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Abstract: The human rhinovirus (RV) is a positive-stranded RNA virus that causes respiratory
tract diseases affecting both the upper and lower halves of the respiratory system. RV enhances its
replication by concentrating RNA synthesis within a modified host membrane in an intracellular
compartment. RV infections often occur alongside infections caused by other respiratory viruses, and
the RV virus may remain asymptomatic for extended periods. Alongside qualitative detection, it is
essential to accurately quantify RV RNA from clinical samples to explore the relationships between
RV viral load, infections caused by the virus, and the resulting symptoms observed in patients. A
reference material (RM) is required for quality evaluation, the performance evaluation of molecular
diagnostic products, and evaluation of antiviral agents in the laboratory. The preparation process for
the RM involves creating an RV RNA mixture by combining RV viral RNA with RNA storage solution
and matrix. The resulting RV RNA mixture is scaled up to a volume of 25 mL, then dispensed at
100 µL per vial and stored at −80 ◦C. The process of measuring the stability and homogeneity of RV
RMs was conducted by employing reverse transcription droplet digital polymerase chain reaction
(RT-ddPCR). Digital PCR is useful for the analysis of standards and can help to improve measurement
compatibility: it represents the equivalence of a series of outcomes for reference materials and samples
being analyzed when a few measurement procedures are employed, enabling objective comparisons
between quantitative findings obtained through various experiments. The number of copies value
represents a measured result of approximately 1.6 × 105 copies/µL. The RM has about an 11%
bottle-to-bottle homogeneity and shows stable results for 1 week at temperatures of 4 ◦C and −20 ◦C
and for 12 months at a temperature of −80 ◦C. The developed RM can enhance the dependability of
RV molecular tests by providing a precise reference value for the absolute copy number of a viral
target gene. Additionally, it can serve as a reference for diverse studies.

Keywords: reference materials (RMs); human rhinovirus (RV); reverse transcription-quantitative
polymerase chain reaction (RT-qPCR); droplet digital PCR (ddPCR)

1. Introduction

The human respiratory system contains several viral families, including Orthomyx-
oviridae, Pneumoviridae, Picornaviridae, Coronaviridae, and others [1–3]. Additionally,
individuals with asthma are vulnerable to respiratory viruses, including rhinoviruses (RV),
respiratory syncytial virus (RSV), influenza virus, parainfluenza virus, adenovirus, and
coronavirus [4–7]. RV are the most frequent viruses among the major causes of asthma
exacerbation, contributing to approximately 80% of asthma exacerbations in children and
adults during viral infections [8–12].

RV belong to the positive-sense RNA viruses of the Picornaviridae family and are
responsible for respiratory infections that occur worldwide throughout the year [13–15]. RV
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infections can lead to various respiratory illnesses, causing significant morbidity across all
age groups. Common diseases include those caused by infections in the upper respiratory
tract, such as tympanitis and sinusitis, while infections in the lower tract can exacerbate con-
ditions like bronchitis, pneumonia, asthma, and cystic fibrosis in children [16–18]. Severe
cases and fatalities due to RV are more prevalent in vulnerable populations like the elderly
and immunocompromised infants [19–21]. RV infections are often detected alongside other
respiratory viruses, and they may not manifest symptoms for an extended period [22].
Previous studies have shown that human rhinoviruses (RV) induce an interferon (IFN)
response in differentiated respiratory epithelial cells that confers protection against subse-
quent Influenza A virus (IAV) infections [1,23]. RV have a high prevalence in the human
and have been singled out for their ability to negatively interact at the host level with
IAV, resulting in a potent IFN response, and for their sensitivity to the IFN response of
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [24–26]. The worldwide
spread of SARS-CoV-2 has resulted in a pandemic, causing patients worldwide to suffer
from coronavirus disease (COVID-19). The symptoms of COVID-19 range from mild to
severe pneumonia. In particular, the clinical features of RV infections can resemble those of
COVID-19 [27–29].

While there is an evident medical necessity, there is currently no clinically available
drug directly addressing RV infection [30]. Developing a universal anti-RV drug or vaccine
has proven challenging due to various factors, including the substantial and continually
increasing number of RV strains exhibiting a relatively uniform geographic distribution
and high levels of sequence variability between strains [15,31]. Given that RV have positive-
sense single-stranded RNA as their genome [32,33], they could serve as an optimal target
for DNA enzymes in an innovative antisense-based treatment approach [30,34]. DNA
enzymes specifically bind to RNA target molecules and subsequently degrade them through
enzymatic cleavage, presenting a promising avenue for addressing RV infections [35,36].
Furthermore, several studies have tested the ability of siRNA molecules to induce the
inhibition of RV replication in cell culture experiments [37]. The results revealed that
many siRNA molecules are effective in triggering RNA silencing, leading to the effective
suppression of viral replication [38]. Therefore, it demonstrates that siRNA molecules
derived from the RV genome robustly inhibit RV replication within cells [38].

