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Abstract: The existence of the thiouridine synthetase, methyltransferase and pseudouridine synthase
(THUMP) domain was originally predicted by a bioinformatic study. Since the prediction of the
THUMP domain more than two decades ago, many tRNA modification enzymes containing the
THUMP domain have been identified. According to their enzymatic activity, THUMP-related tRNA
modification enzymes can be classified into five types, namely 4-thiouridine synthetase, deaminase,
methyltransferase, a partner protein of acetyltransferase and pseudouridine synthase. In this review,
I focus on the functions and structures of these tRNA modification enzymes and the modified
nucleosides they produce. Biochemical, biophysical and structural studies of tRNA 4-thiouridine
synthetase, tRNA methyltransferases and tRNA deaminase have established the concept that the
THUMP domain captures the 3′-end of RNA (in the case of tRNA, the CCA-terminus). However,
in some cases, this concept is not simply applicable given the modification patterns observed in
tRNA. Furthermore, THUMP-related proteins are involved in the maturation of other RNAs as well
as tRNA. Moreover, the modified nucleosides, which are produced by the THUMP-related tRNA
modification enzymes, are involved in numerous biological phenomena, and the defects of genes for
human THUMP-related proteins are implicated in genetic diseases. In this review, these biological
phenomena are also introduced.

Keywords: tRNA; tRNA modification enzyme; 4-thiouridine; deaminase; C to U editing; tRNA
methyltransferase; N2-methylguanosine; N4-acetylcytidine; pseudouridine synthase; PUS10

1. Introduction

To date, more than 150 modified nucleosides have been found in RNAs from the three
domains of life [1]. Transfer RNA contains numerous modified nucleosides [2,3] and the
majority of modified nucleosides in tRNA are introduced by site-specific tRNA modifica-
tion enzymes. Transfer RNA modification enzymes frequently contain one or more distinct
domains in addition to the catalytic domain, although small tRNA methyltransferases such
as TrmL [4,5] and TrmH [6,7] are mainly composed of the catalytic domain [8–10]. The
existence of the thiouridine synthetase, methyltransferases and pseudouridine synthase
(THUMP) domain was originally predicted in a bioinformatic study [11]. In this study
in 2001, Aravind and Koonin reported that tRNA 4-thiouridine synthetase-like proteins,
conserved RNA methyltransferases, archaeal pseudouridine synthases and several unchar-
acterized proteins share a predicted RNA binding domain, which adopts an α/β fold [11].
At that time, although the Escherichia coli thiI gene product had already been identified as a
tRNA 4-thiouridine synthetase [12], functions of the other proteins were unknown. Fur-
thermore, no structures for any of the proteins, including ThiI, had been reported. In 2004,
the Pyrococcus abyssi PAB1283 protein was firstly identified as a tRNA methyltransferase,
which contains a THUMP domain [13]. Because the PAB1283 protein possesses enzymatic
activity for the formation of N2-methylguanosine (m2G) and N2, N2-dimethylguanosine
(m2

2G) at position 10 in tRNA, nowadays, the PAB1283 protein is called archaeal Trm11
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(arcTrm11). At the same time, the Saccharomyces cerevisiae tan1 gene product was found
to be an essential protein for the formation of N4-acetylcytidine at position 12 (ac4C12)
in tRNALeu and tRNASer [14]. Although Tan1 contains a THUMP domain, this protein
itself does not possess tRNA acetyltransferase activity [14] and does not contain a cat-
alytic domain [15]. Later, Tan1 was identified as a partner protein of S. cerevisiae tRNA
acetyltransferse (Kre33) [16]. Since the prediction of the THUMP domain more than two
decades ago, many tRNA modification enzymes containing a THUMP domain have been
identified. Among them, in addition to tRNA 4-thiouridine synthetases, tRNA methyl-
transferases, tRNA pseudoridine synthases, tRNA deaminase [17] and a partner protein of
tRNA acetyltransferases [16] have been identified. In this review, I focus on functions and
structures of these tRNA modification enzymes and the modified nucleosides they produce.
Several THUMP-related proteins are involved in not only tRNA modification but also
modifications of other RNAs such as rRNA [16,18,19]. In these cases, appropriate reviews
and representative articles are introduced due to the limitation of space in this review.

2. Classification of THUMP-Related tRNA Modification Enzymes

According to enzymatic activity, THUMP-related tRNA modification enzymes can
be classified into five types: 4-thiouridine synthetase, deaminase, methyltransferase,
a partner protein of acetyltransferase and pseudouridine synthase (Table 1). As de-
scribed in a later section, although the classification of tRNA (m2G/m2

2G) methyltrans-
ferases is complicated, archaeal and eukaryotic Trm11-Trm112 are combined in one col-
umn in Table 1. The modification positions and structures of modified nucleosides,
which are produced by THUMP-related tRNA modification enzymes, are summarized
in Figure 1. TkTHUMDP1-TkNAT10 modify multiple positions in tRNA. For example,
when T. kodakarensis cells were cultured at 95 ◦C, C12, C35 and C56 in tRNALeu were mod-
ified to ac4C12, ac4C35 and ac4C56, respectively, by TkTHUMDP1-TkNAT10 [18]. The
crystal structure of human PUS10 [20] and a structural model of archaeal Pus10 [21] show
that the THUMP domain-related structure is contained in the N-terminal accessory do-
main. The accessory domain is considerably larger than the THUMP domain in other
THUMP-related tRNA modification enzymes.

The biosynthesis pathways of modified nucleosides by THUMP-related tRNA methyl-
transferases are summarized in Figure 2.

Table 1. Classification of tRNA modification enzymes with a THUMP domain.

Enzyme Type Name Modification and Position(s)
in tRNA References

4-thiouridine synthetase E. coli and Methanococcus maripaludis ThiI s4U8 and s4U9 [12,22]

deaminase Methanopyrus kandleri CDAT8 U8 [17]

methyltransferase

P. abyssi Trm11 (arcTrm11) m2G10 and m2
2G10 [13]

S. cerevisiae Trm11-Trm112 and Archaeoglobus
fulgidus arcTrm11-arcTrm112 m2G10 (and m2

2G10) [23,24]

Thermus thermophilus TrmN m2G6 [25]

Methanocaldococcus jannaschii Trm14 m2G6 and m2G67 [26]

Homo sapiens THUMPD3-TRM112 m2G6 and m2G7 [27]
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Table 1. Cont.

