factors
and their interrelationships, alternative modeling approaches are needed. Regression anal-
yses are used as a common tool to explore one-way relationships by neglecting possible
recursive or mutual associations [10]. Structural equation models (SEM), on the other hand,
allow for flexible and comprehensive approaches to examine the relationships between
variables in a hypothetical model [11]. Extended SEMs depict associations among measur-
able parameters (manifest variables), and additionally enable the estimation of parameters
that cannot be measured or recorded directly among themselves, the so-called underlying
latent variables [12]. De los Campos et al. [13] and Wu et al. [14] have already used SEM
to infer relationships between udder health (via somatic cell count) and milk yield both
phenotypically and genetically, but in their modeling approach, they ignored mutual asso-
ciations among environmental effects. Another advantage of an SEM is that both direct
and indirect effects can be modeled simultaneously, also in a recursive framework [15].
Detilleux et al. used SEM to obtain a basic understanding of the many different factors
involved in clinical mastitis in the risk for infections and tolerance mechanisms [3,16]. The
relationships among the latent variables, among the manifest variables as well as among
the latent and manifest, are denoted as loading coefficients or path coefficients.

The objective of the present study was to apply SEM to infer causal relationships
on IMI based on a detailed recording for differential somatic cell counts and specific
mastitis pathogens as well as specifically selected SNP markers. In this regard, a two-step
strategy was applied; first, a genome-wide association study (GWAS) was used to detect
significant SNPs, and afterwards, in step 2, these SNPs were analyzed using enhanced
SEM approaches.

2. Materials and Methods
2.1. Animal Ethics Statement

Data considered in the present study are based on milk samples from routine milk
recording and genotypes used for the official national genetic evaluations. No extra animal
experiments were conducted. Thus, following the guidelines of the German animal welfare
legislation, a specific ethical approval was not required.

2.2. Farms, Animals and Sampling

Cow milk samples were collected from the individual udders of six Holstein dairy
cattle herds located in the German federal states of Hesse and North Rhine-Westphalia
for all ongoing studies. The herds for this project were selected based on the criteria for
selecting case (i.e., herds with the compost farming system) and control herds (i.e., con-
ventional cubicle barns) as defined in the collaborative EU FreeWalk project [17]. The two
housing systems compost-bedded pack barns and cubicle barns were identical with regard
to herd size, production level, location, climatic conditions, milking system, feeding and
breeding aspects in order to ensure an objective comparison. The only, and a large, differ-
ence was the housing system; i.e., compost-bedded pack barns in contrast to conventional
cubicle barns. Overall, three farms represented the compost system and three other farms
had the cubicle system, while two farms had both the systems. Allocation of cows to the
different sub-herds in the farms with both systems is described in our previous study by
Wagner et al. [18]. The current study considered 587 first and second parity Holstein
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Friesian dairy cows. A large fraction of all cows, 79%, was in first lactation. A total of
44% of all cows were kept in compost farms, and 56% of all cows were in the conventional
cubicle farms, indicating a very similar data distribution across both the housing systems.

For ongoing laboratory milk analyses, we considered milk samples from 2198 udder
quarters of these 587 cows. The milk analyses for specific pathogens in the Landesbetrieb
Hessen followed the DVG guidelines [19]. The specific mastitis pathogens were classified
into major pathogens (MAJOR) or minor pathogens (MINOR). The classification was
conducted according to the severity of an infection and immune responses, and does
not indicate any prevalence. The same classification of mastitis pathogens according to
the infection status was considered in several previous udder health studies, especially
when inferring genetic and physiological mechanisms [20–23]. Accordingly, the category
MAJOR included the pathogens Aerococcus sp., Aesculin hydrolyzing streptococci, Candida
krusei, Enterococcus sp., Escherichia coli, Lactococcus sp., Staphylococcus aureus, Streptococcus
dysgalactiae, Streptococcus uberis, mold fungus and Proteus sp. The category MINOR included
Coagulase-negative staphylococci and Corynebacterium sp. One udder quarter of at least one
pathogen within the defined groups, MAJOR and MINOR, resulted in score = 1 for the
respective total group; otherwise, score = 0 was assigned. At cow level, the score = 1 was
assigned for the total group (MAJOR, MINOR) if the respective pathogen was detected in
at least one udder quarter; otherwise, score = 0 was applied.

