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Abstract: Single-cell data analysis has been at forefront of development in biology and medicine
since sequencing data have been made available. An important challenge in single-cell data analysis
is the identification of cell types. Several methods have been proposed for cell-type identification.
However, these methods do not capture the higher-order topological relationship between differ-
ent samples. In this work, we propose an attention-based graph neural network that captures the
higher-order topological relationship between different samples and performs transductive learning
for predicting cell types. The evaluation of our method on both simulation and publicly avail-
able datasets demonstrates the superiority of our method, scAGN, in terms of prediction accuracy.
In addition, our method works best for highly sparse datasets in terms of F1 score, precision score,
recall score, and Matthew’s correlation coefficients as well. Further, our method’s runtime complexity
is consistently faster compared to other methods.

Keywords: single-cell; transcriptomics; scRNA-seq; graph neural network; classification; label
propagation; neural network

1. Introduction

Single-cell RNA sequencing (scRNA-seq) technology has proven to advance biolog-
ical research in an unprecedented way by sequencing cells at a single-cell resolution [1].
Compared to the bulk RNA sequencing, scRNA-seq allows for studying biological cell
samples with much greater detail. An important problem in scRNAseq research is the
identification of cell types that can assist researchers to conduct further analyses such as
distinguishing diseased cells from healthy cells. There are two main ways to annotate
cells: (i) unsupervised learning, that is using cell clustering techniques and then finding
marker genes specific to a cluster and annotate cells belonging to that cluster as per the
ontological functions of their genes [2]; and (ii) supervised or semi-supervised learning
techniques where we are given cell-samples with true cell-types (or labels), perform model-
fitting, machine-learning or deep-learning techniques and perform label-transfer on unseen
cell-samples [3]. Clustering techniques are unsupervised—they annotate cell types based
on the underlying structure of the dataset and no knowledge of ground truth cell types
is required in creating a model. However, unsupervised learnings suffer from two major
drawbacks: (i) difficulty of interpretability, as they are more generic in nature; and (ii) lack
of clear evaluation metrics in the absence of ground truth data. In such cases, we require
the supervision of domain experts who need to interpret the result by close inspection
either through their own experience or by means of additional sources. Supervised or
semi-supervised learning techniques require the presence of ground truth cell-types for all
or a portion of the dataset to create a model that can be used for making predictions on an
unseen dataset. However, it is not always possible to obtain ground truth data. Further,
such methods may not be robust to outliers and noise. Examples of clustering techniques

Genes 2023, 14, 506. https:/ /doi.org/10.3390/ genes14020506

https://www.mdpi.com/journal /genes


https://doi.org/10.3390/genes14020506
https://doi.org/10.3390/genes14020506
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0002-7403-6458
https://doi.org/10.3390/genes14020506
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes14020506?type=check_update&version=1

Genes 2023, 14, 506

2 of 20

available in the literature are Seurat [4], SC3 [5], ClonoCluster [6], and IsoCell [7]. Among
supervised learning methods, some notable methods include SingleR [8], Seurat V3 [9],
Chetah [10], and scMAP [11].

Seurat [4] uses community detection algorithms such as Louvain [12] to create clus-
ters. The SC3 method uses a cell similarity matrix and k-means for clustering [5]. Some
novel methods such as ClonoCluster use clonal information along with transcriptomics
to calculate hybrid clusters [6]. The IsoCell method uses alternative splicing by integrat-
ing isoform-level expression and gene-level expression to perform clustering on single-
cell data [7]. Reference-based methods may fall into the category of supervised or semi-
supervised learning methods where a model is constructed based on a reference dataset
with true cell types or known labels. Using the constructed model, predictions can be made
on an unseen dataset. Seurat V3 [4] constructs a canonical correlation matrix [13] and finds
anchor points to create a network model that can be used for making predictions on an
unseen dataset. scMAP provides a method where transcriptomics data corresponding to
individual cells are projected onto the cell types of transcriptomics data obtained from
another experiment. scMAP includes two sub-methods: scMAP-clusters and scMAP-cell.
Given a new cell, the task is to project the new cell onto a reference dataset and look for
either a cluster most similar to the new cell (scMAP-cluster), or an individual cell similar
to the new cell (scMAP-cell) [11]. Another reference-based method called Chetah uses a
reference dataset with known cell types to create a classification tree, and the correlation
is performed iteratively between a new dataset and classification tree to assign cell labels.
SingleR uses reference transcriptomic datasets with given cell types to infer the cell types
of a query dataset based on similarity measures.

However, the methods discussed above only consider the first-order direct relationship
between cells and ignore the higher-order topological relationship. Higher-order topo-
logical relationships, such as non-linear interactions between features, may be important
for correctly classifying or clustering the samples. All of the methods discussed above
do not take into account non-linear relationships in the dataset. Further, ClonoCluster
requires additional information in the presence of a clonal subpopulation, which might not
be available all the time. The IsoCell method requires isoform-level expression and fails to
generalize. scMAP struggles in a situation where datasets exhibit high noise. In the case of
SingleR, the choice of similarity measures affects the prediction on an unseen dataset.