Enzyme Type Name Modification and Position(s)
in tRNA References

Partner protein of
acetyltransferase

S. cerevisiae Tan1-Kre33 ac4C12 [16]

H. sapiens THUMPD1-NAT10 ac4C12 [16]

Thermococcus kodakarensis
TkTHUMDP1-TkNAT10 ac4C (multiple positions) [18]

Pseudouridine synthase

Pyrococcus furiosus and M. jannaschii
Archaeal Pus10 (arcPus10) Ψ54 and Ψ55 [28,29]

H. sapiens PUS10 Ψ54 and Ψ55 [30,31]

Figure 1. Structures of modified nucleosides, which are produced by THUMP-related tRNA mod-
ification enzymes, and their positions in tRNA. (A) Structures of modified nucleosides, which are
produced by THUMP-related tRNA modification enzymes. Modifications are indicated in red. Be-
cause uridine is produced by deamination of cytidine, the 4-O atom is colored in red. Because
pseudouridine is synthesized by isomerization of uridine, the uracil base is enclosed in a red circle.
(B) The typical tRNA structure is represented as a cloverleaf model. The numbers show the positions
in tRNA. Conserved residues in tRNA are shown as letters: abbreviations, R, purine; Y, pyrimidine.
Position 8 is conserved as U (red) in almost all tRNAs; however, in the case of M. kandleri, position 8
in precursor tRNA is C (orange). The colors correspond to the modified nucleosides in A: blue, m2G
(and m2

2G); red, s4U; orange, U; cyan, ac4C; purple, Ψ. T. kodakarensis NAT10 homolog acetylates
multiple positions in tRNA as described in the main text. (C) The modification positions are mapped
on the L-shaped yeast tRNAPhe structure.
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Figure 2. The modification pathways of THUMP-related tRNA methyltransferases. Eukaryotic,
archaeal and bacterial enzymes are colored in red, blue and orange, respectively. The modification
sites and modified nucleosides are enclosed by squares. (A) ArcTrm11 from P. abyssi and T. kodakarensis
produces m2G10 and m2

2G10. The m2
2G10 modification is produced by the second methylation

from m2G10. (B) S. cerevisiae Trm11 required a partner protein (Trm112) for the methylation and
produces only m2G10. (C) ArcTrm11 from A. fulgidus and Halloferax volcanii requires a partner protein
(arcTrm112) and produces both m2G10 and m2

2G10. (D) TrmN produces m2G6 from G6. (E) Trm14
produces m2G6 from G6. “?” means that T. kodakarensis Trm14 may produce m2G67 as well as m2G6;
this modification has not been confirmed by purified protein. (F) Human THUMP3-TRMT112
complex produces m2G6 and m2G7 from G6 and G7, respectively.

3. Effect of the Modified Nucleosides, Which Are Produced by THUMP-Related tRNA
Modification Enzymes, on tRNA Structure

All modified nucleosides, which are produced by THUMP-related tRNA modification
enzymes, are considered to stabilize the L-shaped tRNA structure.

3.1. s4U8 and s4U9

The sulfur atom in s4U strengthens the hydrophobic interaction. The melting tempera-
ture of tRNASer from an E. coli thiI gene deletion strain decreases by 4.7 ◦C as compared to
that from the wild-type strain [32]. Therefore, at least s4U8 stabilizes the L-shaped tRNA
structure. The effect of s4U9 modification on the tRNA structure is unknown.

3.2. U8

U8 is a conserved nucleoside in tRNA and forms a reverse Hoogsteen tertiary base
pair with A14 [33]. Therefore, deamination from C8 to U8 is essential for maintenance of
the L-shaped tRNA structure [17].

3.2.1. m2G10 and m2
2G10

The m2G modification does not disturb the formation of the Watson–Crick base pair
with C. The O6 atom of m2G10 in the m2G10-C25 base pair forms a hydrogen bond with the
amino group of G45 in S. cerevisiae tRNAPhe. Furthermore, the m2G10-C25 base pair stacks
with the m2

2G26-A44 tertiary base pair. The methyl group in m2G10 probably stabilizes this
stacking effect. In contrast, m2

2G cannot form a Watson–Crick base pair with C. Instead,
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m2
2G forms a non-Watson–Crick base pair with U, and the m2

2G10-U25 base pair can
be observed in T. kodakakrensis tRNATrp [34]. The two methyl groups in m2

2G probably
stabilize the stem structure when an m2

2G-U base pair is formed. Furthermore, the m2
2G10

modification prevents the formation of an incorrect Watson–Crick base pair in tRNA [35].

3.2.2. m2G6, m2G7 and m2G67

As described above, the m2G modification does not disturb the formation of the
Watson–Crick base pair with C. Although the methyl group in these modified nucleo-
sides probably stabilizes the aminoacyl-stem structure in tRNA, the effect has not been
confirmed experimentally.

3.3. ac4C12 and ac4C Modifications in Other Positions

The ac4C modification tilts the equilibrium of ribose puckering towards the C3′

endo-form [36]. Furthermore, the ac4C modification in a stem structure increases the
melting temperature of the stem [37]. Therefore, ac4C at position12 and other positions
probably stabilizes the L-shaped tRNA structure and codon-anticodon interaction.

3.4. Ψ54 and Ψ55

The Ψ55 modification is highly conserved in tRNAs from the three domains of life
and form a tertiary base pair with G18 in the L-shaped tRNA structure. The presence of
Ψ55 enhances the affinity between the T-arm and the D-arm [38]. Although the structural
effect of Ψ54 has not been confirmed experimentally, Ψ54 probably forms a tertiary base
pair with A58 (or m1A58) and the Ψ54-A58 (m1A58) base pair stacks with the G53-C61 base
pair in the T-stem. Thus, the Ψ54 modification probably stabilizes the tRNA structure.