Differential cells were counted under the microscope in our own milk analysis lab-
oratory at Justus-Liebig-University, Giessen. Differential cell counting included the cell
fractions for lymphocytes, macrophages and polymorphonuclear leucocytes (PMN) in a
50 mL milk sample per udder quarter following official guidelines and protocols [24,25].
Milk samples with a small number of counted cells (<30 counted cells per sample) were
excluded from the ongoing modeling approaches. The sum of all determined lymphocytes,
macrophages and PMN was defined as 100%, and the respective percentages of the specific
cell types were used as variables in the SEM. The descriptive statistics of the udder health
traits are shown in Table 1.

Table 1. Descriptive statistics for the microscopic differential somatic cell counts and mastitis
pathogens per udder quarter.

Udder Health Traits 1 Mean Min Max SD

Cell fractions (in relation to the
total sum of all cell counts)
Macrophages

0.292 0.000 0.980 0.208

Lymphocytes 0.608 0.000 1.000 0.246
PMN 0.100 0.000 0.971 0.143
Mastitis pathogens (in prevalences)
Negative samples 0.514 0.000 1.000 0.500

Minor pathogens 0.407 0.000 1.000 0.491
Major pathogens 0.030 0.000 1.000 0.171

1 Polymorphonuclear neutrophils (PMN), minor pathogens (including Coagulase-negative staphylococci and
Corynebacterium sp.), major pathogens (including Aerococcus sp., Aesculin hydrolyzing streptococci, Candida krusei,
Enterococcus sp., Escherichia coli, Lactococcus sp., Staphylococcus aureus, Streptococcus dysgalactiae, Streptococcus uberis,
mold fungus and Proteus sp.).

2.3. Genome-Wide Associations

Only the significant SNPs from GWAS were included in the ongoing SEM. Genome-
wide associations were performed for SNP main effects and SNP x housing system in-
teraction effects. A significant interaction means that the SNP significantly affects udder
health in compost-bedded pack barns, but not in cubicle barns. In this regard, we followed
SNP data preparation and the statistical methods as outlined in our previous study by
Wagner et al. [6]. For this, 277 Holstein Friesian (HF) cows were genotyped with the Illumina
BovineSNP50 Bead Chip V2. An additional dataset including 273 first parity HF cows was
genotyped with the Illumina BovineSNP50 Bead Chip V3. After quality control of the SNP
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data via the software package PLINK, version 1.9 [26], 43,095 SNPs from 550 genotyped
cows were available for the ongoing genomic studies. Criteria for SNP quality control
implied consideration of Bos Taurus autosomes, the exclusion of SNPs with a minor allele
frequency lower than 0.01, the exclusion of SNPs with a call rate lower than 0.90 and the
exclusion of SNPs significantly deviating (p < 0.001) from the Hardy–Weinberg equilibrium.
ARS1.2 assembly [27] was used for remapping the positions of the SNP markers.

The algorithm for the estimation of SNP effects and significances is incorporated into
our own R package, named GWAInter.R, which can be downloaded at https://jlupub.ub.
uni-giessen.de/ (accessed on 20 April 2023). The respective statistical model 1 in matrix
notation for the GWAS was defined as follows:

y = Xb + xsnpi bsnpi + xinteri binteri + Zg + e (1)

where y = a vector of observations for the pathogens MAJOR or MINOR (cow level) in
consecutive runs; b = a vector of fixed effects including the herd test day, the housing
system cubicle barn or compost-bedded pack barn, parity, and the person from the milk
laboratory analyzing the milk samples; X = incidence matrix for fixed effects; xsnpi = a vector
of SNP genotypes; bsnpi = a regression coefficient for the main effect of the ith SNP marker;
xinteri = a vector of genotypes for cows kept in compost-bedded pack barns; binteri = a
regression coefficient for the SNP x housing system interaction effect of the ith-SNP marker;
g = a vector of random additive-genetic effects following N(0, Gσ2

g); G = the genomic
relationship matrix which was constructed as defined by Yang et al. [28] by excluding the
respective candidate SNP; σ2

g = additive-genetic variance; Z = incidence matrix for the
random additive-genetic effects; e = vector for the random residual effects following N(0,
Iσ2

e), I = identity matrix; σ2
e = residual variance.

