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Abstract: A hybrid offspring of Gannan yak and Jersey cattle, the Jeryak exhibits apparent hybrid
advantages over the Gannan yak in terms of production performance and other factors. The small
non-coding RNAs known as miRNAs post-transcriptionally exert a significant regulatory influence on
gene expression. However, the regulatory mechanism of miRNA associated with muscle development
in Jeryak remains elusive. To elucidate the regulatory role of miRNAs in orchestrating skeletal
muscle development in Jeryak, we selected longissimus dorsi muscle tissues from Gannan yak
and Jeryak for transcriptome sequencing analysis. A total of 230 (DE) miRNAs were identified
in the longissimus dorsi muscle of Gannan yak and Jeryak. The functional enrichment analysis
revealed a significant enrichment of target genes from differentially expressed (DE)miRNAs in
signaling pathways associated with muscle growth, such as the Ras signaling pathway and the
MAPK signaling pathway. The network of interactions between miRNA and mRNA suggest that
some (DE)miRNAs, including miR-2478-z, miR-339-x, novel-m0036-3p, and novel-m0037-3p, played a
pivotal role in facilitating muscle development. These findings help us to deepen our understanding
of the hybrid dominance of Jeryaks and provide a theoretical basis for further research on the
regulatory mechanisms of miRNAs associated with Jeryak muscle growth and development.

Keywords: Jeryak; longissimus dorsi; small RNA-seq; miRNA; production performance

1. Introduction

The Jeryak is the result of crossbreeding between Gannan yak and Jersey cattle. Nu-
merous studies have demonstrated that from Jersey cattle for crossbreeding with Gannan
yak, the hybrid offspring of Jeryaks exhibit significantly increased body size and weight, ro-
bust physique, strong adaptability, and rapid growth and development [1], which provides
support for herders’ living production and pastoral economy [2]. In view of this, explor-
ing the molecular regulatory mechanisms of skeletal muscle development may provide a
direction to improve the production performance of Jeryaks.

The economic value of mammals is evaluated based on their meat production and its
quality, which are influenced by the growth of skeletal muscle [3]. The growth of skeletal
muscle is an intricate and accurate process, including the creation of fetal muscle fibers
prior to delivery and the enlargement of muscle fibers after delivery [4]. Furthermore,
the regulation of numerous transcription factors is imperative for the growth of skeletal
muscles [5]. Muscle-derived regulatory factors (MRFs) and muscle cell enhancer 2 (MEF2)
are widely recognized as crucial elements in the growth and development of skeletal muscle,
as evidenced by previous studies [6–8]. PAX3 and PAX7 act as regulatory factors that
control the development of skeletal muscle by interacting with MRFs [9]. Muscle growth
inhibitor (MSTN) has been identified as a specific negative regulatory factor involved in
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skeletal muscle development, which interacts with certain signaling pathways to inhibit
the expression of MRFs or PAX [10,11]. Furthermore, the Wnt, MAPK, and PI3K-Akt
signaling pathways play a pivotal role in myogenesis, regeneration, and differentiation
across multiple species including mice, chicken, and humans [12–17]. In recent years,
advancements in high-throughput sequencing technology have revealed that skeletal
muscle growth is influenced not only by protein-coding RNAs but also by non-coding
RNAs (ncRNAs), specifically microRNAs (miRNAs). These ncRNAs play a significant role
in various biological processes and are regulated through multiple mechanisms.