Research exploring the influence of RV viral load on infection severity, symptoms, and
outcomes necessitates clinical samples containing RV RNA that is precisely and compre-
hensively quantified, both qualitatively and quantitatively. Quantitative measurement of
RV in patients who test positive for RV despite showing no symptoms is crucial [39,40].
Moreover, high-precision RV viral load assessments are essential for evaluating the effec-
tiveness of potential antiviral drugs targeting RV [41]. According to findings involving
viruses that cause other respiratory diseases, the viral load shares a correlation with disease
severity; for this reason, it is vital to conduct RV viral-load measurements with patients
who test positive for RV despite showing no symptoms [39,40,42,43]. Furthermore, the
effectiveness of potential antiviral drugs that target RV requires RV viral-load assessments
of high precision in their evaluation [41].

The importance of accurate qualitative and quantitative analysis of RV in the evalua-
tion of antiviral drug efficacy cannot be understated. Although the determination of RV
infection can be sufficiently performed through reverse transcription-quantitative poly-
merase chain reaction (RT-qPCR) to qualitatively detect RV, RV RNA needs to be precisely
quantified in practical clinical samples when studying the correlations between RV virus
transmission and patient symptoms and outcomes. Although viral copy quantification in a
sample is possible through the combination of RT-qPCR, such a method may face challenges
due to primer and probe sequences having bases that do not match with those of certain
viral sequences, resulting in amplification issues and potentially inaccurate results [44–47].

qPCR has several limitations. It is highly sensitive, rendering it susceptible to contami-
nation, and even a small amount of contaminating DNA or RNA can result in false-positive
results [48,49]. Accurate quantification in qPCR often relies on the availability of suitable
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reference standards, and the choice and quality of these standards can impact the reliabil-
ity of the results [50,51]. There are limits to the dynamic range and sensitivity of qPCR,
making extremely low or high target concentrations challenging to accurately quantify [52].
Inhibitory substances in the sample, such as contaminants or substances from the sample
matrix, can interfere with the PCR reaction, affecting the accuracy of the results [53–55].
In comparison to RT-qPCR, reverse transcription droplet digital PCR (RT-ddPCR) offers
a higher quantification accuracy due to its reduced susceptibility to factors like standard
curve variations, PCR efficiency, and primer–probe mismatches [56–58]. For these reasons,
RT-qPCR is being replaced by or complemented with RT-ddPCR in an increasing number
of studies and applications [59–64]. RT-ddPCR allows for the quantification of sequence-
specific RNA using pre-selected gene copy number concentrations, eliminating the need
for further calibration. Therefore, the utilization of RT-ddPCR may yield superior outcomes
when quantifying RV RNA [65–68].

The application of quantitative methods for DNA/RNA analysis presents greater
challenges than some researchers may anticipate. Failure to adhere to rigorous practices
can result in inaccurate quantification, directly impacting the reproducibility of published
data [69,70]. Enhancing data comparability and reproducibility necessitates a compre-
hensive description of experimental results for qPCR or ddPCR, as emphasized in the
MIQE and digital MIQE guidelines [71,72]. A meticulous evaluation of these quantification
protocols, encompassing a substantial number of samples and assays, is also imperative for
assessing technical optimizations and limitations [73].

RMs are fundamental to viral diagnostics, particularly in methods including PCR,
qPCR, and ddPCR. They provide a standardized benchmark for assay development and
validation, ensuring consistency and reliability across diverse laboratories and exper-
iments [74,75]. RMs permit instrument calibration and enable the establishment of a
dependable quantitative scale [76]. Furthermore, these materials are used to maintain the
quality of diagnostic assays by monitoring performance in each run and detecting any
deviations from expected results, ensuring the reliability of the diagnostic process [77,78].
Moreover, correlating RMs with clinical outcomes enhances the comprehension of the
clinical relevance of diagnostic assays [79,80]. In summary, RMs play a crucial role in
guaranteeing the accuracy, dependability, and comparability of viral diagnostic assays.
Consequently, they contribute to the standardization, quality control, and overall advance-
ment of diagnostic approaches in virology.