Higher-order topological relationships can be captured in a model using a graph
neural network. Traditionally, Artificial Neural Networks (ANN) have employed linear
relationships in the given dataset of interest to find patterns, perform model-fitting, make
predictions, and perform statistical inferences. However, ANN works with datasets such as
matrices, vectors, and linear data structures and is not suited for datasets with a hierarchical
structure such as trees, heaps, graphs, hypergraphs, hash tables, etc. For a hierarchical
data structure such as a graph, graph neural networks (GNN) are well suited to perform
learning [14,15]. GNNs have been shown to be effective at tasks such as node classifica-
tion, link prediction, and graph classification, and have been applied to a wide range of
domains including computer vision, natural language processing, electrical engineering,
and bioinformatics [16-19].

GNN is based on the idea that the characteristics of a node are determined by its
neighboring nodes and the connections between them. To illustrate this, consider the fact
that if a node were to lose all of its neighboring connections, it would also lose its meaning
and context. In other words, a node’s neighbors and connections to them are crucial in
defining its characteristics [20]. Since graphs are unstructured and any representation
of a graph can lead to very high dimensional matrices, it is important to calculate low-
dimensional representations. Such representations are called embedding. Since usually a
graph contains thousands of nodes, we are interested in calculating low-dimensional vector
representations of nodes, called node embedding. A few popular methods to calculate
node embedding are message passing [21], random projection [22], and Node2Vec [23].
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There are several ways to implement a graph neural network such as Graph Convolu-
tional Networks (GCN) [24], Graph Autoencoders (GAE) [25], and Attention-based Graph
Neural Networks (AGN) [26], to name a few. GCNs use a variation of the convolution op-
eration, known as graph convolution, to operate on the graph structure. They are typically
used for node classification and graph classification tasks. GAEs are a type of unsupervised
GNN that are trained to reconstruct the graph structure by encoding and decoding the
graph. AGN uses attention mechanisms to weigh the importance of the neighboring nodes
for each node. The attention mechanism provides a way to learn a dynamic and adaptive
local representation of the neighborhood to achieve better predictions. AGNs are typically
used for node classification, graph classification, and other graph-related tasks.

In this work, we propose scAGN, a method that includes an attention-based graph neu-
ral network for cell-type detection on a scRNA-seq dataset by means of label-propagation.
The method uses transductive learning for label transfer to query datasets given a reference
dataset. Transductive learning is a learning method in which both the training and testing
datasets are used during the learning phase. The model looks for patterns in the combined
dataset of training and testing data and then uses this information to make predictions for
the unlabeled testing data points. We perform transductive training on a number of publicly
available single-cell transcriptomics datasets using the scAGN method. Our analyses show
that the scAGN method allows for accurate prediction of cell-labels by knowledge transfer
from a reference dataset to a query dataset. As a baseline, we compare the scAGN method
with the previously proposed methods Chetah, Seurat V3, scmap-cell, scmap-cluster, and
singleR based on a number of metrics such as prediction accuracy, precision score, recall
score, F1 score, and Matthew’s correlation coefficient. We demonstrate that, overall, scAGN
outperforms the baseline methods. We provide the source code of our method and an
online repository of the dataset used.

2. Materials and Method

To evaluate the effectiveness of our proposed method in cell-type identification, we
used both simulated datasets and real datasets that have been published and are freely
accessible. In this section, we first describe datasets used for assessing the performance
of scAGN and the performance comparison with existing methods. Next, we explain the
scAGN method in detail including the data preparation and graph construction.

2.1. Simulated Datasets

A scRNA-seq simulator, Splatter [27], is used to generate simulated data. To mimic
real scRNA-seq count data, which are usually very sparse (i.e., with excessive zeros), we
used high dropout rates in the simulation. In scRNA-seq, dropout is used to denote the
phenomenon where certain genes are not detected or are under-represented in certain cells
due to limitations in the sequencing technology. This may lead to missing data in the scR-
NAseq dataset, which can introduce noise and bias into the downstream analysis [28-30].
These missing data are replaced with zero in the standard protocols for scRNA-seq data
analysis. Each such dataset is represented as a cell-gene matrix, with genes as columns
and cell samples as rows. In our simulation study, each simulated dataset (called count
matrices) contains 1000 cells and 800 genes with equiprobable four cell types. The sparsity
of each dataset was roughly 95%. Here, sparsity is defined as the percentage of zeros
in the count matrix. We generated 50 replicates of simulated datasets under this setting
(i.e., 95% zeros and equiprobable four cell types)). Further, to investigate the impact of
imbalanced cell classes, we generated 50 replicates of simulated datasets with 95% sparsity
and four imbalanced cell classes (i.e., types): 5%, 15%, 35%, and 45%. Each class represents
a cell type. More details about the generation of the simulated dataset can be found in the
supplementary material.

In addition, we also generated 50 replicates of simulated datasets with a medium
sparsity of 80% containing 4 equiprobable classes. A visualization of these simulated
datasets under various settings is shown in Figure 1: one dataset with 80% sparsity having
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equiprobable classes, and two datasets, one with the sparsity of 95% with equiprobable
classes and the second with imbalanced classes. From the visualization, it is evident that the
cell types in the noisy data are mixed, which brings in a challenge for cell type identification.
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Figure 1. tSNE plots of simulated datasets with varying sparsity or composition of cell types. (a) tSNE
plots of simulated datasets with 80% sparsity, four equiprobable cell types; (b) 95% sparsity, four

equiprobable cell types; (c) 95% sparsity, unequal number of cell samples from each cell type (i.e., 5%,
15%, 35%, 45%).