MiRNAs, a class of small RNAs that are highly conserved across evolutionary
species, exert post-transcriptional regulation on target genes by either degrading or
inhibiting the translation of specific messenger RNAs (mRNAs) [18,19]. They have been
demonstrated to play a role in vital biological processes, including cell proliferation and
differentiation [20–22]. Currently, a plethora of research studies have indicated that the
abundant expression of muscle-specific miRNAs, such as miR-1, miR-206, miR-133, and
miR-499, within skeletal muscles significantly influences their development [4,23,24].
Chen et al. [25] reported an observed notable increase in the levels of miR-1 and
miR-206 during satellite cells’ differentiation in skeletal muscle, while a decrease was
observed during the process of skeletal muscle regeneration. Further investigation
unveiled that miR-1/206 exerted inhibitory effects on the expression of Pax7, thereby
hindering the proliferation and differentiation of satellite cells. Nakasa et al. [26]
showed that the activation of MyoD, MyoG, and Pax7 occurred when miR-1, miR-
133, and miR-206 were injected together at the site of muscle injury in rats, and this
activation subsequently facilitated muscle regeneration and suppressed muscle fibrosis.
Meanwhile, miR-499’s significance in regulating the composition of muscle fibers has
been demonstrated [27]. Additionally, miR-22-3p impedes the proliferation of skeletal
muscle cells and promotes cellular differentiation by virtue of its interaction with
IGFBP3 [28]. The identified interactions between oar-mir-655-3p and oar-mir-381-5p
with ACSM3 and ABAT play a crucial role in the process of muscle organogenesis and
myoblast migration in sheep [29]. In recent years, transcriptome sequencing has been
extensively explored to investigate the correlation between miRNAs and mRNAs in
skeletal muscle development. However, the regulatory mechanisms governing miRNA–
mRNA interaction in relation to Jeryaks’ muscle growth and development have yet to
be investigated.

Therefore, in this study, we generated six small RNA libraries by collecting samples
from the longissimus dorsi muscle of Gannan yaks and Jeryaks. By employing high-
throughput sequencing and conducting comprehensive bioinformatics analysis, we elu-
cidated the expression pattern of miRNAs and finally constructed an miRNA–mRNA
regulatory network related to muscle growth by co-analysis with RNA-seq. These findings
help us to deepen our understanding of the hybrid dominance of Jeryaks and provide a
theoretical basis for further research on the regulatory mechanisms of miRNAs associated
with Jeryak muscle growth and development.

2. Materials and Methods
2.1. Sample Collection

Three male Gannan yaks (M1, M2, M3) and three male Jeryaks (P1, P2, P3) were
sourced from Hezuo City, Gannan Tibetan Autonomous Prefecture, Gansu Province. They
were subsequently categorized into groups M and P. All the animals were healthy, aged
4 years old, and had free access to food and water under the same feeding conditions. Prior
to slaughter, the experimental animals underwent an overnight fasting period followed
by adherence to established slaughterhouse protocols. The longissimus dorsi muscle
was collected on the slaughtering line and samples were promptly transferred to 1.5 mL
centrifuge tubes before being preserved at −80 ◦C for future sequencing.
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2.2. Total RNA Extraction

We employed a TRIzol kit (Invitrogen, Carlsbad, CA, USA) for the isolation of total
RNA from longissimus dorsi muscle tissue samples. Initially, we pulverized rice grain-sized
tissues in a liquid nitrogen environment using a grinding apparatus. Subsequently, the
crushed sample was transferred to a 1.5 mL centrifuge tube and immediately supplemented
with 1000 µL of TRIzol followed by thorough mixing. After allowing it to stand at room
temperature for 5 min and subsequent centrifuging at 12,000× g for 5 min, the super-
natant was carefully aspirated and mixed with 200 µL of chloroform in a new centrifuge
tube. The mixture was thoroughly mixed and left at room temperature for an additional
5 min, then centrifuged at 12,000× g for 15 min. Following this step, the supernatant was
again aspirated and transferred to a new centrifuge tube, to which 500 µL of isopropanol
was added and mixed thoroughly. The resulting mixture was left for 10 min, and then
centrifuged at 12,000× g for 10 min before discarding the supernatant. Subsequently, an
80% ethanol was added to the centrifuge tube in a volume equivalent to that of TRIzol.
The mixture was then centrifuged at 7500× g for 5 min and the supernatant was discarded.
After drying at room temperature for a duration of 2–4 min, solubilization of RNA was
achieved by adding 20 µL of RNase-free water. Finally, the sample was stored at −80 ◦C.

