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Abstract: Chronic obstructive pulmonary disease (COPD) was the third most prevalent cause of
mortality worldwide in 2010; it results from a progressive and fatal deterioration of lung function
because of cigarette smoking and particulate matter (PM). Therefore, it is important to identify
molecular biomarkers that can diagnose the COPD phenotype to plan therapeutic efficacy. To
identify potential novel biomarkers of COPD, we first obtained COPD and the normal lung tissue
gene expression dataset GSE151052 from the NCBI Gene Expression Omnibus (GEO). A total of
250 differentially expressed genes (DEGs) were investigated and analyzed using GEO2R, gene
ontology (GO) functional annotation, and Kyoto Encyclopedia of Genes and Genomes (KEGG)
identification. The GEO2R analysis revealed that TRPC6 was the sixth most highly expressed
gene in patients with COPD. The GO analysis indicated that the upregulated DEGs were mainly
concentrated in the plasma membrane, transcription, and DNA binding. The KEGG pathway analysis
indicated that the upregulated DEGs were mainly involved in pathways related to cancer and axon
guidance. TRPC6, one of the most abundant genes among the top 10 differentially expressed total
RNAs (fold change ≥ 1.5) between the COPD and normal groups, was selected as a novel COPD
biomarker based on the results of the GEO dataset and analysis using machine learning models.
The upregulation of TRPC6 was verified in PM-stimulated RAW264.7 cells, which mimicked COPD
conditions, compared to untreated RAW264.7 cells by a quantitative reverse transcription polymerase
chain reaction. In conclusion, our study suggests that TRPC6 can be regarded as a potential novel
biomarker for COPD pathogenesis.

Keywords: TRPC6; particulate matter; chronic obstructive pulmonary disease (COPD); machine learning

1. Introduction

Chronic obstructive pulmonary disease (COPD) is a major lung disease and the
third leading cause of death worldwide in 2010 [1]. It is an abnormal inflammatory
response caused by exposure to particulate matter (PM), including toxic particles and
gases. Patients with COPD experience chronic cough, chronic bronchitis, and accelerated
lung dysfunction. Many studies have reported that a significant increase in inflammatory
immune cells has been observed in the small airways of patients with COPD, which
release fatal enzymes and inflammatory factors, leading to lung damage [2]. Neutrophils
play major roles in COPD by producing neutrophil elastase (NE) and myeloperoxidase
(MPO) [3]. Macrophages exacerbate COPD by releasing excess proinflammatory cytokines,
matrix metalloproteinases (MMP), and reactive oxygen species (ROS) [4].

Examining the sputum and bronchoalveolar lavage fluid (BALF) of COPD patients
for clinical applications is difficult. Hence, the detection of serum inflammatory markers
in COPD patients is mainly used in clinical practice and correlates inflammatory markers
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with the severity of COPD. Thomsen et al. found that C-reactive protein (CRP), fibrinogen,
and leukocyte population could be important COPD biomarkers associated with increased
exacerbation [5]. However, the study had a reliability issue in the experimental results
because of the unbalanced and too few non-viable samples.

To clearly distinguish the severity of COPD, many scientists have attempted to use
machine learning algorithms for clinical decision making. Nunavath et al. investigated
feed-forward neural networks (FFNN) for COPD classification and long short-term memory
(LSTM) for the early prediction of exacerbation degrees and subsequent triage in patients
with COPD [6]. However, the data were obtained from a family environment, which
was likely to be affected by multiple factors, resulting in diminishing data quality. Tang
et al. suggested a four-layer deep learning model that optimizes a specifically configured
recurrent neural network to address temporal variations in COPD progression [7]. The
proposed model led to a poor interpretation owing to its complexity. Almagro et al.
utilized the Charlson index and a questionnaire to investigate comorbidities and short-term
prognosis in hospitalized patients with COPD with exacerbation [8]. That study did not
include the role of inflammation in the diagnosis of COPD.