2.2. Real Datasets

For scAGN’s performance evaluation, we used 12 real datasets, summarized in Table 1.
The datasets were obtained from publicly available repositories. The characteristics of each
dataset and the technology used to sequence each dataset are provided separately in the next
section. Overall, the datasets represent a mix of sequencing technology consisting of Smart-
seq2, 10x, Seg-well, etc. In addition to healthy cells, we also studied cell-type detection for
cancerous cells as well as from COVID-19 patients obtained from the COVID-19 atlas [31].
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Table 1. Real datasets used for comparing scAGN’s performance with baseline methods.

Name #Cells | #Genes | #Classes Protocol Species Tissue Sparsity
Mouse_retina 27,499 2000 19 Drop-seq Mus musculus | Retina 93.43%
PBMC_68k 68,579 2000 10 10x Homo sapiens PBMC 97.25%
Tasic 1679 2000 17 SMARTer Mus musculus | Visual Cortex 71.78%
™ 54,865 2000 55 10x Mus musculus Multiple 93.98%
GSE108989 11,138 | 23,459 5 SMART-Seq2 | Homo sapiens Colorectal Cancer 84.86%
GSE118389 1534 21,785 6 SMART-Seq2 | Homo sapiens Breast Cancer 89.63%
GSE72056 4513 23,690 7 SMART-Seq2 Homo sapiens Melanoma Tumors 81.38%
GSE98638 5063 23,459 12 SMART-Seq2 | Homo sapiens Liver Cancer 85.17%
GSE99254 12,346 23,459 19 SMART-Seq2 | Homo sapiens Lung Cancer 87.49%
blish_pbmc 44,721 26,361 16 Seq-Well Homo sapiens PBMC 96.25%
nasal_epithelia | 32,588 32,871 17 Seq-Well Homo sapiens Nasal Epithelia 95.13%
villani_mgh 59,506 24,179 16 10xV2 Homo sapiens PBMC 94.37%

We first consider transcriptomics data representing healthy cells: (i) TM, (ii) Tasic,
(iii) PBMC 68K, and (iv) Mouse Retina. The TM dataset was obtained from GSE109774,
consisting of transcriptomics of 20 organs and tissues from Mus musculus [32]. A total of
54,865 cells and 2000 genes consisting of 55 cell types were used in our study. The Tasic
dataset contains transcriptomics from adult mouse cortical cells consisting of 1679 cells
and 2000 genes [33] with 17 cell types. PBMC 68K is a slightly larger dataset consisting
of 68,579 cells and 2000 genes with 10 cell types of human peripheral blood mononuclear
cells obtained from SRP073767. The Mouse Retina dataset consists of 27,499 cells and
2000 genes with 19 cell types obtained from GSE81904 [34] (All four datasets together can
be obtained from https:/ /www.synapse.org/#!Synapse:syn26524750/files/ (accessed on
25 December 2022)).

Next, we consider cancer cells. It is known that T cells play a crucial role in the
immunotherapy of cancer. Single-cell transcriptomics data obtained from sequencing T
cells of colorectal cancer can help in identifying healthy cells from cancerous cells. We
used the dataset GSE108989 from [35] that was sequenced by the Smart-seq2 protocol.
The GSE108989 dataset contains 11,138 cells obtained from 12 colorectal patients with
23,459 genes. The ground truth data contain 5 broad cell types that were used for training
our graph neural network. The second cancer dataset GSE118389 used in our study was
obtained from [36]. GSE118389 contains a transcriptomics dataset from triple-negative
breast cancer cells with 1534 cells and 21,785 genes. In this case, the cell types are six
different disease states. Cells from six triple breast cancer tumors were obtained using the
Smart-seq2 protocol. The third cancer dataset used, GSE72056, regards melanoma cancer
that was obtained by sequencing melanoma tumors using the Smart-seq2 protocol by
Tirosh et al. [37]. GSE72056 contains 4513 cells and 23,690 genes. The authors of the dataset
annotated 7 different cell types, which we used as ground truth labels in our study. The
next cancer dataset in our study is GSE98638, which contains transcriptomics data obtained
by sequencing liver cancer cells using Smart-seq2 protocol [38]. GSE98638 dataset contains
5063 cells and 23,459 genes with 12 different cell types. The final dataset in this series is
lung cancer dataset GSE99254, which was obtained by sequencing samples obtained from
non-small cell lung cancer patients using a Smart-seq2 protocol [39]. The GSE99254 dataset
contains 12,346 cells and 23,459 genes with 19 cell types.

Further, we also consider three COVID-19 datasets. In early 2020, an outbreak of
a novel coronavirus (SARS-CoV-2) happened in Wuhan of Hubei Province, China. The
virus quickly spread throughout the globe through air travel, cruise ships, and other
modes of transportation. Due to the extreme nature of the outbreak, many scientists
have studied transcriptomics data from COVID-19 patients extensively. In this study,
we used three COVID-19 datasets. The first one, which we call blish_pbmc, contains
44,721 cells and 26,361 genes with 16 cell types. The dataset was sequenced using the
seq-well protocol [31]. The second dataset, called nasal_epithelia, was sequenced from
nasopharyngeal samples. The samples were obtained from 35 COVID-19 patients. Seq-Well
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was used for sequencing the samples to obtain transcriptomics consisting of 32,588 cells
and 32,871 genes with 17 different cell-types [40]. The third dataset used in our study is
villani_mgh, which consists of 59,506 cells and 24,179 genes with 16 cell types (All three
datasets were obtained from the COVID19 atlas project https://www.covid19cellatlas.org/
(accessed on 25 December 2022)). A summary of these datasets including sparsity is
provided in Table 1.