2.3. Construction and Sequencing of Small Ribonucleic Acid Library

After extracting the total RNA, we employed the polyacrylamide gel electrophoresis
(PAGE) technique to selectively enrich small RNAs within the 18–30 nt range. Subse-
quently, reverse transcription and PCR amplification were performed on small RNAs lig-
ated with both 3′ and 5′ adapters, resulting in PCR products of approximately 140–160 bp
for cDNA library construction. The quality of the samples was assessed using an Agilent
2100 instrument (Agilent Technologies, Palo Alto, CA, USA) and ABI Prism 7500 real-time
PCR system (Applied Biosystems, Foster City, CA, USA). Finally, sequencing was con-
ducted on an Illumina NovaSeq 6000 instrument (Guangzhou, China).

2.4. Differentially Expressed miRNA Analysis

We processed the sequencing data as follows: Firstly, we filtered out reads with
multiple bases of poor quality (q-value ≤ 20) or unknown nucleotides (N). Secondly, we
removed the portions of reads that lacked the 3′ adapters and those containing the 5′

adapters. Subsequently, we discarded reads that contained both the 3′ and 5′ linkers
without small RNA fragments in between. Additionally, any reads containing polyA tails
were eliminated. Finally, we excluded reads shorter than 18 nt in length. To identify and
remove non-coding RNAs such as rRNAs, scRNAs, snoRNAs, snRNAs, and tRNAs from
our dataset, we compared all clean labels against small RNA databases including GenBank
(v209.0) and Rfam (v11.0). Furthermore, to ensure accurate alignment with the yak reference
genome (LU_Bosgru_v3.0), cleaning markers were aligned accordingly. Moreover, labels
mapping to exons, introns, and repetitive sequences were also eliminated.

We employed miRDeep2 (v2.0.0.7) software [30] for the prediction of novel miRNAs
while quantifying their expression levels using the TPM (TPM) algorithm. Heat maps
were generated to visualize the expression profiles of miRNAs across different sample
sets, and clustering was performed based on similar expression patterns. The DESeq2
(V1.20.0) [31] software was utilized to analyze the differential expression of miRNAs in
Jeryak and Gannan yak populations. In the comparison, we identified miRNAs with a fold
change > 2.0 and p < 0.05 as (DE)miRNAs.

2.5. Target Gene Prediction of Differentially Expressed miRNAs and KEGG and GO Analysis

We utilized both Miranda (v3.3a) [32] and TargetScan (v7.0) [33] software to perform
target gene prediction for known, identified, and newly discovered miRNAs. The intersec-
tion of the prediction results was considered as the set of target genes for these miRNAs.
Subsequently, we utilized the GO (http//www.geneontology.org/, accessed on 11 July
2023) and KEGG (http//www.genome.jp/kegg/, accessed on 11 July 2023) databases

http//www.geneontology.org/
http//www.genome.jp/kegg/
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to determine significant biological functions and pathways associated with these targets.
Significantly enriched biological processes in differentially expressed miRNA target genes
were defined based on a screening threshold of p < 0.05.

2.6. miRNA–mRNA Interaction Network Construction

We performed a comprehensive analysis using RNA-seq (accession number: PR-
JNA1023693) to investigate the targeting relationship between miRNA and mRNA, as well
as identify mRNAs associated with muscle growth. Subsequently, we assessed the corre-
lation between miRNA expression and target genes using Pearson correlation coefficient
(PCC). In cases where the expression of a target gene exhibited negative correlation with
its corresponding miRNA, we considered it as a potential target gene for differentially
expressed (DE)miRNAs. Finally, we employed Cytoscape 3.1.0 (http//www.cytoscape.
org/, accessed on 11 July 2023) to visualize the interaction network between miRNAs
and mRNAs.