In this study, we aimed to identify novel potential diagnostic biomarkers of COPD
through machine learning models a database analysis of the largest publicly available
repository of mRNA expression in COPD collected by the Gene Expression Omnibus (GEO)
(https://www.ncbi.nlm.nih.gov/geo/ accessed on 10 January 2022) and revealed their
expression in macrophages with PM-induced COPD (Figure 1).
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Figure 1. Overview of the experimental workflow.

2. Materials and Methods
2.1. Microarray Data Acquisition

GEO (http://www.ncbi.nlm.nih.gov/geo accessed on 10 January 2022) provides ge-
nomics data including high throughout microarrays and gene expression data to the public.
One gene expression dataset [GSE151052] was used from GEO (GPL17556 [HuGene-1_0-st]
Affymetrix Human Genome 1.0 ST Array). According to the annotation information in the
platform, the probes are transformed into corresponding gene symbols. The GSE151052
dataset contained the total RNAs of 117 samples, including 78 samples from lung tissues of
COPD patients and 39 samples from control.

https://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo


Genes 2023, 14, 284 3 of 14

2.2. Identification of Differentially Expressed Genes (DEGs)

GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/ accessed on 10 January 2022)
is a web tool based on the R language limma package to obtain differentially expressed
genes (DEGs) for comparing more than two groups of samples [9]. We utilized this tool
to conduct comparisons on GSE151052 raw data. For this, we initially checked the overall
characteristics of value distributions. Usually, median-centered values mean that the data
are normalized. If the data were not normalized, the force normalization option was applied
for quantile normalization to the expression data, forcing all selected samples to show
identical value distribution. Then, we assigned samples from COPD patients and normal
to “case group” and “control group”, respectively. Differentially expressed genes (DEGs)
were identified using GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/ accessed on
10 January 2022), which is based on the GEO databases. In order to classify the DEGs among
patients with COPD and controls, DEGs were acquired by |log (fold change; FC) | >1 and
t-tests with p < 0.05.

2.3. GO Enrichment and KEGG Pathway Analysis

The Database for Annotation, Visualization, and Integrated Discovery (DAVID) v6.8
tool was used to interpret the functional roles of genes based on the genome studies [10].
The Gene Ontology database (GO; http://www.geneontology.org accessed on 15 February
2022) provides structured ontologies or vocabularies, explaining the characteristics of genes
and gene products [11]. Kyoto Encyclopedia of Genes and Genomes database (KEGG;
(http://www.genome.jp/kegg/ accessed on 15 February 2022)) provides information
on biological systems from genomic, systemic functional, and chemical points [12]. We
analyzed the GSE151052 database using DAVID software, according to Han’s report [13]. In
our study, in the first step, we input the gene list into the search box, subsequently selected
identifier “ENSEMBL_GENE_ID” and chose list type “Gene List”, then submitted the list.
In the second step, we selected “Homo sapiens” to limit annotations and selected “List 1”.
In the third step, we chose the four parameters “GOTERM-BP-DIRECT”, “GOTERM-CC-
DIRECT”, “GOTERM-MF-DIRECT”, and “KEGG-PATHWAY” in the annotation summary
results. To determine GO an KEGG pathway analysis results, “Functional Annotation
Chart” was used.

2.4. Cell Culture

The RAW 264.7 cells were obtained from the Korean Cell Line Bank (KCLB, Seoul,
Republic of Korea). Cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM,
Welgene, Daegu, Republic of Korea) supplemented with 10% fetal bovine serum (Welgene)
and 1% penicillin and streptomycin (Welgene). They were grown in a 75 cm2 cell culture
flask at 37.5 ◦C in humidified 5% CO2 incubators.