4. Structures and Enzymatic Properties of THUMP-Related tRNA Modification
Enzymes

In this section, the structures of THUMP-related tRNA modification enzymes and their
enzymatic properties are introduced. As described below, the THUMP domain captures the
3′-end of RNA (in the case of tRNA, the CCA-terminus). This concept is proposed based on
structural, biophysical and biochemical studies of ThiI and is extended to studies of other
THUMP-related tRNA modification enzymes.

4.1. 4-Thiouridine Synthetase (ThiI)

When the existence of the THUMP domain was predicted [11], ThiI was the only
identified tRNA modification enzyme in the list of predicted THUMP-related proteins.
ThiI is a tRNA s4U synthetase [12]. s4U is found at positions 8 and 9 in tRNAs from
eubacteria and archaea (Figure 1) [1–3]. The biosynthesis pathways of s4U are different
in eubacteria and archaea [39–42]. In E. coli, the sulfur atom in L-cysteine is activated
by cysteine desulfrase (IscS) and is then transferred to tRNA by ThiI in the presence of
ATP [43–45]. Cysteine residues at positions 344 and 456 in E. coli ThiI are essential for
the reaction and these residues are considered to form a disulfide bond in the catalytic
turnover [46,47]. In contrast, the iscS gene is not encoded in the majority of archaea
genomes [48]. In the case of Methanococcus maripuludis, ThiI contains an Fe-S cluster and
S2− is used as a sulfur donor instead of L-cysteine [22,48]. However, the Fe-S cluster type
thiI gene is not present in some archaea genomes and the biosynthesis pathways in these
organisms are still unknown [39,48,49]. During the submission of this manuscript, it was
reported that M. maripuldis and P. furiosus ThiI proteins possess a [4Fe-4S] cluster [50].
Furthermore, it has been proposed that these enzymes be renamed TtuI [50].

In 2006, the crystal structure of Bacillus anthracis ThiI (PDB code: 2C5S) was the first
of the THUMP-related proteins to be reported (Figure 3A) [51]. B. anthracis ThiI contains
three domains, an N-terminal ferredoxin-like domain (green), a THUMP domain (red) and
a C-terminal PP-loop domain (blue) (Figure 3A). This structure revealed that the THUMP
domain is composed of α-helices and β-strands as predicted. A tRNA binding model was
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also constructed in this study [51]. In the model, the THUMP domain of ThiI was placed
near the CCA-terminus of tRNA because it was reported that the CCA-terminus was essen-
tial for the sulfur-transfer reaction of ThiI [52]. Later, this idea was experimentally verified
by biochemical and structural studies of truncated tRNA [53] and ThiI-truncated tRNA
complex [54]. The N-terminal ferredoxin-like domain functions to maintain the distance
and angle between the THUMP and PP-loop domains. The PP-loop was originally found
as a P-loop-like sequence motif, which had been observed in ATP pyrophosphatases [55].
The PP-loop domain in ThiI binds ATP and activates tRNA by adenylation [56,57]. At
the same time that the crystal structure of B. anthracis ThiI was solved, the structure of
Pyrococcus horikoshii PH1313 protein (PDB code: 1VBK) was released as a protein of un-
known function (Figure 3B) [58]. In the Pyrococcus genera, multiple genes for ThiI homologs
are often encoded in their genomes [22]. Because ThiI is involved in thiamine biosynthesis
in addition to s4U modification in tRNA [12,59–61], the ThiI homologs in Pyrococcus may
not have a dual function but instead individual proteins have single roles. Although the
structure of the PH1313 protein (Figure 3B) resembles other ThiI proteins, the PH1313
protein lacks several conserved amino acid residues of ThiI proteins. To date, the enzymatic
activity of the PH1313 protein has not been confirmed. Furthermore, modified nucleosides
in tRNAs from P. horikoshii have not been analyzed [62]. Therefore, in this review, the
PH1313 protein is described as a ThiI-like protein. The THUMP domain in the P. horikoshii
ThiI-like protein is also composed of α-helices and β-strands as predicted.

Figure 3. Structures of B. anthracis ThiI and P. horikoshii ThiI-like (PH1313) protein. (A) Structure of
B. anthracis ThiI (PDB code: 2C5S) is represented by a cartoon model. Ferredoxin-like, THUMP and
PP-loop domains are colored in green, red and blue, respectively. N and C show the N- and C-termini,
respectively. Bound AMP is shown as a stick model. (B) Structure of P. horokoshii ThiI-like (PH1313)
protein (PDB code: 1VBK) is shown by a cartoon model. Although this protein structure was solved
as a dimer, only one subunit is shown. Ferredoxin-like, THUMP and PP-loop domains are colored in
green, red and blue, respectively. The size of the PP-loop domain of this protein is smaller than that
of B. anthracis ThiI due to the deletion of the C-terminal region.

Transfer RNA modification enzymes often recognize local structure(s) in tRNA [63].
Therefore, tRNA modification enzymes are frequently able to modify a truncated tRNA. For
example, E. coli TrmA [64,65], E. coli TruB [66], E. coli Tgt [67,68], T. thermophilus TrmFO [69],
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T. thermophilus TrmI [70] and A. aeolicus TrmD [71] can modify a micro-helix RNA, which
mimics the T-arm or anticodon-arm of substrate tRNA. TrmA, TruB, Tgt, TrmFO, TrmI
and TrmD are tRNA (m5U54) methyltransferase [72], tRNA (Ψ55) synthase [73], tRNA
guanine-transglycosylase [67,74–76], N5, N10-methylenetetrahydrofolate-dependent-tRNA
(m5U54) methyltransferase [77], tRNA (m1A58) methyltransferase [78] and tRNA (m1G37)
methyltransferase [79], respectively. Furthermore, E. coli TrmJ [80], A. aeolicus TrmB [81]
and T. thermophilus TrmH [82] can methylate a truncated tRNA. TrmJ, TrmB and TrmH are
tRNA (Cm32/Um32) methyltransferase [83], tRNA (m7G46) methyltransferase [84] and
tRNA (Gm18) methyltransferase [6,85], respectively.