2.7. Real-Time qPCR Validation of Differentially Expressed miRNAs

In order to confirm the accuracy of the sequencing findings, we validated qRT-PCR on
the 7 differentially expressed miRNAs. We used miRNA Design V1.01 to design forward
primers for miRNAs. The primers for (DE)miRNAs are listed in Table 1. Afterwards, total
RNA was extracted from the samples using TrRIzol reagent (Invitrogen, Carlsbad, CA,
USA). We used the miRNA First-Strand cDNA Synthesis Kit (Transgen Biology, Beijing,
China) and performed reverse transcription and real-time fluorescence quantitative PCR
with U6 as the internal reference gene. First, we added total RNA, TransScript® miRNA RT
Enzyme Mix, 2× TS miRNA Reaction Mix, and RNase-free water to the PCR tube to form a
20 µL reaction system. Then, this was lightly mixed and incubated at 37 ◦C for 1 h. The RT
Enzyme Mix was inactivated by heating 20 µL of the system reaction at 85 ◦C for 5 s, and
miRNA first-strand cDNA construction was completed. Next, we added cDNA, Forward
Primer (10 µM), 2× PerfectStartTM Green qPCR SuperMix, Universal miRNA qPCR Primer
(10 µM), Passive Reference Dye (50×), and RNase-free water to a new PCR tube to form
a 20 µL reaction system. Real-time fluorescence quantitative PCR was completed after
40–45 cycles at 94 ◦C for 5 s and 60 ◦C for 30 s.

Table 1. Primers of miRNAs used for the RT-qPCR.

miRNAs Forward (5′ → 3′) Reverse (5′ → 3′)

miR-450-x TTTTGCAATATGTTCCTGAAT
miR-136-x ACTCCATTTGTTTTGATGATGG
miR-1271-z CTTGGCACCTAGTAAGTACTCAA
miR-142-y TGTAGTGTTTCCTACTTTATGG
miR-204-x TTCCCTTTGTCATCCTATGCCT
miR-98-y CTATACAACTTACTACTTTCCT
miR-339-x TCCCTGTCCTCCAGGAGCTCACT

U6 ACGGACAGGATTGACAGATT TCGCTCCACCAACTAAGA

Next, we analyzed miRNA expression levels in different tissues to confirm that miR-
NAs were involved in bovine skeletal muscle development. Briefly, we isolated total RNA
from heart, liver, spleen, lung, kidney, longissimus dorsi muscle, and subcutaneous fat
using TRIzol (Invitrogen, Carlsbad, CA, USA). Subsequently, we performed reverse tran-
scription and real-time fluorescence quantitative PCR using an miRNA First-Strand cDNA
Synthesis Kit (Transgen Biology, Beijing, China) according to the above method. Finally, we
evaluated miRNA expression using qRT-PCR with U6 as internal reference.

All qRT-PCR reactions were performed on an ABI Prism 7500 real-time PCR system
(Applied Biosystems, Foster City, CA, USA). All experiments were performed with three
biological replicates and data were analyzed using the 2−∆∆CT method. Graphs were
generated for all experiments using GraphPad Prism 9.

http//www.cytoscape.org/
http//www.cytoscape.org/
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3. Results
3.1. Summary of Sequencing Small RNA

To detect (DE)miRNAs during muscle development in Gannan yaks and Jeryaks,
we created and sequenced six small RNA libraries (M1, M2, M3, P1, P2, and P3) us-
ing the Illumina NovaSeq 6000 platform. A total of 17,408,914, 14,015,050, 16,597,591,
14,318,748, 9,195,586, and 16,740,804 clean readings were produced in M1, M2, M3, P1,
P2, and P3, correspondingly. Following the elimination of adapters, impurities, and reads
of poor quality, a total of 16,255,077, 13,362,108, 15,172,291, 13,782,038, 8,756,687, and
16,180,410 clean tags were acquired and utilized for subsequent examination (Table 2).
After comparing all clean tags with GenBank and Rfam, it was discovered that a total of
74,809,937 (89.613%) known miRNAs and 19,881 (0.024%) novel miRNAs were obtained
from Gannan yaks and Jeryaks once small RNAs matching rRNA, tRNA, snRNA, snoRNA,
and scRNA were eliminated (Figure 1A, Table S1). Meanwhile, 72.17% and 78.05% clean
tags in M and P, respectively, were mapped to the yak reference genome (LU_Bosgru_v3.0)
(Table S2). The size distributions of small RNAs in the longissimus dorsi muscle of the
two breeds are comparable, with the majority being concentrated around 22 nt (Figure 1B).
Principal component analysis (PCA) revealed similarities between samples and differences
between the two cattle breeds (Figure 1C). The presence of these findings suggests that the
sequencing data are of excellent quality.
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Table 2. Results of raw reads of Gannan Yaks (M1, M2 and M3) and Jeryaks (P1, P2 and P3) after
quality control.