2.5. Extraction of RNAs and qRT-PCR

According to a previous study [14,15], total mRNA was extracted from RAW 264.7 cells
using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and reverse transcribed using
Revertra Ace qPCR RT kit (Toyobo Biologics Inc., Osaka, Japan). The PCR program was
implemented as follows: initial denaturation at 94 ◦C for 2 min, followed by 30 cycles of
denaturation at 94 ◦C for 20 s, annealing at 62.2 ◦C for 10 s, and extension at 72 ◦C for 45 s,
with a final extension at 72 ◦C for 5 min. Polymerase chain reaction was performed at 94 ◦C
for 2 min, 94 ◦C for 30 s, 55 ◦C for 30 s, and 68 ◦C for 1 min for 30 cycles. The sequence of
TRPC6: forward 5′- GAA CTT AGC AAT GAG CTG GC -3′ and reverse5′- CAG AGG TCC
AAG AGA CCA AC -3′. The levels of TRPC6 mRNA were normalized to GAPDH mRNA.

2.6. Statistical Analysis

The data were expressed as means ± standard deviation (SD) and analyzed by one-
way ANOVA/Duncan’s t-test. These analyses were performed using the SPSS software
program, version 12 (SPSS Inc., Chicago, IL, USA).

http://www.ncbi.nlm.nih.gov/geo/geo2r/
http://www.ncbi.nlm.nih.gov/geo/geo2r/
http://www.geneontology.org
http://www.genome.jp/kegg/
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2.7. Machine Learning with Decision Tree

Machine learning is a technique to optimize compute performance criteria that use
data or experience [16]. It provides possible solutions to detect the information hidden
in massive and complex data [17]. Applying machine learning is an appropriate way to
analyze microarray data, which are expressions of measurements of thousands of genes,
and select the necessary genes from the microarray [17,18].

However, many machine learning models lack the explanatory ability for results, but
decision tree models make it easy to identify the criteria for classification problems [14].
Therefore, we used decision tree [15] algorithms in this study. Decision tree algorithms
allow the identification of the criteria for classifying COPD efficiently. When applying
a decision tree algorithm with datasets, the algorithm generates tree-based classification
criteria [18]. In other words, when we apply this algorithm with microarray data, the
algorithm creates a tree-based COPD classification criterion based on the gene expression
amount contained in the data. It makes it possible to visually check which genes greatly
influence COPD classification and how much gene expression is the criterion for disease
classification. Figure 2 shows a brief schema of decision tree.
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The decision tree algorithm can be also used to classify microarray data because it
outputs easy-to-understand results without generating complex rules that are difficult
to analyze from a medical point of view. It does not require a complicated parameter-
tuning process [19,20]. It is also a suitable method for biological data analysis in that the
results obtained through this method can be treated as valuable information for further
analysis [21]. Because of this feature, decision tree-based algorithms can be used as effective
methodologies for microarray-based data analysis, such as those used for direct disease
classification [19,21] or target gene screening [20,22].

Among them, the J48 algorithm, a representative decision tree algorithm, is an imple-
mentation of the C4.5 algorithm (revision 8) by Ross Quinlan [23]. The C4.5 algorithm is
a decision tree algorithm and an improvement of the ID3 algorithm. Like ID3, C4.5 also
uses formulas based on information theory and evaluates the goodness of a test with them,
under the criterion of selecting a test that can extract maximum extractable information
from a set of cases, considering constraints in which only one attribute is tested [24]. C4.5
shows several improvements over ID3, such as continuous data and unknown values that
can be used for the algorithm’s input and attributes with different weights. Furthermore,
due to pruning that is carried out after creation of the tree, the algorithm is enabled for
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pessimistic error prediction, subtree raising to simplify the tree by delete node, replacing it
with the sub-tree, and redistributing instances with its classification criteria [25].

C4.5 is a form of a greedy technique that is a top-down recursive divide-and-conquer
form of approach [26]. The algorithm selects specific well-classified values, separates them
into child nodes, and recursively invokes the algorithm per sub-node basis [23]. Figure 3
shows its pseudocode.
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3. Results
3.1. Identification of TRPC6 as a Potential Biomarker for COPD Using Machine Learning Models
and GEO2R
3.1.1. Analysis Using Machine Learning Models

We conducted machine learning to identify a classifier capable of identifying COPD
from the microarray data, and to identify important genes for COPD classification. The
GSE151052 dataset used in this study comprises microarray profiles of 77 COPD samples
and 40 control samples extracted from the lungs of patients with COPD and control group
donors. Each sample contained information on 19,718 DEGs. A decision tree, which is a
type of a machine learning model, can be used to classify microarray profiling data into the
two groups (COPD and control).