RT-qPCR and RT-ddPCR are methods used for evaluating the qualitative and quan-
titative features of the RV RM. The RM holds a pivotal role in guaranteeing the accuracy
of measurement materials [81,82]. With molecular diagnostics being prevalent globally
to diagnose infectious diseases, it is necessary to comprehensively assess the RM, a sta-
ble and uniform substance with distinct traits. The RV RM ought to exhibit reliable and
objective metrics, allowing for the efficient evaluation and comparison of varied diag-
nostic kits [68,83,84]. Appropriate quantification procedures were consistently applied to
demonstrate accuracy. The conformity and resilience of the RV RM were verified in this
investigation, in adherence with regulations defined in ISO Guide 17034 [85].

2. Materials and Methods
2.1. Cell Cultures and Preparation of RNA

For human cell lines, MRC-5 cells (ATCC CCL-171) from the American Type Culture
Collection (ATCC) and rhinovirus (NCCP40602) from the National Culture Collection for
Pathogens (NCCP) were used. The culture media were MEM/EBSS with L-Glutamine
(Cytiva HyCloneTM, Seoul, Korea) and Earle‘s Balanced Salts (0.1 µm sterile filtered, Cytiva,
Seoul, Korea) supplemented with heat-inactivated and filtered fetal bovine serum (FBS), 1%
Non-Essential Amino Acids (100×, Gibco, Waltham, MA, USA), 1% Penicillin-streptomycin
(10,000 U/mL, Gibco, Waltham, MA, USA), and 1% Sodium Pyruvate (100 mM, Gibco,
Waltham, MA, USA). The MRC-5 cells were maintained in culture media with 10% FBS and
cultured in a 5% CO2 incubator for 2 weeks under a temperature of 37 ◦C after thawing.
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The cells (Passage 14) were inoculated with rhinovirus in culture media with 2% FBS. The
virus was cultured at 34 ◦C in a 5% CO2 incubator for 4 days in a Biosafety Level 2 (BSL-2)
laboratory. The extraction of viral genomic RNA was performed using the QIAamp Viral
RNA Mini kit (Qiagen, Hilden, Germany) by following the manufacturer’s guidelines. The
extracted RNA was measured using QuantiFlour® RNA System and Quantus (Promega,
Madison, WI, USA) to check the concentration. The estimated RNA was stored at −80 ◦C
until use. The concentration of the RNA copy number was measured by one-step RT-ddPCR
and one-step RT-qPCR methods using assays developed in-house (Table S1). The reporter
and quencher for the probe are 5′-HEX (or FAM) and 3′-BHQ1, respectively. The DiaPlexQ™
(Solgent, Daejeon, Korea) commercial RV16 kits were used, and RT-ddPCR was conducted
following the manufacturer’s instructions.

2.2. Reverse Transcription Droplet Digital PCR (RT-ddPCR)

This experiment was conducted with reference to the primer–probe concentrations
used in a previous experiment [68,86]. The prior experiment utilized identical equipment,
and since RV share similarities with SARS-CoV-2 in respiratory virus infection, we deter-
mined the primer–probe mix concentration by following the protocol of the previous exper-
iment. The RT-ddPCR experiment used a supermix for the probes (Bio-Rad Laboratories,
Hercules, CA, USA) with the QX200 system (Bio-Rad Laboratories, Hercules, CA, USA).
The total volume of the reaction mixture was 20 µL (5 µL of supermix, 2 µL of reverse
transcriptase, 1 µL of 300 mM dithiothreitol (DTT) from a One-Step RT-ddPCR Advanced
Kit for Probes (Bio-Rad Laboratories, Hercules, CA, USA), along with 5 µL of template,
4 µL of nuclease-free water (Invitrogen, Waltham, MA, USA), and 1 µL of 10 µM forward
primer, 1 µL of 10 µM reverse primer, and 1 µL of 5 µM probe labeled with FAM), and the
manufacturer’s instructions were referenced for the preparation process. The RT-ddPCR
process started with a 60 min reverse transcription step at 42 ◦C followed by a 10 min
enzyme activation step at 95 ◦C. This was followed by 70 cycles with a 20% ramp rate of
denaturation at 95 ◦C for 30 s and 150 s of annealing and extension at 60 ◦C, ending with a
10 min enzyme deactivation step at 98 ◦C.