The estimation for the required additive-genetic and residual variances for MAJOR
and MINOR was performed using the model y = Xb + Zg + e, with the effects as stated
above for model 1 and applying the software package “gaston” [29]. Our software pack-
age GWAInter.R version 1.0 utilizes generalized least squares approach as outlined by
Halli et al. [30] for the estimation of the SNP main and interaction effects. In this regard, we
used a Wald-test statistic [31]. The respective chi2 value for the main and interaction effects
is the ratio of the respective squared regression coefficient divided by the variance of the
regression coefficients at 1 degree of freedom. Significance thresholds were defined based
on the strict Bonferroni correction with PBonf = 0.05/no. of SNPs and the more relaxed
suggestive threshold with Psugg = 0.05/number of independent SNPs. The number of SNPs
was 43,095, and the number of independent SNPs was 4479. The number of independent
SNPs was calculated considering linkage disequilibrium ≤0.15 in chromosomal segments
with 500 markers.

The last step was the annotation of potential candidate gens. The definition of a
candidate gene implied at least one significantly associated SNP, which is directly located
in the gene or located in a surrounding segment 200 kb up- and downstream. For gene
annotations, we used the databases ENSEMBL and NCBI [32,33]. For the interpretation
of gene functions and related physiological pathways with focus on the modelings in the
ongoing SEM, we referred to the Kyoto Encyclopedia of Genes and Genomes and the NCBI
database [33,34].

A total of 41 SNPs were significant for both SNP main and SNP interaction effects.
Based on SEM evaluations for goodness of fit criteria (see Section 3.1), 13 SNPs from both
categories, MAJOR and MINOR, were integrated into the final SEM. These significant SNPs
are listed in Table 2 along with respective candidate gene information and location.

https://jlupub.ub.uni-giessen.de/
https://jlupub.ub.uni-giessen.de/
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Table 2. Genome-wide significances for SNP main effects (superscript M) and interaction effects
(superscript I) with housing systems and annotated potential candidate genes for mastitis pathogens
which were integrated into the SEM considering estimates and findings by Wagner et al. [6].

Trait SNP CHR Position p-Value SNP SNP Located
in a Gene Gene Name

MAJOR BTA-86068-no-rs (y = 11) M 22 26048787 0.000000002563736 a yes CHL1
BTA-86068-no-rs (y = 11) I 22 26048787 0.0000004836461 a yes CHL1

ARS-BFGL-NGS-39928 (y = 22) M 26 38508625 0.000002509339 a - -
ARS-BFGL-BAC-14274 (y = 17) M 11 44153677 0.000001737926 a yes EVA1A

Hapmap57340-rs29010501 (y = 18) M 11 44928962 0.000003947047 b - -
Hapmap23088-BTA-151194 (y = 13) M 1 152612216 0.000003844456 b yes HACL1

ARS-BFGL-NGS-60721 (y = 12) M 1 35809354 0.000004774763 b - -
Hapmap47619-BTA-43853 (y = 21) M 18 4489809 0.0000008244985 b - -
ARS-BFGL-NGS-110081 (y = 15) M 4 41230144 0.000001551728 b - -
ARS-BFGL-NGS-45691 (y = 14) M 2 127889562 0.00000764746 b - -
ARS-BFGL-NGS-29150 (y = 16) M 5 108921269 0.000008442227 b - -

ARS-BFGL-NGS-116393 (y = 19) M 11 104186003 0.000002801936 b yes ABO
ARS-BFGL-NGS-113915 (y = 20) M 17 32550404 0.0000008220506 b - -

MINOR ARS-BFGL-NGS-112964 (y = 23) M 14 68578807 0.000002708568 b - -

MAJOR Aerococcus sp., Aesculin hydrolyzing streptococci, Candida krusei, Enterococcus sp., Escherichia coli, Lactococcus
sp., Staphylococcus aureus, Streptococcus dysgalactiae, Streptococcus uberis, mold fungus and Proteus sp., MINOR
Coagulase-negative staphylococci and Corynebacterium sp., a Bonferroni-corrected genome-wide significance and b

less conservative threshold, y represent the vectors of the indicator variables of the structural equation model
described in Table 2.