Samples Clean Reads High
Quality

3′ Adapter
Null Insert Null 5′ Adapter

Contaminants
PolyA

(%) Clean Tags

M1 17,408,914
(100%)

17,260,011
(99.1447%)

9612
(0.0557%)

108,519
(0.6287%)

31,981
(0.1853%)

321
(0.0019%)

16,255,077
(93.3721%)

M2 14,015,050
(100%)

13,899,769
(99.1774%)

6900
(0.0496%)

54,327
(0.3908%)

13,958
(0.1004%)

162
(0.0012%)

13,362,108
(95.3411%)

M3 16,597,591
(100%)

16,448,657
(99.1027%)

10,968
(0.0667%)

83,221
(0.5059%)

20,095
(0.1222%)

247
(0.0015%)

15,172,291
(91.4126%)

P1 14,318,748
(100%)

14,151,985
(98.8354%)

9475
(0.0670%)

59,453
(0.4201%)

7319
(0.0517%)

126
(0.0009%)

13,782,038
(96.2517%)

P2 9,195,586
(100%)

9,071,110
(98.6464%)

76,171
(0.8397%)

46,305
(0.5105%)

3837
(0.0423%)

76
(0.0008%)

8,756,687
(95.2271%)

P3 16,740,804
(100%)

16,610,388
(99.2210%)

66,607
(0.4010%)

74,568
(0.4489%)

6918
(0.0416%)

134
(0.0008%)

16,180,410
(96.6525%)

3.2. Differential Expression Analysis of miRNAs

We compared miRNAs from groups M and P using DESeq2 (V1.20.0) software and
identified 230 differentially expressed miRNAs consisting of 172 already characterized
miRNAs and 58 newly discovered ones. In comparison to Gannan yaks, the longis-
simus dorsi muscle of Jeryaks had 135 down-regulated miRNAs and 95 up-regulated
miRNAs (Figure 2A). And they were clustered in the two branches of M and P, respectively
(Figure 2B).

3.3. Target Gene Prediction of Differentially Expressed miRNAs and KEGG and GO Analysis

As is well known, miRNA controls biological processes by suppressing the translation
of target genes [34]. Hence, to gain a deeper comprehension of the possible functions of
miRNAs in the growth of skeletal muscle, targetscan and miRanda were employed for the
anticipation of its target genes. The results showed that 17,285 target genes were predicted
by the 230 (DE)miRNAs (Table S3). The analysis of GO enrichment indicated that these
target genes were associated with 3217 functional categories that had been significantly
enriched (p < 0.05) (Table S4). Among them, 270 GO terms were enriched in the cellular
component classification, including cell, cell part, Wnt signalosome, PRC1 complex, striated
muscle thin filament, and other terms. In the category of molecular function, there were
575 significantly enriched terms, mainly including catalytic activity, binding to growth
factors, protein interaction, activity as a transcription regulator, binding to transcription
factors, binding to Ras GTPase, and other related terms. There were 2372 GO terms that
were significantly enriched in biological processes, primarily involving the skeletal muscle
cell differentiation, regulation of smooth muscle cell migration, positive regulation of
skeletal muscle tissue development, smooth muscle cell proliferation, metabolic process,
and other related terms (Figure 3A). The analysis of KEGG indicated that the target genes of
(DE)miRNAs showed a notable enrichment in 118 signaling pathways (p < 0.05) (Table S5).
The enriched pathways mainly involved Ras signaling pathway, MAPK signaling pathway,
Wnt signaling pathway, FoxO signaling pathway, and fatty acid metabolism(Figure 3B).
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3.4. Building the Network for miRNA–mRNA Interactions