2.3. Data Preparation

Each input dataset is represented as a cell-gene matrix with genes as columns and
cell samples as rows, assuming ¢ genes and c cells. Genes are considered features in
transcriptomics datasets as they characterize a cell sample. Such a dataset is also referred
to as a feature dataset. Consider the feature dataset 7 € R8> as the input to the scAGN
pipeline. We construct the reference and query dataset by splitting the cells in F into the
p : 1 — p ratio. If there are £ number of known labels (i.e., cell types or classes) for the
feature dataset, we construct a reference and query dataset so that each of the £ labels is
also split into the ratio p : 1 — p for balanced training representing the ratio of each label in
reference and query datasets. Generally, the size of the reference dataset is larger than the
one of the query set, so the p needs to be more than 0.5. We recommend 0.75 for p, and the
ratio between the sizes of the two datasets is 3:1.

2.4. Graph Construction

Consider the reference feature dataset to be Fr € R8*” and the query dataset to be
Fg € R8*1, where g is the number of features (or genes) r is the number of cells in the
reference dataset, and g is the number of cells in the query dataset. Usually, there is a
large number of genes in a typical single-cell RNA study and only a portion of the genes
show differences between cell types. Thus, we need to identify the most variable genes in
the reference dataset. The Analysis of Variance (ANOVA) technique was applied to each
gene across its expression values in all cells [41,42], then we further applied a Bonferroni
correction for selecting the top genes (assume m genes out of ¢ genes) [43]. We use the
selected m genes for both reference and query datasets. Thus, we end up with the reference
dataset as Fr € R™*" and the query dataset as 75 € R"*9. For this work, we select
m = 2000 genes or all of the genes if the total number of genes is less than 2000 genes in
the dataset.

For graph construction, we use canonical correlation analysis (CCA) [13], which reveals
a shared gene-correlation structure between the reference and query datasets (Canonical
Correlation Analysis (CCA) is a statistical technique used to analyze the relationships
between two sets of variables. The goal of CCA is to find linear combinations of the
variables in each set (called canonical variables) that have a maximum correlation with
each other. The correlation between the two sets of canonical variables is called the
canonical correlation coefficient. CCA is often used in the field of multivariate statistics
to identify patterns or relationships between two or more sets of variables. It can be used
for various applications, such as dimensionality reduction, feature selection, and pattern
recognition [13]). A shared gene-correlation structure is used to project reference and query
datasets into the same low-dimensional space. In these cases, the main goal of CCA is to
find a linear combination of gene features across the reference and query datasets that are
maximally correlated. The CCA algorithm returns a linear combination of genes as a basis
vector that can be understood as meta-genes. This requires solving the following objective:

max yy uT(]-"R)T]-'Qv such that |\u||% < 1,Hv||§ <1, D)

The graph construction is performed in the following steps:
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¢  First, we transform the dataset by subtracting with the gene-wise mean and dividing
by the gene-wise variance.

fij = (fij — mi) /o )

where f; is an entry in the F matrix, y; is the mean of gene expression of gene i for all
cell samples and o; is the standard deviation for gene i for all cell samples.

*  We calculate K = (F, R)T]-"Q, which can be decomposed using singular value decom-
position (SVD) as K = TAAT where T = [y,72,- -, 7], A = [A, Ay, -+, A], and
A= [5%/2,5;/2,' . ,511/2]

*  We can obtain canonical correlation vectors u and v as left and right singular vectors
for up to k components, where k is a user choice. In this work, we select k = 5.

e Alignment of two canonical vector u and v is performed using dtw R package [44].

* Based on the cell’s embedding on aligned basis vector u and v, a minimum nearest
neighbor graph is constructed where adjacency matrix .A has an entry 1 if cell i is one
of the nearest neighbors of cell j and vice-versa, otherwise the entry is 0. Adjacency
matrix A is first converted to a sparse edge indices format and then reverse edges are
added to make the graph undirected for input to the Attention-based Graph Neural
Network. Itis this sparse edge indices format that we refer to as a graph in our method.

*  We construct two kinds of graphs: one using Fr and F(, and another one using two
sets of Fo. These two graphs after converting to the sparse edge-index format are
appended together to obtain F and indices are updated based on the indices of the
concatenated feature matrix, Fr and Fg.

2.5. Feature Processing

Here, we provide details on constructing training, test, validation, and prediction sets
from feature dataset /. As a reminder, F is a cell X gene matrix with genes as features. We
first calculate a diagonal matrix:

0/ eyttt 0

0, 0, (Srg F)!

where },, , is the sum of genes i for all cell samples. Using ¢, we feature-normalize the

matrix F as F = G- F. F is split into a training, test, validation, and prediction set
(the prediction set is also called an independent set in the literature). The length of the
training set is the same as the number of cell samples in F, while the prediction set is
sampled from F consisting of nodes corresponding to the query dataset. Overall, 80% of
the reference data are used as training while 10% each are used as a test and validation set.