2.4. Structural Equation Model

The package lavaan (version 0.6–9) in R (version 3.6.2) [35] was used for the develop-
ment and application of the SEM [36]. The SEM is composed of a structural model, several
reflective measurement models and a formative measurement model. The general SEM
(Model (2)) was

η = B·η + Γ · ξ + ζ (structural equation model) (2)

The formative measurement Models (3) and (4) were

x = Λx · ξ + δ (Measurement model for latent exogenous variables ξ) (3)

y = Λy · η + ε (Measurement model for latent endogenous variables η) (4)

The reflective measurement Models (5) and (6) were

ξ = x · Πξ + δξ (Measurement model for latent exogenous variables ξ) (5)

η = y · Πη + δη (Measurement model for latent endogenous variables η) (6)

where η = a vector representing endogenous latent variables (η1 = production, η2 = intra-
mammary infection und η3 = genetics); ξ = a vector of exogenous latent variables (ξ1 = time);
ζ = indicating the residual variable, since endogenous latent variables are not completely
explained by the exogenous latent variables, and the complete impact for factors that were
not considered in the model. The coefficient matrices B and Γ show the interdependence
relationships B between latent endogenous variables and Γ between latent endogenous and
exogenous variables); x and y = vectors representing the indicator variables, as described in
Table 3; Λx and Λy = vectors of the path or loading coefficients (λn); Πξ and Πη = vectors
of multiple regression or weighting coefficients between an (endogenous or exogenous)
latent variable and the assigned indicator variables; δ or ε = vectors of the exogenous or
endogenous residuals.
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Table 3. Overview of the latent variables and their associated measurement variables and (if possible)
their minimum and maximum values, mean values and standard deviation or their groups. Each
of the latent variables are estimated by three or more measurement variables; η = the vector of
endogenous latent variables; ξ = the vector of exogenous latent variables; ζ = the residual variable; x
and y = the vectors of the indicator variables.

Latent Variables Indicator Variables (Manifest Variables) Range (Min–Max)
or Groups Mean SD

η1 = Production
(PROD) y1 = fat content [in %] 2.43–7.6 4.88 0.73

y2 = protein content [in %] 2.7–4.93 3.56 0.37
y3 = lactose content [in %] 3.4–5.28 4.88 0.19

y4 = milk yield [in kg] <25, 25.1–30,
30.1–35, 35.1–40, >40 - -

η2 = Intramammary
infection (IMI)

y5 = average somatic cell
count of the herd 5.05–5.58 5.30 0.14

y6 = lymphocyte content [in %] 0–100 61.00 0.25
y7 = PMN content [in %] 0–97 9.80 0.14

y8 = somatic cell count of test day
(the exact test day of our sampling) 2.64–11.16 2.35 2.09

y9 = MAJOR 0, 1 - -
y10 = MINOR 0, 1 - -

η3 = Genetic (GEN) y11 − 23 = significant SNP from GWAS
ξ1 = Time (TIME) x1 = barn age [in years] 1, 2, 3 - -

x2 = average first calving age [in days]
750–760, 760.1–775,

775.1–780, 780.1–800,
>800

- -

x3 = average calving interval [in days] 382–432 407 0.17

x4 = lactation stage [in days] 0–100, 100.1–200,
200.1–300, >300 - -

formative model y24 = housing system compost, cubicle - -

3. Results
3.1. Overall Structural Equation Model Evaluation

The overall goodness fit of the model was assessed by applying a χ2 goodness of fit
test and alternative fit indices. Such applications induce the standardized root-mean-square
residual (0.101) (SRMR), the root-mean-square error of approximation (0.135) (RMSEA), the
Tucker–Lewis index (0.244) (TLI) and the comparative fit index (0.312) (CFI). Based on these
evaluation criteria, failed convergence status and unrealistic parameter estimates when
including parity as indicator variable for the latent variable time, we decided to exclude
parity as a cow-specific parameter from the SEM. This might be due to the extremely high
proportion of first parity cows in our dataset and the strong auto-correlations between
parity with other parameters including age at first calving and production traits.