2.3. RT-qPCR Analysis

The RT-qPCR analysis was performed using the StepOne and StepOnePlus Real-Time
PCR systems from Thermo Fisher Scientific, USA, along with the One Step PrimeScript
RT-PCR Kit (Perfect Real Time) supplied by Takara (Takara Bio Inc., Kusatsu, Japan). The
total reaction volume for the RT-qPCR was 20 µL, and the reaction mixture was carefully
prepared according to the manufacturer’s detailed instructions. The DiaPlexQ™ (Solgent,
Daejeon, Korea) commercial RV16 kits were used, and RT-qPCR was conducted following
the manufacturer’s instructions.

2.4. Homogeneity and Stability Tests

Ten RV RM-positive tubes were randomly selected for RT-ddPCR measurements
using gene-specific assays to assess the between-bottle homogeneity. The homogeneity
between the bottles was determined by calculating the difference between the method
repeatability and the relative standard deviation (RSD) observed among the bottles for each
gene target. The reproducibility of the method was calculated by determining the RSD of
the repeated measurements on the same specimen in one trial. Furthermore, short-term
shipping stability, long-term stability, and freeze–thaw durability were assessed with up
to three positive tubes for each experiment with triplicate repetitions. For the short-term
stability test, three randomly selected sets of RMs stored at −70 ◦C were placed under
4 ◦C and −20 ◦C. Copy numbers were measured in samples stored for 0, 4, and 7 days.
In the long-term stability test, we randomly selected and thawed one or three samples
stored at −70 ◦C and measured the number of copies after 1, 3, 6, and 12 months in storage.
Comparative analysis was conducted between the produced results and the homogeneity
results. Three sets of RMs stored at −80 ◦C were subjected to three cycles of thawing at
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4 ◦C and freezing again at −80 ◦C in the freeze–thaw test. All these tests provided useful
information regarding the stability and reliability of the RV RM.

2.5. Unvertainty and Statistical Analyses

Each of the sources of uncertainty considered was assessed on an individual basis by
carrying out Type A and Type B assessments separately for each target gene. Standard
deviations were computed from independent experiments. The relative standard deviation
(RSD) of the manual thresholds was calculated as the RSD of three different thresholds of
over ten independent measurements. Furthermore, the standard uncertainty from partition
volume variability was computed under the assumption of a uniform rectangular distribu-
tion over the range of reported drop volumes [62,87,88]. Type A and B RSDs were combined
by taking the positive square root of the summed squared RSDs to produce a combined
relative standard uncertainty. Combined standard uncertainties for each target were com-
bined to produce expanded uncertainties with a coverage factor of k = 2.2 (95% confidence
level, degrees of liberty = 11). Experiments were analyzed by Welch’s t-test (two-tailed)
using Microsoft Excel 2016 (Microsoft, Redmond, WA, USA) and were repeated at least
in triplicate or otherwise as indicated in the corresponding figure. The mean ± standard
deviation is indicated by error bars in the graphical data. When the p-value was less than
0.05, statistical significance was assumed.

3. Results
3.1. RV Reference Material Design and Preparation Processes

Figure 1 summarizes the overall scheme to produce the KRISS 111-10-536 RM (batch 1).
First, rhinovirus is infected into host cells to initiate the culture. Next, viral genomic RNA
is extracted using a kit following the provided guidelines, and the concentration of the
extracted RNA is measured and analyzed. Following the concentration measurement,
RT-ddPCR is employed to determine the virus genome copy number, after which the
samples are diluted to achieve an approximate copy number of 105 copies/µL or higher.
Using the prepared samples, the production of over 300 vials of RV RM is carried out. Each
vial contains 100 µL of positive materials and is immediately stored at −80 ◦C.
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Figure 1. A schematic overview of the procedures RM production.

3.2. RV RMs Serial Dilution

Due to the involvement of a matrix in the RM production process, obtaining an ac-
curate OD value for RM RNA is challenging. For this reason, qPCR was employed to
identify a suitable Ct value (Figure 2A), approximately ranging from 28 to 32, indicative of
good ddPCR results. Subsequently, ddPCR was carried out using the dilution concentra-
tion determined from the qPCR results (Figures 2B and S2). After identifying a dilution
concentration exceeding the initially estimated copies/µL of 1 × 105, the experiment was
conducted. The dilution factor used in this experiment was 10−2.
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Figure 2. Human RV RM serial dilution. Detection of human RV based on assays by qPCR and ddPCR.
(A) Ct value (qPCR) and (B) copy number (ddPCR) of rhinovirus using the assay. All experiments
were conducted three times and the data presented represent the average values obtained.