In this study, we generated decision tree models for classifying COPD gene expression
data and investigated the genes that were crucial to classification by analyzing the gener-
ated decision tree structures. We used the J48, DecisionStump, and REPTree models [27]
implemented in WEKA [28]. Owing to the small amount of data, the results were verified
using 10-fold cross validation [23]. We evaluated each classifier using the accuracy and F1
scores that were derived based on a confusion matrix [29], as shown in Table 1.

Table 1. Confusion matrix.

Prediction
Actual

COPD Control
COPD True Positive (TP) False Positive (FP)

Control False Negative (FN) True Negative (TN)
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The Accuracy (Acc) and F1 Scores (F_1) are calculated as follows:

Acc = TP+TN
TP+FP+TN+FN

F1 = 2PR
P+R

P = TP
TP+FP

R = TP
TP+FN

Figures 4 and 5 show the tree structures obtained by learning the three decision
tree models and their performances—J48, DecisionStump, and REPTree; all three models
classified the data using only the value of gene ID 7225_at. These figures explain that
algorithms that specially concentrated in 7225_at among genes in the microarray data
while making decision trees classifying the disease. Moreover, these classifiers, using only
7225_at, showed significant performance in the COPD microarray profile dataset, with an
accuracy of up to 0.991.
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Figure 5. Confusion matrix for results shown in Figure 4. As a result of the experiment using machine
learning models, the COPD and control groups of the dataset were classified only according to the
expression level of TRPC6, regardless of the values of the other genes, and the accuracy of the best
model (J48) was over 99%. This result shows that the classifiers that the decision tree algorithm
generated classified COPD patients and controls with simple criteria but high accuracy.

Originally, a decision tree is a machine learning model used to classify groups, and it
is impossible to calculate the validation rate of each gene or rank the genes using the model.
However, it is possible to infer the importance of genes in classification by analyzing the
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structure of the tree optimized for classification. Figure 4 shows that all three decision tree
models optimized for the classification of COPD contained only one TRPC6 gene (7225_at).
The result is unusual because machine learning results using a conventional microarray or
RNA-sequencing generally do not determine disease classification using only one gene.
Figures 6 and 7 show the results of the same experiment but with the GSE57148 [30] data,
and revealed that the results with the J48 classifier came in a complex tree form while at the
same time performing poorly overall. The results also indicated that all three classifiers were
focused on different genes. The results also differed from those of the original experiment
in which most classifiers focused on only one gene. Therefore, Figure d suggests that there
is something to pay attention to in the results from the original experiment.
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The statistical analysis results (Table 1) were ranked using the statistical value of
LogFC, and the ranking was not absolute. If the results were re-ranked with p-value,
another result would be obtained. However, according to the results of the decision trees,
there was strong evidence that COPD can be classified using only one TRPC6 gene. All three
decision tree models with dataset GSE151052 included only one TRPC6 gene (Figure 5), and
their classification accuracies were very high, at over 98%. Hence, the results of the decision
trees were considered to have priority over those of statistical analysis in this study.

The results of the decision trees with dataset GSE151052 showed that COPD could
be classified with only TRPC6 alone regardless of other genes, so we appraised TRPC6
as a definite biomarker. In practice, it is very rare that samples are classified with high
accuracy based on only one gene in a decision tree. The results with the J48 decision tree
using another dataset, GSE57148 (Figure 5), which does not contain TRPC6, showed that
many genes were included in the decision tree. However, all three decision tree models
with dataset GSE151052 included only one TRPC6 gene (Figure 5), and their classification
accuracies were very high, at over 98%. Since this is strong evidence that COPD can be
classified using only one TRPC6 gene, the results of the decision trees were considered to
have priority over those of statistical analysis.