Lauhon et al. have reported that a truncated tRNAPhe (Figure 4A) is a minimum sub-
strate for E. coli ThiI [52]. This truncated tRNAPhe is also recognized by Thermotoga maritima
ThiI as a substrate [54]. The crystal structure of the complex of the minimum substrate
RNA and T. maritima ThiI has been reported (Figure 4B) [54]. T. maritima ThiI forms a dimer
and two minimum substrate RNAs bind to this dimer. The THUMP domain in one subunit
captures the CCA terminus of one minimum substrate RNA and the PP-loop domain in
this subunit accesses the modification site (U8) in another minimum substate RNA. Thus,
this complex structure demonstrates that ThiI acts as a dimer. The disulfide bond, which
acts in the catalytic cycle, in E. coli ThiI is formed within a single subunit [86]. Furthermore,
this structure proposes a concept that the THUMP domain recognizes the 3′-end of RNA
(in the case of tRNA, the CCA terminus).

Figure 4. (A) Secondary structure of minimum substrate RNA for ThiI. The modification position
(U8) is colored in red. This RNA is a truncated RNA of E. coli tRNAPhe. The secondary structure is
based on the complex of minimum substrate RNA and ThiI shown in panel B. (B) Crystal structure
of the complex of the minimum substrate and T. maritima ThiI (PDB code: 4KR6). ThiI forms a
dimer structure. To distinguish between the two subunits, one subunit is colored in pale green. The
ferredoxin-like, THUMP and PP-loop domains in one subunit are colored in yellow, magenta and
pale blue, respectively. The THUMP domain captures the CCA terminus of one minimum substrate
RNA. The PP-loop domain in this subunit accesses U8 (red) in another minimum substrate RNA.

4.2. Deaminase

M. kandleri is a hyper-thermophilic archaeon in which position 8 in 30 tRNA genes
is encoded as C [87,88]. This C8 is modified to U8 by deamination (C to U editing) [17].
For further information about deamination in tRNA, see this review [89]. The enzyme
responsible for deamination of C8 is CDAT8. CDAT8 can modify C8 in a micro-helix
RNA (Figure 5A). A crystal structure of CDAT8 has been reported (Figure 5B; PDB code,
3G8Q) [17]. The domain arrangement of CDAT8 is different from that of ThiI. From the
N-terminus to the C-terminus, the order of the domains is deaminase, ferredoxin-like and
THUMP. However, the structure of the ferredoxin-like and THUMP domains is very similar
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to that of ThiI. From the model of the complex between CDAT8 and tRNA, it was predicted
that the THUMP domain of CDAT8 captures the CCA terminus of substrate tRNA [17].

Figure 5. (A) Structure of mini-helix RNA. The modification position (C8) is colored in red.
(B) Crystal structure of CDAT8. CDAT8 forms a dimer structure. To distinguish subunits, one
subunit is colored in pale green. Deaminase, ferredoxin-like and THUMP domains in the other
subunit are colored in pale blue, yellow and magenta, respectively.

4.3. Methyltransferase

Of the different modified nucleosides in tRNA, methylated nucleosides are the most
abundant [1,2,90]. Consistent with this, numerous tRNA methyltransferases have been
identified [90]. Transfer RNA methyltransferases can be divided into two types according to
the methyl group donor. The majority of tRNA methyltransferases use S-adenosyl-L-methionine
as a methyl group donor whereas mnmG (previous name, GidA) [91–96] and TrmFO [69,77,97,98]
are an exception and use N5, N10-methylenetetrafolare. S-adenosyl-L-methionine-dependent
tRNA methyltransferases are further classified on the basis of their catalytic domain [9,90,99].
The majority of S-adenosyl-L-methionine-dependent tRNA methyltransferases possess a
Rossmann fold catalytic domain [9,99]. The second group of S-adenosyl-L-methionine-dependent
tRNA methyltransferases belong to a SpoU-TrmD (SPOUT) superfamily, which possess a
SPOUT catalytic domain [9,100]. In addition, TrmO is an exception and has a b-barrel type
catalytic domain [101].

All THUMP-related tRNA methyltransferases reported possess a Rossmann fold
catalytic domain and synthesize only m2G (and m2

2G) (Figures 1 and 2 and Table 2). Several
enzymes synthesize m2

2G from m2G by a second methylation and act on multiple positions
(Figure 2). Although classification of tRNA (m2G/m2

2G) methyltransferases is complicated,
the THUMP-related tRNA (m2G/m2

2G) methyltransferases can be divided into two types
according to their methylation sites (Table 2). Thus, Trm11/arcTrm11/arcTrm11-arcTrm112/TRMT11-
TRMT112 act on position 10 in tRNA, whereas TrmN/Trm14/THUMPD3-TRMT112 act
on position 6 and an additional site. It should be mentioned that tRNA (m2G/m2

2G)
methyltransferases, which do not possess a THUMP domain, do exist. One major group of
such tRNA (m2G/m2

2G) methyltransferases is the Trm1 family [102–110]. S. cerevisiae Trm1
catalyzes the methylation of G26 in tRNA and synthesizes m2G26 and m2

2G26 [102,103].
Mammalian and Aquifex aeolicus Trm1 enzymes form m2G27 and m2

2G27 in addition to
m2G26 and m2

2G26 [105,107]. Crystal structures of P. horikoshii [109] and A. aeolicus [110]
Trm1 proteins demonstrate that these proteins possess a distinct C-terminal domain instead
of a THUMP domain.
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Table 2. THUMP-related tRNA methyltransferases.