In this study, we conducted a comparative experiment between the reference material
(RM) and the RV16 template, a commercial kit template, using the assay (Figure S1). The
results revealed detection not only with the RM but also with the commercial kit template
employing the assay used in this study. Therefore, it highlights the applicability of the
assay not only for the RM but also for templates from commercial kits.

3.3. RV RMs Homogeneity Test

A total of 300 RV RM samples were selected randomly, and 10 samples were used
for a homogeneity assessment as per ISO 17034, which mandates that at least 10 units
in a reference material batch must be evaluated (Figure 3). This experiment assessed the
homogeneity of the RM through RT-ddPCR. As a result, the average value was 1.6× 105/µL.
The calculation results show a relative standard deviation (RSD) of 10% and a relative
standard uncertainty of 3.2% (Table 1). The observed variation in the homogeneity test could
be due to several factors, including the inherent instability of RNA’s structure, potential
errors during the experimental process, and discrepancies that may arise while aliquoting
RNA into vials. However, the study’s results revealed that the copy numbers fell within an
acceptable error range, indicating that the KRISS RM batch shows homogeneity. Therefore,
the homogeneity test provided valuable insights into the RM preparation, reducing the risk
of significant errors in specific samples, despite these factors.
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10 of the produced RMs. Error bars represent the standard deviation at each data point, calculated
based on the mean of the replicated measurements (n = 3). Homogeneity values for the gene among
bottles are presented as percentages. As a result, the average value is 1.6 × 105 copies/mL, and the
calculation results of the relative standard deviation (RSD) of about 11% and the standard uncertainty
of 3.2% are shown. Therefore, it was confirmed that the produced RM was made homogeneously.
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Table 1. Reference values of the KRISS 111-10-536 RV RM batch 1.

Homogeneity Value

Average 1.6 × 105 copies/µL
Standard deviation 1.7 × 104 copies/µL

Relative standard deviation 10.76%
Relative standard uncertainty 3.2%

Expanded uncertainty 4.5 × 104 copies/µL
k (95% level of confidence) 2.1

3.4. Short- and Long-Term Stability of RV RMs

The reference materials were subjected to both short-term and long-term stability stud-
ies to determine the stability characteristics over typical transport periods. The standard
materials were stored at −20 ◦C and 4 ◦C for 0, 4, and 7 days, and the copy numbers of
viral RNAs were measured. When stored at these temperatures, both showed no significant
impact on the copy number values for up to 4 days. However, after 7 days of storage, there
was a slight decrease in the copy number values, although they remained within the range
of uncertainty, indicating relatively stable storage conditions (Figures 4A and S3A).
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Figure 4. Short-term and long-term stability of RV RMs. (A) The short-term stability of the RM was
confirmed after 4 days and 7 days at 4 ◦C and −20 ◦C. As a result, the results showed an almost
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To evaluate long-term stability, the copy number of viral RNAs in the substance was
measured after being stored under specific conditions at −80 ◦C for 1, 3, 6, and 12 months.
The results from storage at −80 ◦C for 1 month, 3 months, and 6 months showed no
significant changes in the copy number values. However, the 12-month results indicated a
tendency of decreased copy number values, but the extent of the decrease remained within
the range of uncertainty, confirming that the substance remained relatively stable up to
12 months (Figure 4B).

Therefore, for more stable storage and reliable results, it is recommended to store the
reference materials at−80 ◦C and use them within 7 days after storage at 4 ◦C. Additionally,
using the materials within 12 months will likely yield more stable and reliable results.

3.5. RV RM Freeze–Thaw Repeated Test

In addition, stability assessments were performed during freeze–thaw cycles to ac-
count for the instability of viral particles and RNA during these processes. The experiment
included a total of three cycles in which the samples were thawed at 4 ◦C and then frozen
at −80 ◦C. The results showed that there were minimal changes in copy numbers up to
the third cycle (Figures 5 and S3B). However, these changes were within the range of copy
number errors, indicating that they had a negligible effect. Therefore, the results suggest
that the reference materials can be used reliably even during repeated freeze–thaw cycles.
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in the number of copies when the freezing and thawing of the RM were repeated. The experiment
was repeated in the order of thawing at 4 ◦C and freezing at −80 ◦C. As a result, it shows the result
that the change in the number of copies appears insignificant until the third repetition. Therefore, it
shows results that can be used stably even in repeated freeze and thawing.