Typically, a decision tree algorithm applies pruning to deal with overfitting in the
machine learning process. The algorithm produces an optimal decision tree through
pruning, which soon shows which gene the algorithm is paying attention to [30]. According
to the presented experimental results, all three algorithms produced classifiers by focusing
on the 7225_at, which is termed TRPC6, and the accuracy of each classifier was also
relatively high. This result shows that the algorithms generated the correct classifiers with
only the TRPC6. Moreover, the experimental results suggest that TRPC6 plays a crucial
role in terms of COPD classification using machine learning methods. This finding implies
that TRPC6 is very important in terms of classification using machine learning and further
suggests that TRPC6 can also be considered as a biomarker of COPD pathogenesis.

3.1.2. GEO2R

After the analysis of differentially expressed RNA in the GSE151052 (n = 117) dataset,
a total of 250 DEGs were identified, of which 15 genes were upregulated and 12 genes
were downregulated in patients with COPD compared to the normal group (Table 2). The
machine learning results indicated that TRPC6 was the most highly expressed gene among
the top 10 upregulated genes in patients with COPD compared to the control. The GEO2R
analysis showed that RTKN2 was the most abundant among the top 10 upregulated genes,
and TRPC6 was the eighth most abundant gene among the top 10 upregulated genes in
patients with COPD compared to the control.
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Table 2. List of differentially expressed total RNAs using GEO2R.

No. ID Gene Adjusted
p Value p Value logFC

Upregulated genes (top 10)

1 55282_at LRRC36 7.54 × 10−23 2.45 × 10−25 1.377

2 344148_at NCKAPS 1.87 × 10−27 1.71 × 10−30 1.251

3 2487_at FRZB 6.54 × 10−21 3.52 × 10−23 1.250

4 6092_at ROBO2 9.24 × 10−25 1.64 × 10−27 1.159

5 6387_at CXCL12 4.81 × 10−19 4.20 × 10−21 1.129

6 653_at BMP5 6.71 × 10−20 4.46 × 10−22 1.128

7 2669_at GEM 3.15 × 10−19 2.58 × 10−21 1.116

8 7225_at TRPC6 1.15 × 10−30 4.08 × 10−34 1.110

9 84251_at SGIP1 3.26 × 10−27 3.31 × 10−30 1.062

10 114905_at C1QTNF7 2.09 × 10−30 8.48 × 10−34 1.062

Downregulated genes

1 9332_at CD163 2.33 × 10−24 4.73 × 10−27 −2.271

2 6036_at RNASE2 3.00 × 10−26 3.65E × 10-29 −1.567

3 29968_at PSAT1 1.46 × 10−24 2.60 × 10−27 −1.34

4 4830_at NME1 1.05 × 10−22 3.71 × 10−25 −1.318

5 1646_at AKR1C2 8.76 × 10−20 6.22 × 10−22 −1.221

6 1510_at CTSE 3.28 × 10−18 3.90 × 10−20 −1.208

7 195814_at SDR16C5 3.13 × 10−20 1.90 × 10−22 −1.049

8 123_at PLIN2 5.33 × 10−24 1.32 × 10−26 −1.039

9 3855_at KRT7 1.01 × 10−22 3.47 × 10−25 −1.035

10 6472_at SHMT2 2.58 × 10−24 5.37 × 10−27 −1.019

3.2. GO Term Enrichment and KEGG Pathway Analysis

To identify significant functional DEGs between the COPD and normal groups, DAVID
software was used. The top five enrichment analyses for GO are shown in Tables 3 and 4.
For the biological process (BP) enrichment analysis, the upregulated genes were signifi-
cantly involved in the transcription: DNA-templated (GO:0006351), transmembrane trans-
port (GO:0055085), post-embryonic development (GO:0009791), ossification (GO:0001503),
and covalent chromatin modification (GO:0016569). In addition, the TRPC6 gene was
included in the manganese ion transport (GO:0006828).