Enzyme Type Organism Subunit Composition Modification(s) Reference(s)

Trm11/arcTrm11/arcTrm11-
arcTrm112/TRMT11-TRMT112

S. cerevisiae Trm11-Trm112 m2G10 [23]

H. sapiens TRMT11-TRMT112 m2G10? [111]

A. fulgidus arcTrm11-arcTrm112 m2G10 and m2
2G10 [24]

H. volcanii arcTrm11-arcTrm112 m2G10 and m2
2G10 [112]

P. abyssi arcTrm11 m2G10 and m2
2G10 [13]

T. kodakarensis arcTrm11 m2G10 and m2
2G10 [34,113]

TrmN/Trm14/THUMPD3-TRMT112

T. thermophilus TrmN m2G6 [25]

M. jannaschii Trm14 m2G6 and m2G67? [26]

T. kodakarensis Trm14 m2G6 and m2G67? [113]

H. sapiens THUMPD3-TRMT112 m2G6 and m2G7 [27]

Trm112, TRMT112 and arcTrm112 are hub-proteins (Figure 2 and Table 2), which regu-
late multiple methyltransferases [23,24,27,111,112,114–116]. In the case of human TRMT11-
TRMT112, formation of the complex has been reported [111]. However, the modification,
position and substrate tRNAs of human TRMT11-TRMT112 have not been experimentally
confirmed. For T. kodakarensis Trm14, tRNATrp from a trm14 gene deletion strain loses
the m2G67 modification [113]. However, subunit composition and enzymatic activity of
T. kodakarensis Trm14 have not been confirmed with a purified enzyme. In addition, re-
cently, RNA fragments from tRNA mixtures purified from M. Jannaschii [117], M. maripaldis,
P. furiosus and Sulfolobus acidocaldarius [118] were analyzed by mass-spectrometry. m2G6
and m2G67 were observed in several tRNAs from M. Jannaschii [117], and thus Trm14 is
probably involved in the formation of these modifications. Furthermore, in the case of
P. furiosus, several tRNAs were shown to possess a m2

2G6 modification in addition to m2G6
and m2G67 modifications [118]. Therefore, archaeal Trm14 proteins may possess broader
positional specificity than was previously thought.

As described in the Introduction, the P. abyssi PAB1283 protein (arcTrm11) was the
first tRNA methyltransferase identified as containing a THUMP domain [13]. The THUMP
domain of P. abyssi arcTrm11 has been expressed in E. coli cells, purified and analyzed [119].
This study [119] reported that the THUMP domain autonomously folds and that the
affinity of the THUMP domain for tRNA is very weak. In 2005, it was reported that
S. cerevisiae Trm11 requires a partner subunit, Trm112 [23]. Furthermore, the S. cerevisiae
Trm11-Trm112 complex only produces m2G10 in tRNA [23] whereas arcTrm11 produces
m2G10 and m2

2G10 [13,24,34]. Moreover, in several archaea, arcTrm11 requires arcTrm112
for enzymatic activity as seen with S. cerevisiae Trm11 [24,112].

T. thermophilus TrmN is the only eubacterial THUMP-related tRNA methyltransferase
reported [25]. TrmN methylates G6 in tRNAPhe and produces m2G6 [25]. Methanococcus jannaschii
Trm14 is an archaeal homolog of TrmN and produces m2G6 (and m2

2G6) in tRNACys [26].
Furthermore, in in vitro experiments, the second methylation from m2G6 to m2

2G6 in
the tRNACys transcript was observed [26]. The human THUMPD3-TRMT112 complex
methylates G6 and G7 in several tRNAs and produces m2G6 and m2G7 [27].

In 2012, crystal structures of P. abyssi Trm14 (Figure 6A) and T. thermophilus TrmN
(Figure 6B) were reported [120]. Both enzymes methylate G6 in tRNA and produce m2G6.
The crystal structures revealed that these enzymes possess a N-terminal ferredoxin-like
domain, a THUMP domain, a Rossmann fold methyltransferase (methylase) domain and
a linker region. In the same study, it was reported that several positively charged amino
acid residues are involved in tRNA binding [120]. Furthermore, the structures of the
ferredoxin-like domain and the THUMP domain of Trm14 and TrmN are remarkably
similar to those of ThiI and CDAT8. In 2016, the crystal structure of T. kodakarensis arcTrm11
was solved (Figure 6C) [34]. The arrangement of the domains of arcTrm11 is the same
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as that of Trm14 and TrmN. However, the distance between the THUMP and methylase
domains in arcTrm11 is longer than that in Trm14 and TrmN due to structural differences
in the ferredoxin-like domain and the linker region. This difference is important for the
selection of the modification site (G10 or G6) (Figure 6D). A site-directed mutagenesis study
showed that the THUMP domain in arcTrm11 captures the CCA terminus of substrate
tRNA [34]. The distance between the CCA terminus and G10 in tRNA is longer than the
distance between the CCA terminus and G6 (Figure 6D). Thus, these crystal structures led
to the idea that the methylation site (G6 or G10) is determined by the distance from the
THUMP domain to the catalytic pocket.

Figure 6. Structures of P. abyssi Trm14 ((A): PDB code, 3TM4), T. thermophilus TrmN ((B): PDB
code, 3TMA) and T. kodakarensis arcTrm11 ((C): PDB code, 5E71) are compared. The N-terminal
ferredoxin-like domain, THUMP domain, Rossmann fold methyltransferase (methylase) domain and
linker region are colored in yellow, red, blue and orange, respectively. Trm14 and TrmN modify
G6 in tRNA while arcTrm11 modifies G10. The modification sites (G6 and G10) are mapped onto
the L-shaped tRNA structure (D). G6, G10 and CCA terminus are highlighted as stick models. The
distance between the THUMP and methylase domains of Trm14 and TrmN is shorter than that seen
in arcTrm11. Because the THUMP domain captures the CCA terminus in tRNA, this short distance
between the THUMP and methylase domains of Trm14 and TrmN enables the catalytic pocket in
the methylase domain to access the modification site G6. In contrast, the longer distance between
the THUMP and methylase domains of arcTrm11 is required for the positioning of the catalytic
pocket with respect to the modification site G10. Thus, the N-terminal ferredoxin-like domain and
linker region are important for the maintenance of the distance and angle between the THUMP and
methylase domains, which decides the modification site in tRNA.
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Eukaryotic and some archaeal Trm11 proteins require a partner subunit (Trm112,
TRMT112 or arcTrm112) for enzymatic activity [23,24,27,111,112,114–116]. It should be men-
tioned that eukaryotic Trm112 homologs activate multiple methyltransferases. For example,
S. cerevisiae Trm112 activates Trm9 [121], Bud23 [122,123] and Mtq2 [124,125] in addition to
Trm11. Furthermore, a human ortholog of Trm112, TRMT112 interacts with at least seven
human methyltransferases (WBSCR22 (responsible for formation of 7-methylguanosine
at position 1636 in 18S rRNA) [126], METTL5 (formation of N6-methyladenosine at po-
sition 1832 in 18S rRNA) [127], HEMK2 (methylation of a glutamine side chain of eRF1
protein) [128], ALKBH8 (responsible for 5-methoxycarbonylmethyluridine derivatives at
position 34 in tRNA) [129–132], TRMT11 [111], THUMPD2 (function unknown) [111] and
THUMPD3 (production of m2G6 and m2G7 in tRNA)) [27].