4. Discussion

The rhinovirus reference material (RM) is derived from viral RNA and has an approxi-
mate copy number concentration of 1.6× 105 copies/µL, which exceeds the threshold of
~105 copies/µL. These RM values are used as specific reference points in various molecular
testing applications, including RT-qPCR, next-generation sequencing [89], and CRISPR
nuclease-based detection [90,91]. The broad applicability of the KRISS 111-10-536 RM
enhances the reliability of molecular testing, and a robust standard for the comparison of
different methods based on RT-qPCR is presented in the form of reference values in copy
number units, enabling comparisons based on Cq values.

The primary source of measurement uncertainty for the developed reference material
arises from the pre-analytical processes, particularly RNA extraction and RNA handling.
The combined uncertainty values were consolidated and are presented in Table 1. These
values were derived from RNA extracted from a subset of the RM employing a dedicated
commercial viral RNA extraction kit. It was demonstrated that the efficiency of RNA ex-
traction significantly relies on both the chosen method and the skills of the operator [92,93].

The validated RV RMs have demonstrated high homogeneity and stability between
vials, providing reliable and consistent results. These developed RMs serve as accurate
reference values for the absolute copy number of the viral target gene, thereby enhancing
the reliability of RV molecular assays. In addition, they can be used as reference standards in
various research studies. Unlike qualitative standards such as positive controls, the KRISS
111-10-536 RV RM provides reference values in terms of copy number concentration of the
target RNA. In summary, the KRISS 111-10-536 RV RM plays a critical role in establishing
measurement standards for RV molecular testing, contributing to improved accuracy and
reliability in the field.

Human rhinoviruses are currently classified into three species within the Enterovirus
genus of the Picornaviridae family: RV-A, RV-B, and RV-C [94–98]. However, the RV RM
used in this study is defined under the broader category of rhinoviruses. While it can detect
symptoms associated with all RV strains, it may not specifically distinguish individual
species within the group. Furthermore, there is no existing research on the association
between RV and other respiratory diseases in this study. Therefore, the relationship and
interactions between RV and other respiratory diseases should be studied further using the
newly developed KRISS 111-10-536 RV RM.

Physical examinations and a review of a patient’s medical history are generally neces-
sary steps when diagnosing rhinovirus infections [15,99,100]. However, in patients with
severe symptoms and complications, the diagnosis process may require a differentiated
diagnosis, as similar symptoms and complications can be caused by other common viruses,
such as coronaviruses, parainfluenza viruses, and adenoviruses [101–103]. Rhinovirus
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infections can be diagnosed through antigen detection and nucleic acid detection methods.
RT-qPCR and RT-ddPCR have been shown to be methods [68,86] that are significantly
more sensitive in terms of detecting these viruses than cell cultures. Antigen tests enable
point-of-care testing (POCT), which comes with the advantage of being able to produce
results within minutes without having to rely on specialized laboratory equipment or
highly trained personnel [104,105]. Despite the relatively low sensitivity of antigen tests
when compared to virus isolation methods and nucleic acid detection methods, such tests
offer advantages in terms of convenience, accessibility, and cost-effectiveness [106,107].
The developed KRISS 111-10-536 RV RM in this study can be utilized as a material for the
development of an easy PCR-based diagnostic test kit (Figure S1), indicating the potential
for a rapid response during future outbreaks of respiratory-related pandemics.

5. Conclusions

Human rhinovirus (RV) reference material (RM) plays a crucial role as a specific
reference for various applications involving molecular testing, such as RT-ddPCR and next-
generation sequencing, providing reliable and accurate results. Validated RV RMs exhibit
high homogeneity and stability, serving as valuable reference standards for absolute viral
gene copy numbers, thereby enhancing the reliability of RV molecular tests and research
studies. Further investigation is needed to explore the relationship between RV and other
respiratory diseases using the newly developed KRISS 111-10-536 RV RM. Additionally,
this RM can facilitate the development of user-friendly PCR-based diagnostic test kits.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes14122210/s1, Figure S1: Comparison of human RV RM vs.
commercial kit templates. Experimental comparison between human RV RM and commercial control
samples using the RV assay for (A) qPCR and (B) ddPCR; Figure S2: 1D-Amplitude plots of a ddPCR
using human RV RM; Figure S3. RT-qPCR data for the RM. We conducted qPCR experiments for
the previously performed (A) Short term stability and (B) freeze and thawing. The results indicate a
similarity to our previous ddPCR data; Table S1: dPCR oligonucleotide design and target information;
Table S2: dPCR protocol; Table S3: dPCR assay validation and data analysis [108–114].
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