For the cell component (CC) enrichment analysis, upregulated genes in patients with
COPD were enriched in the plasma membrane (GO:0005886), intracellular (GO:0005622), nu-
clear chromatin (GO:0000785), sarcolemma (GO:0042383), and receptor complex (GO:0043235).
TRPC6 was localized in the plasma membrane (GO:0005886).

For the molecular function (MF), upregulated genes were mainly involved in the
DNA binding (GO:0003677), transcription factor activity, sequence-specific DNA binding
(GO:0003700), calcium ion binding (GO:0005509), chromatin binding (GO:0003682), and
integrin binding (GO:0005178). The TRPC6 gene was involved in inositol 1,4,5 trisphosphate
binding (GO:0070679) and store-operated calcium channel activity (GO:0015279).
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Table 3. Top five gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways enriched for upregulated DEGs.

Category Term Count % p-Value Benjamin

GOTERM_BP_DIRECT Transcription, DNA-templated 14 15.9 8.40 × 10−02 1.00 × 100

GOTERM_BP_DIRECT Transmembrane transport 4 4.5 9.30 × 10−02 1.00 × 100

GOTERM_BP_DIRECT Postembryonic development 3 3.4 4.10 × 10−02 1.00 × 100

GOTERM_BP_DIRECT Ossification 3 3.4 4.90 × 10−02 1.00 × 100

GOTERM_BP_DIRECT Covalent chromatin modification 3 3.4 8.90 × 10−02 1.00 × 100

GOTERM_CC_DIRECT Plasma membrane 29 33 3.50 × 10−03 2.60 × 10−01

GOTERM_CC_DIRECT Intracellular 11 12.5 4.90 × 10−02 1.00 × 100

GOTERM_CC_DIRECT Nuclear chromatin 6 6.8 1.30 × 10−03 1.90 × 10−01

GOTERM_CC_DIRECT Sarcolemma 3 3.4 4.90 × 10−02 1.00 × 100

GOTERM_CC_DIRECT Receptor complex 3 3.4 9.80 × 10−02 1.00 × 100

GOTERM_MF_DIRECT DNA binding 14 15.9 3.20 × 10−02 1.00 × 100

GOTERM_MF_DIRECT Transcription factor activity,
sequence-specific DNA binding 9 10.2 6.30 × 10−02 1.00 × 100

GOTERM_MF_DIRECT Calcium ion binding 8 9.1 4.00 × 10−02 1.00 × 100

GOTERM_MF_DIRECT Chromatin binding 7 8 7.80 × 10−03 9.90 × 10−01

GOTERM_MF_DIRECT Integrin binding 4 4.5 1.10 × 10−02 9.90 × 10−01

KEGG_PATHWAY Axon guidance 5 5.7 2.10 × 10−03 2.30 × 10−01

KEGG_PATHWAY Serotonergic synapse 3 3.4 8.40 × 10−02 1.00 × 100

KEGG_PATHWAY Pathways in cancer 5 5.7 8.90 × 10−02 1.00 × 100

Table 4. Top five gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways enriched for downregulated DEGs.

Category Term Count % p-Value Benjamin

GOTERM_BP_DIRECT Oxidation–reduction process 15 10.3 3.20 × 10−04 6.70 × 10−02

GOTERM_BP_DIRECT tRNA aminoacylation for protein
translation 8 5.5 2.90 × 10−08 2.30 × 10−05

GOTERM_BP_DIRECT Cell–cell adhesion 8 5.5 6.60 × 10−03 7.50 × 10−01

GOTERM_BP_DIRECT IRE1-mediated unfolded protein
response 7 4.8 8.00 × 10−06 3.20 × 10−03