Several tRNA modification enzymes form protein complexes [90,91,96,116,133–136].
The partner subunit(s) is frequently involved in the substrate tRNA recognition. Con-
sequently, the binding sites of these modification enzymes are often extended over the
whole tRNA molecule. For example, as described in Section 4.1., bacterial tRNA (m7G46)
methyltransferase (TrmB) can methylate a truncated tRNA, in which the interaction be-
tween the T-arm and D-arm is disrupted [81]. However, in contrast, eukaryotic tRNA
(m7G46) methyltransferase (Trm8-Trm82) [136] requires the interaction between the T-arm
and D-arm for methylation [137]. Thus, the existence of Trm82 seems to act on recognition
of the L-shaped tRNA structure. In the case of S. cerevisiae Trm7, the partner subunits
(Trm732 and Trm734) decide the modification positions: Trm7-Trm732 and Trm7-Trm734
catalyze 2′-O-methylations at position 32 and position 34, respectively, in tRNA [138]. The
biochemical and structural studies of Trm7-Trm734 suggest that Trm734 captures the D-arm
in substrate tRNA and controls the accession of the modification site (ribose at position 34)
in tRNA to the catalytic pocket in Trm7 [139]. A conserved motif (RRSAGLP sequence) in
Trm732 is involved in the methylation of position 32 in tRNAPhe [140]. Thus, the presence
of a partner subunit is frequently involved in substrate tRNA recognition.

S. cerevisiae Trm11-Trm112 does not methylate truncated tRNAs [141]. This observation
suggests that the binding sites of Trm11-Trm112 in tRNA are spread over the whole tRNA
molecule. Biochemical and biophysical studies of S. cerevisiae Trm11-Trm112 resulted in the
proposal of a model in whichTrm112 is accessible to the anticodon-loop region in tRNA de-
pendent on the movement of the THUMP domain [142]. The required elements in tRNA for
methylation by Trm11-Trm112 have been clarified (Figure 7A): the CCA terminus, G10-C25
base pair, regular size (5 nt) variable region and ribose-phosphate backbone around
purine38 in tRNA are essential for methylation by S. cerevisiae Trm11-Trm112 [141]. Thus,
the biochemical study [141] supports the model referenced [142] because the ribose-phosphate
backbone around position 38 is recognized by S. cerevisiae Trm11-Trm112. Furthermore, the
crystal structure of A. fulgidus arcTrm11-arcTrm112 has been reported (Figure 7B) [24]. When
the THUMP domain in arcTrm11 captures the CCA terminus in substrate tRNA, arcTrm112
accesses the anticodon-loop. Therefore, tRNA recognition mechanisms of eukaryotic and
archaeal Trm11-Trm112 seem to be basically common. Human THUMPD3-TRMT112 re-
quires the CCA terminus for methylation and does not methylate a mini-helix RNA [27].
Therefore, TRMT112 in THUMPD3-TRMT112 may also be involved in the anticodon-loop
recognition as per Trm11-Trm112.
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Figure 7. (A) Recognition sites of S. cerevisiae Trm11-Trm112 are marked on the L-shaped tRNA
structure. The modification site (G10) and other recognition sites are colored in red and magenta,
respectively. S. cerevisiae Trm11-Trm112 methylates standard tRNAs, which possess a regular size
(5 nt) variable region, G10-C25 base pair and purine38 in addition to the CCA terminus. (B) Crystal
structure of A. fulgidus arcTrm11-arcTrm112 (PDB code, 6ZXW) is represented by a cartoon model.
The ferredoxin-like domain, THUMP domain, Rossmann fold methylase domain, and linker region
are colored in yellow, red, blue and orange, respectively. Archaeal Trm112 is colored in green.

4.4. Acetyltransferase

As described in the Introduction, S. cerevisiae Tan1 (human THUMPD1) contains a
THUMP domain and acts as a partner protein of tRNA acetyltransferse, Kre33 (human
NAT10) [16]. The Methanothermobacter thermautotrophicus Tan1 homolog is composed of
N-terminal ferredoxin-like and C-terminal THUMP domains [15]. Although the crystal
structure of Kre33 (or NAT10) has not been reported, a structural model (PDB code, 2ZPA)
has been proposed [16] in which Kre33 (NAT10) contains DUF1726 (of unknown function),
helicase, N-acetyltransferase and tRNA binding domains. In the case of T. kodakarensis
TkNAT10 (the archaeal homolog of NAT10), the C-terminal region is missing [18]. Kre33
catalyzes the acetylation of 18S rRNA as well as acetylation of tRNA [16]. A random
mutagenesis study of T. kodakarensis revealed that the disruption of the Tk0754 gene causes
complete loss of ac4C modification in a tRNA mixture [143]. Detailed enzymatic activity of
the Tk0754 gene product (TkNAT10) has been reported [18]. In this study, TkNAT10 was
shown to modify multiple positions in various RNAs including tRNAs, and the rate of
acetylation is increased according to increase in temperature [18]. Yeast two-hybrid system
experiments have shown that Tan1 and Kre33 form a complex [16]; however, the structure
of the Tan1 and Kre33 complex has not been reported. For details of acetylation of rRNA
and other RNAs, see these references [16,18,19].

4.5. Pseudouridine Synthase

Pseudouridine (Ψ) is abundant in RNAs from the three domains of life [1–3] and is
synthesized by C5-ribosyl isomerization from uridine, which is catalyzed by pseudouridine
synthases [144–150]. Pseudouridine synthases can be classified into six families; however,
PUS10 is the only THUMP-related enzyme [28,29,144–150]. In 2006, Ψ55 formation in tRNA
catalyzed by archaeal Pus10 was reported [28]. Thus, this report demonstrates that one
of the predicted THUMP-containing proteins [11] has pseudouridine synthase activity.
In 2008, it was reported that archaeal Pus10 can synthesize Ψ54 in tRNA in addition to
Ψ55 [29]. Furthermore, Methanocaldoccus jannaschii PUS10 can modify U54 and U55 in a
micro-helix RNA, which mimics the T-arm [151].