Completely standardized estimates of the parameters for the final SEM are shown in
Figure 1. Four relationships were inferred among the latent variables in the SEM. In total,
there are 28 measures (indicator or manifest variables) associated with latent variables
enabling estimations of the respective latent variables. Information on the impact of latent
constructs were obtained by assessing the path coefficients (λn). The possible range is from
−1 to +1. A value of ≥0.2 or ≤−0.2 is generally considered as a relevant correlation [37].
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Figure 1. Path coefficients for causal relationships from the structural equation model with four latent
variables (η1 = production, η2 = intramammary infection, η3 = genetics, ξ1 = time); x1 = barn age,
x2 = average first calving age, x3 = average calving interval, x4 = lactation stage, y1 = fat content,
y2 = protein content, y3 = lactose content, y4 = milk yield, y5 = average somatic cell count of the
herd, y6 = lymphocytes, y7 = PMN, y8 = somatic cell count of test day, y9 = MAJOR, y10 = MINOR,
y11–23 = significant SNPs from the previous GWAS as indicated in Table 2, y24 = housing system.

3.2. Latent Variable Intramammary Infection

According to the measurement models, the overall average somatic cell count of
the herd is a weak indicator (0.09) to explain an IMI (Figures 1 and 2). In contrast, the
influence of the individual somatic cow cell count from the test day explains a very accurate
IMI (0.73). The path coefficients for lymphocytes and PMN (0.74) are also quite large
(i.e., values close to −1 or close to 1), with a negative value for lymphocytes (−0.63). The
path coefficients for the major and minor pathogens with 0.20 and 0.33, respectively, are
slightly smaller than the estimates for the specific cell fractions.
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3.3. Latent Variable Production

For the latent variable production (PROD), all four measurement variables indicate
quite a large effect on production (Figures 1 and 3). The highest path coefficient was found
for protein content with 0.91, followed by fat content with 0.49. Lactose and milk yield are
also important determinants with −0.45 and −0.44, respectively.
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Figure 3. Path coefficients for causal relationships from the measurement model for the la-
tent endogenous variable η1 = production (PROD) with the manifest variables y1 = fat content,
y2 = protein content, y3 = lactose content, y4 = milk yield.

3.4. Latent Variable Genetic

The latent variable genetic (GEN) is determined by 13 measured variables, i.e., SNP
effects. Two of these SNPs (y17 = ARS-BFGL-BAC-14274, y18 = Hapmap57340-rs29010501,
both located on chromosome 11) indicate quite a strong effect, but the path coefficients of
the remaining SNPs are close to zero (Figures 1 and 4).
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3.5. Latent Variable Time

For the exogenous latent variable time (TIME), the path coefficients for average calving
interval with 0.96 and the average calving age with 0.87 are quite large (Figure 5). A
moderate effect was identified for barn age (0.23) and a negligible effect was identified for
lactation stage (−0.02).
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Figure 5. Path coefficients for causal relationships from the measurement model for the latent
exogenous variable ξ1 = time (TIME) with the manifest variables x1 = barn age, x2 = average first
calving age, x3 = average calving interval, x4 = lactation stage.

3.6. Relationships among Latent Variables

In the SEM framework, it is evident that the effect of the latent variable TIME on the
latent variable IMI is quite small, with a path coefficient of −0.06 (Figure 6). The effect of
TIME on the latent variable PROD was moderate (−0.16). Of similar magnitude was the
effect of path coefficient of PROD on the latent variable IMI with 0.17, and the effect of the
loading coefficient of the latent variable IMI on the latent variable GEN with −0.10.
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Figure 6. Path coefficients for causal relationships from the structural model with four latent variables
(η1 = production, η2 = intramammary infection, η3 = genetics, ξ1 = time); y24 = housing system.

In this model, the manifest variable housing system shows an effect on three latent
variables. However, the respective path coefficient was quite small (0.05) for the latent
variable IMI and for the latent variable GEN (0.10). The highest path coefficient from this
model was 0.37, i.e., the effect of the measurement variable “housing system” on the latent
variable PROD.
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4. Discussion
4.1. Manifest Variables on Intramammary Infection and Production

In the present study, we used a holistic approach, which contributed to a deeper
understanding of the mechanisms of udder health in dairy cattle in different housing
systems simultaneously considering time, environmental effects and cow effects, combined
with a variety of udder health indicators.