These 230 (DE)miRNAs and RNA-seq screened DEMs were analyzed jointly based
on the negative regulation of mRNAs by miRNAs. To further explore the potential role
of miRNAs in Jeryak muscle growth, 5916 pairs of miRNA–mRNA relationships were
identified (Table S6). To gain a more extensive comprehension of the interplay between
miRNAs and target genes, we chose 20 differentially expressed mRNAs (DEMs) associated
with muscle development and 14 (DE)miRNAs that target them based on a thorough
literature examination. The miRNA–mRNA interaction network was constructed using
this information (Figure 4). It should be emphasized that some miRNAs, like miR-2478-z,
miR-339-x, along with some newly discovered miRNAs (novel-m0036-3p and novel-m0037-
3p), have the ability to target numerous genes associated with muscle development. The
findings suggest that these miRNAs could have a significant impact on the regulation of
muscle development.
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3.5. Validation of Differentially Expressed miRNAs by qRT-PCR

To establish the validity of the RNA-Seq outcomes, we evaluated seven differentially
expressed miRNAs, including 4 up-regulated miRNAs (miR-450-x, miR-1271-z, miR-136-x,
miR-142-y) and 3 down-regulated miRNAs (miR-339-x, miR-98-y, miR-204-x). The results
showed that the miRNA expression patterns of Gannan yak and Jeryak were similar
to the sequencing results (Figure 5A). This result further supports the repeatability and
reliability of our sequencing data. And then we investigated the expression of miR-2478-z
by qRT-PCR, which targets multiple genes involved in muscle growth. Our study found
that miR-2478-z expression was relatively high in the longissimus dorsi muscle tissue
(Figure 5B). Thus, these results also confirm the reliability of the reciprocal network and
suggest that (DE)miRNAs play a regulatory role in muscle growth and development.
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4. Discussion

Muscle growth is a multifaceted economic characteristic that not only impacts the
quality of meat from livestock and poultry, but also plays a pivotal role in enhancing
overall meat-production performance [35,36]. Compared to conventional bovines, yaks
exhibit a slower growth rate and have a relatively modest production performance [37].
Therefore, the quest for strategies to optimize yak productivity continues to be a press-
ing inquiry in need of resolution. Jeryak, a hybrid breed resulting from crossbreeding
of Gannan yak and Jersey cattle, have exhibited enhanced production capabilities in
comparison to Gannan yak [38]. Hence, investigating the molecular regulatory mech-
anism underlying this phenomenon will contribute to enhancing the economic advantages
associated with yaks.

miRNAs, crucial non-coding regulators in post-transcriptional regulation, exert their
influence on a plethora of biological processes including cell proliferation, apoptosis, and
the development of tumors [39]. A number of 230 miRNAs exhibited differential expression
in the present study. Among these, a total of 135 (DE)miRNAs displayed noteworthy down-
regulation in the longissimus dorsi muscle of Jeryak, whereas 95 (DE)miRNAs exhibited
significant up-regulation. We performed GO and KEGG pathway enrichment analysis on
differentially expressed miRNA target genes to investigate their potential functional roles.
The GO enrichment results demonstrate that (DE)miRNAs primarily participate in the
regulation of Wnt signaling and developmental processes. Additionally, KEGG pathway
analysis revealed a significant enrichment of some (DE)miRNAs in key pathways including
Ras signaling, MAPK signaling, Wnt signaling, and FoxO signaling. As a prominent
pathway for miRNA target genes in Jeryak, the Ras signaling cascade has been documented
to exert inhibitory effects on skeletal muscle myogenesis [40]. The MAPK signaling pathway
has the capacity to regulate biological processes via multiple mechanisms of activating
or inhibiting associated factors [41]. It has been found that activation of the p38/MAPK
signaling pathway can contribute to a thickening of muscle fiber cross-sections and an
increase in muscle length by regulating the protein content in adult muscle fibers after
birth, thereby increasing total muscle mass [42,43]. A previous study has demonstrated
that the Wnt signaling exerts direct control over the expression of myogenic regulatory
factors (MRFs) during embryonic development in animals, thereby influencing muscle
production [12]. Additionally, the FoXO signaling pathway is also involved in muscle
growth and development, and it leads to skeletal muscle atrophy primarily through protein
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degradation [44]. Sandri et al. [45]. demonstrated that FoXO induces skeletal muscle
atrophies by up-regulating the ubiquitin ligase Atrogin-1.