Genes 2023, 14, 382 13 of 23

In 2007, a crystal structure of human PUS10 was reported (Figure 8) and showed that
the THUMP-related structure is contained in the N-terminal accessory domain [20]. When
the CCA-terminus in tRNA is placed onto the THUMP-related structure, the modification
sites (U54 and U55) have access to the catalytic pocket of the pseudouridine synthase do-
main [20]. However, human PUS10 can modify U54 in a tRNA transcript without a CCA ter-
minus [30]. Because human PUS10 strongly recognizes the sequences of the aminoacyl-stem
and T-arm [30], the recognition of the CCA terminus by the THUMP-related structure may
be not important for pseudouridine formation. The accessory domain of human PUS10
is large compared to a typical THUMP domain. This large accessory domain was gained
in the process of evolution of eukaryotic PUS10 [143]. Furthermore, tRNA recognition
by human PUS10 in living cells is complicated. Human PUS10 is expressed in both the
nucleus and cytoplasm [30]. Human nuclear PUS10 does not have the pseudouridine
synthesis activity and inhibits the activity of TRUB1 [human tRNA (Ψ55) synthase] by
binding to specific tRNAs in the nucleus [31]. In contrast, human cytoplasmic PUS10 can
synthesize Ψ54 in tRNAs, which possess an AAAU sequence from position 57 to position
60 in the T-loop, in addition to Ψ55 [31]. Moreover, it has been reported that human PUS10
is involved in microRNA processing [152]. In this process, PUS10 directly binds to primary
microRNA and the catalytic activity of PUS10 is not required [152]. Thus, PUS10 may act
as an RNA binding subunit in microRNA processing.

Figure 8. Structure of human PUS10 (PDB code, 2V9K) is represented by a cartoon model. N-terminal
accessory and C-terminal pseudouridine synthase domains are colored in green and pale blue, respec-
tively. The THUMP-related structure in the accessory domain is enclosed by a red circle. One Zn atom
(magenta) is bound in the accessory domain.

Based on the crystal structure of human PUS10, a structural model of archaeal PUS10
was constructed and several amino acid residues, which are required for enzymatic activity
and tRNA binding, were identified [21]. Another mutagenesis study revealed that the
thumb-loop in the catalytic domain and N-terminal cysteine residues are important for the
Ψ54 formation activity of M. jannaschii PUS10 [151].

5. Functions of Modified Nucleosides, Which Are Produced by THUMP-Related tRNA
Modification Enzymes and Additional Information

In this section, the functions of modified nucleosides, which are produced by THUMP-related
tRNA modification enzymes, are introduced. Furthermore, the relationships between
the disorder of modification (or modification enzyme) and higher biological phenomena
are explained.
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5.1. s4U8 and s4U9

The s4U modification is observed at positions 8 and 9 in eubacterial and archaeal
tRNAs [1–3]. The physiological roles of s4U have gradually been elucidated. The s4U
modification in tRNA acts as an ultraviolet light (UV)-resistant factor [153]. Irradiation
with near-UV causes crosslinking between s4U8 and C13 in tRNA [154]. Because ThiI
requires the CCA terminus for the s4U modification, crosslinking by s4U occurs after the
removal of the 3′-trailer sequence from precursor tRNA. This crosslinking of tRNA pauses
protein synthesis and activates the DNA repair system [155,156]. Furthermore, crosslinking
slows down the speed of TrmH-mediated Gm18 formation in tRNA [157]. Several archaea
and bacteria live in environments in which sunlight does not reach (for example, deep
sea and underground). However, these organisms also possess the s4U modification in
tRNA [158], suggesting that the s4U modification functions beyond being a UV-resistant
factor. As described in Section 3.1, the s4U8 modification contributes to the maintenance of
the L-shaped tRNA structure. Furthermore, the s4U8 modification works as a tRNA quality
control system in Vibrio cholerae in the stationary growth phase [159].

5.2. U8

Deamination from C8 to U8 performed by CDAT8 is one of the thermophile-specific
tRNA modifications [17,62]. M. kandleri grows at high temperatures (more than 110 ◦C).
Therefore, C8 in the tRNA genes may contribute to maintain the double-stranded DNA
structure of the M. kandleri genome at high temperatures through an increase in the G-C
content [17].

5.3. m2G6, m2
2G6, m2G7, m2G10, m2

2G10 and m2G67

The m2G modification does not disrupt formation of a Watson–Crick base pair with
C, and the methyl group in m2G probably stabilizes the stem structure by hydrophobic
interaction. The growth rate of a S. cerevisiae trm11 gene deletion strain is comparable
to that of the wild-type strain under laboratory conditions [23]. However, a trm1-trm11
double-gene deletion strain shows an obvious growth defect [23]. Because Trm1 is the
tRNA methyltransferase responsible for the formation of m2

2G26 [102,103], the study [23]
strongly suggests that the m2G10 modification works in co-ordination with other modifica-
tion(s) in tRNA. In the case of T. kodakarensis, the trm11 gene deletion strain cannot grow at
high temperatures (95 ◦C) [113,160]. In T. thermophilus, the tRNA modification enzymes
and modified nucleosides form a network in which modified nucleosides regulate the
activities of other tRNA modification enzymes negatively and positively [62,63,161–164].
However, trmN gene deletion from the T. thermophilus genome does not have an effect on
other modifications in tRNA [25]. This observation suggests that the m2G6 modification is
a relatively late modification like dihydrouridine modification at positions 20 and 20a by
DusA [165–169] in T. thermophilus tRNAs. In thermophiles, long and branched polyamines
are produced [170,171] and have an effect on tRNA modifications [172,173]. In tRNA
from the T. thermophilus speB or speD1 gene deletion strain in which long and branched
polyamines are not synthesized, the m2G6 modification in tRNA is increased [174]. There-
fore, long and branched polyamines may negatively regulate m2G6 formation by TrmN in
T. thermophilus cells. THUMD3 knockout HEK293T cell lines show decreased protein syn-
thesis activity and an obviously slow growth rate [27]. Thus, human THUMPD3-TRMT112
is required for cell proliferation [27]. Furthermore, absence and presence of the m2G7
modification in tRNATrp are involved in the infection of avian retrovirus [175]. Moreover,
although squid tRNALys contains m2G67 [176], this modification is not explainable by the
enzymatic activity of currently known eukaryotic tRNA methyltransferases.
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5.4. ac4C12 and ac4C at Multiple Positions