With regard to the overall measurement models, it is shown that the effect of the
average herd somatic cell count is very small (0.09) to explain an intramammary infec-
tion. Accordingly, Beaudeau et al. [38] reported that herd cell count is a weak predictor
for intramammary infections, implying the detailed recording of individual cell counts,
preferably the generation of a longitudinal data structure by time. Especially, the ef-
fect of the individual somatic cell count at the nearest official test day on IMI was quite
large (0.73), again supporting the results from the comprehensive udder health study by
Beaudeau et al. [38]. The individual somatic cell count considerably changes in the course
of an intramammary infection [39], and the large variation also explains the substantial SCC
effects from the modeling approach. However, SCC as a single indicator is not sufficient to
understand the mechanisms of udder health in detail. Riggio et al. [40] already showed
strong associations between the increase in SCC and the status of an infection. Since the cell
count and the cell composition depend on the type of pathogen [20], both lymphocytes and
PMN, as well as major and minor were integrated into the SEM for the latent variable IMI.
All four manifest variables had an effect on udder health and should be simultaneously
considered to infer the physiological pathways of an intramammary infection [40].

The path coefficient for the specific cell fraction of the lymphocytes was negative (−0.63),
since this cell fraction predominates, especially in the healthy udder quarter [41,42]. In contrast,
the path coefficient of the PMN was positive (0.74). In the process of acute infections, the
content of lymphocytes decreases, while the content of PMNs in the udder increases [18,43].
Hence, the results from the structural equation modeling approach support well-known
physiological mechanisms. Both major and minor pathogens displayed moderate effects on
the latent variable IMI. Interestingly, the influence of major pathogens (0.20) was smaller
than the influence of minor pathogens (0.33). This could be due to the shift generally
observed in the importance of mastitis pathogens, i.e., with a greater importance of minor
than of major pathogens nowadays in the context of severe udder infections [18,44,45].
Accordingly, in the present study, more cows were significantly affected due to minor
pathogens. Consequently, the results from the present SEM suggest the evaluation of
alternative classifications of pathogens.

The four manifest variables to explain the latent variable PROD indicated a moderate
to large effect in a range from −0.44 to 0.91. In this regard, the strongest effect with
0.91 was identified for protein content. Craig et al. [46] already showed that protein
content is closely related to productivity. With increasing milk yield, the amount of protein
decreases, explaining the opposite signs of the path coefficients of milk yield and protein
content in our model [46]. Regarding udder health, protein content reacted very sensitively,
especially to somatic cell count alterations, while fat content was more stable [9]. In our SEM
analogy, path coefficients were larger for protein than for fat content. For milk quality traits,
França et al. [9] indicated sensitivity of lactose contents to the udder health status, with
pronounced contrast for infections with Streptococcus spp. or Staphylococcus aureus. Since
our SEM is influenced by both types of pathogens and additional pathogens within the
MAJOR and MINOR groups, this may depress individual path coefficients due to different
inter-trait relationships of each pathogen, thereby explaining the smaller influence of lactose
in our study.

4.2. Genetic Influence in the Structural Equation Model

For the latent variable GEN, 13 SNPs were included, but most of them only show
a small influence in the SEM when additionally considering a large number of environ-
mental characteristics. Nevertheless, these SNPs were significant for the major and minor
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pathogens in previous GWAS [6], but mostly located in chromosomal segments outside of
functional genes. From a physiological perspective, the two groups, MAJOR and MINOR,
contain many different species of pathogens that initiate very different immune responses,
and thereby are modulated by many different genes [7]. For example, with regard to
MAJOR, the immune response mechanisms of Staphylococcus aureus and Escherichia coli are
different, triggering a cascade of specific genes for specific immune responses [47].

However, the SNP (ARS-BFGL-BAC-14274) of pathway y17 has a quite strong effect
with −0.71. This SNP is located directly in the gene EVA1A. EVA1A is involved in autophagy
and the programming of cell death [48,49]. In addition, this quite under-researched gene
plays an important role by up- or down-regulating in the MAPK (mitogen-activated protein
kinase) signaling pathway [28]. The MAPK pathway plays a fundamental role in udder
health, with interactions of the CHL1 gene [50,51]. However, direct consideration of CHL1
in the SEM implied an only small path coefficient of y11 = 0.07. With regard to functional
mechanisms and pathways of udder health, CHL1 plays a role in the activation of the
MAPK signaling pathway [50,51]. In a GWAS for the cell fraction PMN, ignoring housing
system interaction effects, the potential candidate gene CTNNA3 was identified, which
also intervenes in the MAPK pathway [6]. In the case of clinical mastitis, MAPK signaling
regulates inflammatory gene expression [52].