2.6. Message-Passing Technique for Graph Neural Network

For the work presented in this paper, we use a specific implementation of a graph
neural network called a message passing neural network [21]. Unlike a grid structure
or linear data structure, graph data structures have arbitrary topology and there is no
fixed node ordering or reference point. As a result, graph-like data structure uses a neural
message passing technique for exchanging features between nodes and to update node
embedding from layer to layer. Consider a graph M = f(F, £) as a graph neural network
model where f is a generic neural network function with F as the feature matrix and £ as
the sparse edge representation of a graph. Further, consider hl(t) to be a node embedding
for the node i € F with F representing the feature dataset in the form of vertices. N (j) is
the set of neighbors of node j. Message passing is carried out through the neighborhood
aggregation of node features as illustrated in Figure 2. The message passing [45,46] scheme
can formulated as
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h!“*Y — yppaTE() (hf“,AGGREGATE(k) (h](.e),Vj eN (i)))
O (10 (0) @
= upDATE() (hi ,mN(i))

where AGGREGATE function takes as input the set of embeddings of the nodes in j’s graph
neighborhood N (j) and generates a message m. UPDATE combines the message with the
previous embedding of node j to generate the updated embedding. UPDATE and AGGREGATE
are mathematically differential functions (or neural networks). The AGGREGATE function
aggregates information from its local neighborhood. m is the message that becomes
aggregated using the neighbor nodes’ feature of node i. The superscript of h is used
to denote iterations of message passing, which are effectively the layers of the graph
neural network.

@

Input Graph Bl c

Target f
Node ° h(lj

3T <€ A KO

Figure 2. Neighborhood aggregation for message-passing techniques for a Graph Neural Network.

A graph neural network can be represented as a layer that consists of two mathematical operators:
(i) aggregation function and (ii) update function. For the graph illustrated in this figure, we aggregate
the features of node A up to the depth of two layers. Similarly, aggregation can be performed for each
node by averaging features over its out-degree and then receiving others’ messages by averaging
over their in-degrees, which is why the overall scheme is called the message-passing technique.

2.7. Architecture of Attention-Based Graph Neural Network

The purpose of the graph neural network model M is to estimate the probability of
node j of a graph with edge representation £ belonging to one of the £ labels. Assume that
in the graph with edge representation £, the neighborhood of node j is denoted by N/ (j).
In an attention-based graph neural network, the first layer is defined by

h() = ReLU(FW?) )
where WY is the initial weight. The consecutive layer is defined by
(D) = p(HR(H) (6)
where P() is the propagation matrix. Each row of h(*+1) can be written as

t+1 t t
h'= Yy pn )
JEN (Ui}



Genes 2023, 14, 506

9 of 20

where P! = softmax([ﬁf cos<h§”,h}”)]jemu{f}) and cos(a,b) = a"b/(|[a]| - |[b]]),

1

and || - || is L, norm. Each layer is parameterized by the B; value. The final layer has weight
W1, using which we can calculate a prediction using a softmax function as follows:

M = softmax(h(“l), wh) (8)
where the number of layers is £. In this network architecture, we define attention as
P(t) . 1 . e'B(t) COS(hI(j),h;j))

i = ©) cos(hV) p0) 9
jentug) ¢ b

which denotes how similar the two cell samples i and j are. The attention selects neighbors
with the same class to be more relevant.

2.8. scAGN Method

Attention-based Graph Neural Network (AGN) is a type of graph neural network that
removes the intermediate fully-connected layers and replaces the propagation layers with
attention mechanisms that respect the structure of the graph. This attention mechanism
allows us to learn an adaptive and dynamic local summary of the neighborhood to achieve
more accurate predictions. Our proposed method, scAGN, employs AGN architecture
where single-cell omics data are fed after batch-correction using canonical correlation
analysis and mutual nearest neighborhood (CCA-MNN) [47,48] as explained above. scAGN
uses transductive learning to infer cell labels for query datasets based on reference datasets
whose labels are known or have been annotated by experts. The illustration of scAGN
is shown in Figure 3. We split the dataset in the ratio of 3:1 (p = 0.75), where 75% of
the dataset acts as a reference dataset and 25% of the dataset acts as a query dataset. We
perform transductive learning on a graph constructed using CCA-MNN, where some labels
(such as cell types, diseased /unhealthy cells, etc.) are known and some are not known
(Figure 3).

Reference
Dataset

\ Transductive Training
A
r N

; = 0
. Input
210 [ | |
L[] | [ [ |
/ CCA-MNN [ L
hybrid Attention-based == =
aph graph neural network
arap with multiple layers .. ...

Unknown Inferred
Labels Labels

Figure 3. An illustration of scAGN. It shows the concept behind transductive training on the CCA-
MNN graph using Attention-based Graph Neural Network architecture. The reference and query
datasets are jointly processed to create a feature set that is used to calculate CCA-MNN hybrid graph
representation in a sparse edge format. The graph is used as an input along with true labels for
reference datasets to the attention-based graph neural network for training. The trained model can be
used for making a prediction on an unseen dataset.