To further scrutinize the candidate miRNAs governing muscle growth and develop-
ment in Jeryak, we successfully constructed a miRNA–mRNA interaction network based
on the results of combined analysis of mRNAs and miRNAs. Significantly, the two newly
identified miRNAs exhibited differential expressions in both species. The function of their
target genes may mediate the effects of these miRNAs on muscle growth and development.
Within the intricate network of interactions, novel-m0036-3p and novel-m0037-3p were
both found to specifically target SIX2, SIX1, NDRG4, STX4, and CTCF genes. SIX1 has been
reported as a constituent of the vertebrate SIX gene family. During vertebrate skeletal myo-
genesis and development, the SIX1 transcription factor exerts a transcriptional regulatory
effect on the myogenic determinant gene family, thereby indirectly modulating down-
stream muscle development-related genes through its regulation of individual members of
MRFs [46]. Recent investigation reveals that excessive expression of the transcription factor
SIX2 stimulates satellite cell growth in bovine skeletal muscles [47]. Zhu et al. [48]. reported
that NDRG2 treatment of C12C4 myoblasts activated the Akt/CREB signaling pathway and
significantly up-regulated MyoD and MyoG gene expression, thereby promoting myoblast
differentiation. STX4, also known as syntaxin 4, exhibits significant expression levels in
skeletal muscle tissue. Yoo et al. [49] found that STX4 enhanced the proliferation and
differentiation of myoblasts by interacting with CDO. CTCF is critical for early embryonic
development [50]. CTCF has been found to be a factor involved in the regulation of myo-
genesis, which promotes muscle differentiation mainly by coordinating with MRFs [51].
Interestingly, we also identified SIX2, SIX1, NDRG4, STX4, and CTCF as down-regulated
DEMs. As a result, we speculated that these miRNAs might influence the growth and
development of muscles by inhibiting the expression of DEMs associated with muscles.

In addition, it has been demonstrated in previous studies that a single miRNA can
target multiple mRNA and, conversely, multiple miRNAs can target the same mRNAs [52].
Notably, our interaction network diagram revealed concurrent interactions of miR-339-x,
miR-339-z, and miR-10926-z with MICAL2, as well as concurrent interactions of miR-421-
y and miR-450-x with MEF2A. Therefore, we postulate that these miRNAs may exhibit
specifically binding affinity towards target mRNAs, thereby exerting a discernible impact on
the growth and development of Jeryak skeletal muscle. Subsequent investigations should
encompass the validation of putative miRNA–mRNA targeting relationships to elucidate
their underlying mechanisms governing skeletal muscle growth and development.

5. Conclusions

In this study, 230 (DE)miRNAs were identified by small RNA-Seq. The results of both
GO and KEGG analyses have shown that target genes of (DE)miRNAs were principally
engaged in signaling pathways related to muscle growth and development. Subsequently,
14 key miRNAs were screened by constructing miRNA–mRNA interaction networks,
including miR-2478-z, miR-339-x, novel-m0036-3p, and novel-m0037-3p. These miRNAs
may regulate muscle growth and development in Jeryaks by affecting their target genes.
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