4.3. Overall Structural Equation Model Evaluations, Limitations and Prospects

In the SEM, the exogenous latent variable TIME contains four manifest variables. In
this regard, the effect of lactation stage was quite small with a path coefficient of −0.02. In
contrast, a stronger effect with 0.23 was identified for the age of the cow barn. This variable
was integrated in the SEM to consider the experiences of management practices, especially
in the context of the quite new compost farming system. Ivemeyer et al. [53] highlighted the
significance of herd management on udder health and productivity, especially in alternative
or novel housing systems. The effect of the average age was very strong at first calving
(0.87) and the average calving interval (0.96). Accordingly, in standard mixed models,
age at first calving significantly influenced milk yield and milk composition [54,55], as
well as udder health [56]. A late age at first calving was associated with increased milk
yield and an increased risk for udder infections [57], supported by the signs for the latent
variables PROD and IMI in the present study. Drews et al. [58] assigned a separate latent
variable to the two manifest variables age at first calving and calving interval in his SEM.
The high path coefficient for the age at first calving with 0.98 reflect the estimate from the
present study. In contrast, Detilleux et al. [3] considered average parity in the herd and the
percentage of heifers in their modeling approach. However, when developing a SEM and
assembling the manifest and latent variables, it is imperative to exclude similar variables
with similar explanatory power or high collinearity. Otherwise, estimates from the SEM
might be biased [59]. This was also a reason to exclude the variable parity from our finally
applied SEM.

The SEM inferred causal relationships among a variety of udder health indicators
and respective environmental and cow-associated factors. The direct housing system
effect on udder health was quite small (−0.05). However, the housing system moderately
affected the latent variable PROD (0.37), implying an indirect housing system effect on IMI
through this pathway. Both the housing system and the latent variable IMI were moderately
associated with the latent variable GEN. Hence, the SEM also indicates possible genotype
by environment interactions, because of the specific reactions of udder health and immune
response traits depending on the housing conditions. Overall, the present SEM revealed
its potential to depict complex structures of udder health in dairy cows via the modeling
of direct and indirect pathways. For the structural equation modeling, we considered
the four latent variables IMI, PROD, TIME and GEN and integrated the variable housing
system as a formative measurement model in this SEM. Furthermore, we modeled direct
and indirect pathways for trait and effect relationships. However, such comprehensive
analyses require a broad data structure based on different types of data, i.e., novel cow
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traits, cow-associated factors, housing characteristics, as well as “classical” environmental
effects. Generation of such data structure implies tremendous efforts regarding labor, time
and logistics. Consequently, in the present study, we neglected some additional possible
environmental effects on an intramammary infection such as the climatic conditions in
the barn. Gernand et al. [60] identified temperature and humidity close to the official
test-day as major effects on clinical mastitis. However, overloading a SEM with more
detailed environmental effects might lead to failed convergence, or to biased parameter
estimates [61]. An alternative in this regard is to enlarge the cow trait dataset, but this
is also a challenge for novel health traits as considered in the present study. Attempts to
establish the so-called “cow training sets” for genomic selection, comprising innovative
health traits for a large number of genotyped cows [62], might be the perfect database for
ongoing and even more detailed SEM applications.

5. Conclusions

The applied SEM clearly inferred effects among response variables indicating udder
health and environmental and cow-associated factors. Trait and modeling complexity was
reduced by considering the latent variables. The direct effect of the housing system on the
latent variable IMI was quite small, but the indirect pathway via PROD indicated housing
system–IMI associations. For the latent variable GEN, especially one SNP is of primary
interest. This SNP is located in the EVA1A gene, which plays a fundamental role in the
MAPK1 signaling pathway. Other identified genes (e.g., CTNNA3 and CHL1) support
results from previous studies, and this gene also contributes to mechanisms of the MAPK1
signaling pathway. Overall, our SEM emphasizes the importance of this pathway for
udder health in a very complex modeling context including a larger number of further
environmental effects.
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