2.9. Implementation and Model Training

We use Pytorch-Geometric [49] for the implementation of AGNN architecture. Our
implementation uses a user-specified multiple attention layer. The first layer is a linear
layer that applies affine transformation. The subsequent layers are the attention layer with
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the very first attention layer having B = 1. B values for subsequent attention layers are
randomly initialized between 0 and 1. The last layer is specified as a linear layer followed
by a softmax function for label prediction. The last layer is an output layer with size n
where 7 is the number of classes or cell types. The output layer predicts the probability
of cell types of each cell as p = [p1, p2,- - - , pn). The predicted cell type for each cell is the
class i for which we obtain the highest probability, i.e., j; = argmax(p). For a given true
class y;, we compute the loss as a negative log-likelihood as follows:

£ =~ log(py,) (10)

where py, is the output probability of cell-type y;.

We train AGNN architecture with negative log-likelihood as a loss function with
Adam optimizer. Further, we use a step learning rate where the learning rate is decreased
with epochs of training. Step learning is parametrized by two parameters: step size and
v. We use a step size of 10 and v = 0.8, which means the learning rate is reduced by
80% every 10 steps. We also utilize an early-stopping mechanism for terminating the
training procedure if no improvement in validation accuracy is achieved. Early stopping
size is parametrized by patience value v, for which we use v = 2000, which means if no
improvement is made for the next v epochs, training stops.

2.10. Performance Evaluation

We compare the proposed method with five baseline methods: (i) Seurat V3, (ii) Sin-
gleR, (iii), scMAP-cluster, (iv) scMAP-cell, and (v) Chetah. We use five evaluation metrics
for comparing the performance of our method against baseline methods: (i) prediction
accuracy, (ii) precision score, (iii) recall score, (iv) F1-score [50], and (v) Matthew’s correla-
tion coefficient [51]. Consider the total number of labels to be N. Further, consider TP as
true positive, FP as false positive, TN as true negative and FN as false negative. Thus, the
prediction accuracy is calculated as

TP + TN
A= —_— 11
N (11)

Precision score is defined as P = %, recall score is defined as R = %, and
F1 score is defined as F1 = 27*;71’;%2 As the F1 score is meant for binary classification, it
needs some modification for multi-class classification. For multi-class classification, first,
the class-wise F1 score is calculated and then the average is taken. The average F1 score is
called the macro F1 score. From now on, wherever we mention the F1 score, we mean the

macro F1 score. Matthew’s correlation coefficient is formulated as

TP x TN — FP x FN
MCC = (12)
\/(TP + FN)(TP + FP)(TN + FP)(TN + FN)

A value of +1 for MCC indicates the best agreement between the predicted and true
values. In [51], the authors presented a case study where they demonstrated that the MCC
value is best suited for classifiers with imbalanced data, i.e., the number of class labels is
not the same for all classes.

3. Simulation Study Result

In this section, our method is compared with five existing methods using the sim-
ulated datasets that are described in Section 2.1; namely, simulated datasets with 95%
sparsity—four equiprobable classes (Figure 4), simulated datasets with 95% sparsity—
four imbalanced classes (Figure 5), and 80% sparsity—four equiprobable classes (see the
supplementary). The performance evaluation is based on five metrics; namely, prediction
accuracy, precision score, recall score, F1 score, and Matthew’s correlation coefficient.
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Figure 4. Boxplot to illustrate the performance of scAGN against other methods using simulated
datasets with a sparsity of 95% (all four classes equiprobable). scMAP-cell and scMAP-cluster were
not included in the plots as they failed for the datasets.

For datasets with a sparsity of 95% and four equiprobable classes, the boxplots show
that the proposed method scAGN surpasses all the other methods in terms of all five
evaluation metrics; Seurat came second while SingleR and Chetah were third and fourth,
respectively; scMAP-cell and scMAP-cluster did not work with such high-sparsity datasets.
For the simulated data with a sparsity of 80% and four equiprobable classes, the proposed
method scAGN outperformed the existing methods (see Figure S1 in the Supplementary).
We also conducted a simulation study where Splatter parameter de.prob was set to 0.5.
Figure S2 in the Supplementary indicates that scAGN was superior to that of all baseline
methods for this case as well.

Note that the scAGN selects the best neural network architecture out of a pre-determined
set of hidden units and the number of layers. This requires several iterations. In our method,
the number of hidden units were varied among 32, 64, 128, and 256, and the number of
layers varied from 2 to 5. However, we find that our method scAGN is less stable compared
to Seurat in general. This behavior is attributed to the random weight initialization of the
neural network layer.

The performance of our method is also compared with other existing methods using
simulated datasets with imbalanced classes. The boxplots of performance metrics, as
shown in Figure 5, demonstrate that our method works best with simulated datasets on all
performance metrics, even for the case of imbalanced classes.
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Figure 5. Boxplot to illustrate the performance of scAGN against other methods using simulated
datasets with a sparsity of 95% when classes are imbalanced in the dataset. scAGN has superior
performance compared to the existing methods.

4. Real Dataset Results

In this section, we first describe the performance of the scAGN method against base-
lines using all five metrics defined in Section 2.10 on real datasets. Next, we provide details
of scAGN'’s performance by looking at the confusion matrix of a few datasets as examples
and the run-time complexity of our methods against baseline methods.