Recent technologies, which can detect ac4C in RNAs, have shown that the ac4C modi-
fication is present in various RNAs beyond tRNA and rRNA [18,19]. As described in the
Introduction, a THUMP-related protein, S. cerevisiae Tan1, was found to be an essential pro-
tein for ac4C12 modification in tRNA [14] but does not act in acetylation of 18S rRNA [14,16].
The S. cerevisiae tan1 gene deletion strain shows a decrease in tRNASer [14]. Furthermore,
the S. cerevisiae tan1 and trm44 double mutant strain cannot grow at 33 ◦C [177]. Trm44
is a tRNA methyltransferase responsible for formation of Um44 in tRNASer [177]. Thus,
these studies show that ac4C12 contributes to stabilizing tRNASer and works with other
modifications such as Um44. Hypomodified tRNASer is degraded by a rapid tRNA decay
pathway, which competes with the elongation factor 1A [178]. S. cerevisiae Tan1 precursor-
mRNA processing requires the conserved precursor-mRNA retention and splicing complex
(RES complex; Bud13, Snu17 and Pml1 complex) [179]. Thereby, the RES complex controls
ac4C12 modification in tRNA [179]. In the case of T. kodkarensis, ac4C modification by
TkNAT10 occurs in various RNAs including tRNAs and is increased at high tempera-
tures [18]. The acetylation by TkNAT10 is essential for survival of T. kodakarensis at high
temperatures [18,160]. Loss of function of human THUMD1 causes a syndromic neurode-
velopmental disorder [180]. The expression level of THUMD1 is increased in breast cancer
cells [181]. Furthermore, THUMD1 overexpression enhanced breast cancer cells’ invasion
and migration [181]. Moreover, although human NAT10 localizes mainly in nucleoli of
normal tissues, it is redistributed to the membrane of colon cancer cells [182]. In addition,
the expression level of NAT10 is increased in liver cancer [183].

5.5. ψ 54 and ψ 55

The modifications at positions 54 and 55 in tRNA stabilize the interaction between
the T-arm and D-arm. Almost all tRNAs possess U modifications at position 54 (for
example, m5U54, Ψ54, m5s2U54, m1 Ψ54, Um54, m5Um54, and s2Um54) and Ψ55 [3].
The Ψ54 modification is observed in tRNAs from archaea and some eukaryotes, and
the Ψ55 modification is found in tRNAs from the three domains of life. Only higher
eukaryotes and archaea possess PUS10 [28,29,184]. Consequently, eubacteria and yeast
possess other enzymes. In the case of E. coli, TrmA [72] and TruB [73] catalyze the formation
of m5U54 and Ψ55, respectively. In the case of yeast, m5U54 and Ψ55 are produced
by Trm2 [185] and PUS4 [186], respectively. In archaea and higher eukaryotes, the Ψ55
modification in tRNA is synthesized by redundant systems. In archaea, archaeal Cbf5 (or
archaeal Cbf5-Gar1 complex) and arcPUS10 can synthesize the Ψ55 modification [28,184].
In humans, nuclear TRUB1, mitochondrial TRUB2 and cytoplasmic PUS10 catalyze the
formation of Ψ55 [31]. Consequently, cytoplasmic tRNAs are modified by TRUB1 or PUS10.
Furthermore, it has been reported that PUS1 and PUS4 can synthesize the Ψ55 modification
in Cyanidioschyzon merolae [187]. Although C. merolae does not possess PUS10, the redundant
Ψ55 formation in tRNA is also observed in red algae. These facts suggest the importance
of the Ψ55 modification. In Haloferax volcanii and M. jannaschii, the Ψ54 modification is
further modified to m1 Ψ54 by TrmY [188,189]. Furthermore, in Ignicoccus hospitalis, the
m1 Ψ54 modification is modified to m1s4 Ψ54 by TtuA and TtuB [190]. TtuA and TtuB are
a sulfur-transfer complex responsible for the formation of s2U54 in tRNA [40,191]. The
PUS10 gene may be essential for survival of H. volcanii (the PUS10 gene deletion mutant
strain could not be obtained) [192]. In humans, mutations in PUS10 gene are involved in
Crohn’s disease and celiac disease (chronic intestinal inflammatory diseases) [193]. Human
cytoplasmic PUS10 can synthesize Ψ54 in tRNAs, which possess an AAAU sequence from
position 57 to position 60 in the T-loop, in addition to Ψ55 [30].

6. Perspective

In this review, I focus on the structures and functions of THUMP-related tRNA modi-
fication enzymes and the modified nucleosides they produce in tRNA. As described above,
the studies of tRNA 4-thiouridine synthase, tRNA deaminase and tRNA methyltransferases
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have established the concept that the THUMP domain captures the 3′-end of RNA (the
CCA-terminus of tRNA). The Tan1-Kre33 complex may have a similar recognition mecha-
nism for substrate tRNA. However, TkTAN1-TkNAT10 modify multiple positions in tRNA.
This phenomenon cannot be simply explained by our current knowledge. Furthermore, hu-
man PUS10 does not show the pseudouridine synthase activity in nucleus and is involved
in processing of microRNA. Thus, functions and regulations of THUMP-related proteins
in higher eukaryotes are complicated. Several THUMP-related proteins may be involved
in the maturation of other RNAs beyond tRNA modifications. Moreover, there are many
THUMP-related proteins for which the function is unknown. For example, the function of
human THUMD2, which is predicted as a THUMP-related protein, is still unknown. Thus,
further study will be necessary to clarify these issues.
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