GOTERM_BP_DIRECT Response to nutrient 6 4.1 3.30 × 10−04 6.70 × 10−02

GOTERM_CC_DIRECT Extracellular exosome 51 34.9 2.00 × 10−09 4.40 × 10−07

GOTERM_CC_DIRECT Cytoplasm 53 36.3 1.60 × 10−02 2.40 × 10−01

GOTERM_CC_DIRECT Cytosol 50 34.2 1.20 × 10−06 1.30 × 10−04

GOTERM_CC_DIRECT Membrane 32 21.9 4.80 × 10−04 1.70 × 10−02

GOTERM_CC_DIRECT Mitochondrion 27 18.5 7.70 × 10−06 5.50 × 10−04

GOTERM_MF_DIRECT NADP binding 6 4.1 7.60 × 10−06 2.50 × 10−03

GOTERM_MF_DIRECT Poly(A) RNA binding 21 14.4 5.30 × 10−04 7.60 × 10−02
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Table 4. Cont.

Category Term Count % p-Value Benjamin

GOTERM_MF_DIRECT ATP binding 21 14.4 1.30 × 10−02 5.50 × 10−01

GOTERM_MF_DIRECT Cadherin binding involved in
cell–cell adhesion 8 5.5 8.10 × 10−03 3.90 × 10−01

GOTERM_MF_DIRECT Protein kinase binding 7 4.8 7.70 × 10−02 1.00 × 100

KEGG_PATHWAY Biosynthesis of antibiotics 16 11 1.20 × 10−08 1.50 × 10−06

KEGG_PATHWAY Metabolic pathways 33 22.6 1.50 × 10−06 6.10 × 10−05

KEGG_PATHWAY Biosynthesis of amino acids 9 6.2 1.40 × 10−06 6.10 × 10−05

KEGG_PATHWAY Carbon metabolism 9 6.2 4.10 × 10−05 1.20 × 10−03

KEGG_PATHWAY Aminoacyl–tRNA biosynthesis 7 4.8 9.90 × 10−05 2.40 × 10−03

The KEGG pathway analysis showed that the upregulated DEGs were mainly en-
riched in axon guidance (map04360), serotonergic synapse (map04726), and pathways in
cancer (map05200). The downregulated DEGs were mainly enriched in the biosynthesis
of antibiotics (map00998), metabolic pathways (map01100), biosynthesis of amino acids
(map01230), carbon metabolism (map01200), and aminoacyl-tRNA biosynthesis(map00970).
However, TRPC6, which is upregulated in patients with COPD, was not included in the
three pathways of upregulated DEGs.

3.3. Validating the Expression and Diagnostic Value of TRPC6 in Vitro Model of COPD Using
PCR Analysis

Recently, many groups have reported that particulate air pollution, including PM10,
is a major risk factor for COPD [31]. It stimulates immune cells in the lungs, such as
alveolar macrophages [22]. To confirm TRPC6, which was identified as a novel biomarker
of COPD based on the GEO2R analysis and machine learning analysis, we investigated the
level of TRPC6 mRNA expression in PM-stimulated RAW 264.7 macrophages. The level
of TRPC6 mRNA expression was significantly upregulated in the PM-stimulated RAW
264.7 macrophages compared to the control (p < 0.05) (Figure 8).
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4. Discussion

COPD is a major disease with a steep increase in morbidity and mortality rates
worldwide. According to COPD studies, the levels of IL-6, IL-8, tumor necrosis factor (TNF)-
α, CRP, fibrinogen, and leukocyte population could be considered COPD biomarkers [12,32].
Many studies have implied that a large surge in COPD incidence is due to air pollution,
such as PM. In vitro and in vivo studies have shown that PM can induce pulmonary
inflammation, destroy lung function, cause emphysematous changes in PM10, and induce
the release of proinflammatory cytokines (e.g., TNF-α and IL-1) and reactive oxygen radicals
by alveolar macrophages in patients with COPD [31]. These biomarkers of COPD, based
on the literature review, have been studied for decades. However, they cannot reflect with
certainty the severity of COPD pathophysiology in current clinical practice. To identify
new biomarkers in PM-induced COPD, we used GEO2R and machine learning methods.
In our study, the gene expression data of GSE6676 were downloaded to identify novel
biomarkers that were differentially expressed in the lungs of patients with COPD versus
healthy people. Our study indicated that there were TRPC6 DEGs between the COPD and
normal groups.