4.1. Label Propagation on Real Datasets

We evaluate the ability of scAGN using real datasets. The performance of the classifier
was evaluated on the prediction set as described in Section 2.5. On all real datasets, our
method outperforms all baseline methods. Out of all baseline methods, Seurat V3 performs
most similarly to our method. However, scMAP-cluster and scMAP-cell performed poorly
with respect to our method. The results show that our method using a graph neural
network performed consistently in all performance metrics: prediction accuracy, precision
score, recall score, F1 score, and Matthew’s correlation coefficient (MCC) (Figure 6).

The result of prediction accuracy is summarized in Figure 6a. In 11 out of 12 datasets,
our method performed best in terms of prediction accuracy. For a dataset with imbalanced
classes, i.e., not all classes have the same number of samples, prediction accuracy is not
enough. In that case, we also need to assess the performance of the classification method
on other metrics such as precision score, recall score, F1 score, and MCC. The precision
score tells us how many positive predictions were made. Recall tells us how many of the
positive cases the classification method predicted correctly, and overall the positive cases in
the dataset. The F1 score is the harmonic mean of the precision score and recall score. MCC
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provides a reliable statistical measure in the case of datasets with imbalanced classes as it
considers true positives, false negatives, true negatives, and false positives, proportionally
both to the size of positive elements and the size of negative elements in the dataset.

The precision score, recall score, F1 score, and MCC comparing all datasets are given
in Figure 6b—e. From Figure 6b, we see that there is no clear consensus on which method
works best. However, scmap-cluster was best in 4 out of 12 datasets; our method was 2nd
best or 3rd best in all 12 datasets. A similar trend was observed in the recall score bar plot
in Figure 6c¢ as well as in the F1 score barplot in Figure 6d. From Figure 6e, we see that
scAGN’s performance was best in three datasets, second best in five datasets, and third
best in the remaining datasets.
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Figure 6. Performance evaluation of scAGN method against baseline methods using 12 real datasets.
(a) We see that out of 12 datasets, scAGN performs best with 11 datasets. (b) In terms of precision
score, there is no clear consensus on which method works best. However, the scAGN method
performs 2nd best or 3rd best in all of the datasets. scMAP-cluster was best in 4 datasets out of
12 datasets. scMAP-cell was best in 5 datasets, while Seurat was best in only one dataset. Chetah and
SingleR performed similarly. (c) Recall score for all six methods on 12 datasets. From the recall score
also, we can see that there is no clear consensus on which method is the best. (d) F1 score also shows
a similar trend as the recall score and our method is best in two datasets and second best or third best
in the rest of the datasets. (e) From the MCC value, we see that scAGN is best in three datasets, while
scmap-cell is best in four datasets.



Genes 2023, 14, 506

14 of 20

One thing to note here is that scMAP-cluster and scMAP-cell also predict “unassigned”
for samples that cannot be predicted accurately. However, to calculate the precision,
recall, and F1 scores, the number of classes is required to be the same in true label sets
and predicted label sets. As a remedy, we remove all samples for which scMAP-cell and
scMAP-cluster predicted “unassigned” to calculate the precision, recall, and F1 scores,
and MCC.

4.2. Confusion Matrix

We further dived deep into the performance of scAGN for multiple datasets. A con-
fusion matrix provides a summary of prediction results by a classifier in visual form as
shown in Figure 7. The confusion matrix summarizes the number of correct and incorrect
predictions, which can be analyzed to understand the predictive power of the classifier.
We look at the confusion matrix of healthy cells. We find out that the proportions of cells
incorrectly predicted are very low, and the overall predictive power of scAGN is very high.
The only notable incorrect prediction is the Tasic dataset, where roughly 50% of Pvalb cell
types were incorrectly classified as L2 cell types.
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Figure 7. Confusion matrix for healthy cells as examples. We observe that the proportions of cells
incorrectly predicted are very low and the overall predictive power of scAGN is very high. The
only notable incorrect prediction is the Tasic dataset, where roughly 50% of Pvalb cell types were
incorrectly classified as L2 cell types.

4.3. Impact of Hidden Units and Number of Layers

A neural network architecture plays a crucial role in determining the predictive
power of a neural network classifier. Finding the best neural architecture is important for
the superior performance of a neural network classifier. For scAGN, a neural network
classifier, hidden units, and the number of layers matter. While we did not perform any
hyperparameter search for the best neural network, we varied the number of hidden units
and the number of layers to study the trend of performance with hyperparameters such
as the number of hidden units and the number of layers. We visualize the impact of
the number of hidden units and the number of layers on the prediction accuracy and F1
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score for healthy cells (Figures 8 and 9). The impact of the number of hidden units and
the number of layers on these two performance metrics for all 12 datasets can be seen in
Figures S3 and S4 in the Supplementary. In general, we found that, with an increase in the
number of hidden units, the prediction accuracy as well as F1 score improve as we increase
the number of neurons. Having a too little number of hidden units can cause underfitting,
while it should also be noted that using too many hidden units can cause overfitting and
the model becomes less generalizable. Increasing the number of layers did not have a
significant impact on the performance metrics of the scAGN classifier.
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Figure 8. Prediction accuracy with the number of hidden units and the number of layers for healthy
cells. The number of hidden units used were 32, 64, 128, and 256. The number of layers were varied
from 2 to 5. The size of the bubble represents the number of layers used in the graph neural network.
For a fixed hidden unit, the varying number of layers does not provide a definite conclusion on a trend
of prediction accuracy with the number of layers. Lines were drawn passing through the average of
the number of layers where the number of hidden units is fixed. With the Tasic dataset, we see an
exception where the trend of prediction accuracy with the number of hidden units is inconclusive.
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Figure 9. F1 score with the number of hidden units and the number of layers. The number of hidden
units used were 32, 64, 128, and 256. The number of layers were varied from 2 to 5. The size of the
bubble represents the number of layers used in the graph neural network. For fixed hidden units,
varying the number of layers does not provide a definite conclusion on a trend of the F1 score with
the number of layers. Lines were drawn passing through the average of the number of layers where
the number of hidden units is fixed. With the Tasic dataset, we see an exception where the trend of
the F1 score with the number of hidden units is inconclusive.