In this study, an unusual result was obtained from the analysis of COPD microarray
data using decision tree machine learning models. A decision tree learned for a classification
problem usually has many nodes and a depth of three or more. However, in this case, a
simple binary tree structure with only three nodes and a depth of two was obtained, in
which the COPD and control groups were classified with more than 99% accuracy. In this
decision tree, only one gene (TRPC6) was used for the classification. Hence, the effect of
TRPC6 was significantly greater in the classification of COPD than that of other genes. This
finding contradicts the results of the analysis using GEO2R. In the analysis using GEO2R,
TRPC6 was ranked sixth. In addition, TRPC6 has not been identified as a major biomarker
for COPD in previous studies. Thus, new biomarker candidates that cannot be found using
statistical methods such as GEO2R can be identified by some machine learning methods.

To investigate the predicted biological functions and signaling pathways of the DEGs
in patients with COPD, we performed GO and KEGG pathway analyses. The GO analysis
indicated that upregulated DEGs mainly participated in the BP and MF, whereas downreg-
ulated DEGs mainly took part in the BP. The GO analysis showed that the predicted targets
of COPD were mainly enriched for transcription (DNA-templated), plasma membrane,
and DNA binding. TRPC6 is localized in the plasma membranes.

TRPC6, which is a Ca2+-permeable cation and an oxidative stress-sensitive channel
located in the plasma membrane, is widely expressed in various tissues. TRPC-dependent
increases in Ca2+ in pulmonary cells induce the activation of inflammatory signaling
molecules (e.g., ERK1/2, p38, and JNK), which increases the levels of the inflammatory
factors IL-6 and IL-8 in COPD [33]. TRPC6 is expressed in the lungs, including bronchial ep-
ithelial cells, alveolar macrophages, and the pulmonary vasculature [34]. Finney-Hayward
et al. reported that the level of TRPC6 mRNA in alveolar macrophages from patients is
significantly higher than that in healthy controls [35]. Therefore, TRPC6 identified from
GEO2R and machine learning analysis could be a novel biomarker for the pathogenesis
of COPD.

Studies have demonstrated that macrophages are the major cell type in COPD [36].
Macrophages are innate effector cells for pulmonary host defense against pathogeneses
and inhaled particles such as PM. The number of macrophages was significantly increased
(5- to 10-fold) in the airways, bronchial tubes, and BALF of patients with COPD [37,38].
In addition, a positive correlation was shown between the number of macrophages in the
airways and COPD severity [39]. Recently, many groups have reported that particulate
air pollution, including PM10, is a major risk factor for COPD by stimulating alveolar
macrophages [40]. We found that TRPC6 is a significantly increased molecule in patients
with COPD using machine learning methods and GEO2R. To determine whether TRPC6 is
upregulated in COPD, we investigated the level of TRPC6 mRNA expression in RAW 264.7
macrophage-stimulated PM and analogical COPD condition. The experimental verification
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showed that the level of TRPC6 mRNA expression in the PM-stimulated RAW 264.7 cells
was increased in a concentration-dependent manner. This result suggests that TRPC6 is
significantly expressed in the pathogenesis of COPD.

5. Conclusions

Our study suggests that TRPC6 can be regarded as a potential novel biomarker for
COPD pathogenesis. All three machine learning algorithms (J48, DecisionStump and
REPTree) suggested that TRPC6 plays a crucial role in terms of COPD classification. The
mRNA expression of TRPC6 is significantly increased in PM-stimulated RAW264.7 cells,
which mimic COPD. For diseases other than COPD, a method for deriving biomarker
candidates using machine learning and microarray data can be effective. Research on
diverse gene expression data is left for future works.
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