4.4. Runtime Complexity

Finally, we compared the runtime complexity of our method against other scRNAseq
classifiers. We ran all our methods on a 64-bit Ubuntu 18.04 machine with 256 GB of
RAM and processor Intel Core i9-10900X CPU with a CPU cycle of 3.70 GH and 20 cores.
In addition to that, the machine had an NVIDIA GeForce RTX 3090 graphics card with a
graphics memory of 4096 MB. For simulated datasets containing 1000 cells and 800 genes,
scAGN on average took 20 s to finish, while Seurat took 7 s, SingleR and Chetah each took
5 s, and scMAP-cell and scMAP-cluster each took roughly 1 s. From the analysis of the
runtime complexity, we find that runtime increased with the number of cells and genes
present in the dataset. For example, COVID-19 datasets were the largest ones and took
the maximum time to finish the training and prediction. scAGN’s runtime complexity
was the second lowest, with scMAP-cluster being the fastest method. Please note that the
run-time estimate of scAGN is slightly higher due to the minimum 2000 steps that are used
as early stopping criteria. In such a case, even if no improvement to training loss is made,
training continues until 2000 steps have passed. A summary of the run time complexity of
all methods is provided in Figure 10.
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Figure 10. Runtime complexity of various classifiers included in our study. While scMAP-cluster was
the fastest method, scAGN came second. SingleR was the slowest method. The y-axis is log-scaled
for clarity.

5. Discussion and Conclusions

scAGN is a flexible approach that can potentially improve the accuracy and robustness
in identifying cell types at the single cell level. In terms of clinical practices, the ability
to accurately identify cell types in scRINAseq data can help the understanding of various
diseases and the development of targeted therapies. For example, in cancer research, the
identification of different cell types within a tumor can provide insights into the underlying
mechanisms of the disease and help to identify potential therapeutic targets. Similarly,
in neuroscience, the identification of specific cell types in the brain can provide insights
into the underlying mechanisms of neurological disorders and help to develop more
effective therapies.

From our simulation study, we find that our method works best with highly sparse
data compared to other methods. Other methods such as Seurat create models based on
anchor points, while scMAP-cell and scMAP-cluster require projecting cells onto a known
cluster or another labeled cell. SingleR finds the top correlated cell types. Such methods fail
when a dataset is highly sparse. Model-fitting-based algorithms need to fit more coefficients,
while tree-building methods such as Chetah need to account for greater depth to consider
all features. In scAGN, we deal with these issues at the feature processing level discussed
in Section 2.5, which makes scAGN suitable for training on sparser datasets.

We notice that, although real datasets have the same level of sparsity as a simulated
dataset, the performance of our method is almost the same as other methods in the case
of real datasets. However, with the simulated datasets, our method outperforms other
methods. The reason behind this outcome may be due to the fact that, in simulations,
there is a stronger statistical relationship between various cells samples simulated while
such a stronger relationship among various cell samples in real datasets may not exist
due to variability in sequencing steps, lab experiments, and other external factors. We
need further investigation on improving the performance of graph-based methods for
real datasets. One key approach might be a hyperparameter search of neural network
parameters exhaustively for the best neural network architecture. However, such steps
need greater computing requirements.

In this study, we propose a novel method of cell-type detection based on transductive
learning using an attention-based graph neural network. The scAGN exploits higher-
order topology to create a neural network classifier. We compared the performance of our
method with five other methods and, in terms of prediction accuracy, our method was
superior while, in terms of precision, recall, and F1 scores, no consensus was reached on
the superiority of any of the methods mentioned in this study.

One key aspect to note is that our work establishes a topological relationship based on
information present in the data. However, a better topological relationship may be captured



Genes 2023, 14, 506 18 of 20

based on external data such as gene—gene interaction networks, splicing information, and
metadata about cell samples. In our future work, we hope to include external information
in creating a graph neural network for cell-type classification of single-cell data. Further, a
natural extension would be to assess our methods on other single-cell modalities such as
scATAC-seq and CITE-seq.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/genes14020506/s1, Figure S1: Boxplot to illustrate the performance of scAGN
against other baseline methods using simulated datasets with sparsity of 80%; Figure S2: Boxplot to
illustrate the performance of scAGN against other baseline methods using simulated datasets with
sparsity of 95-97%; Figure S3: Prediction accuracy with the number of hidden units and number of
layers for all 12 real datasets; Figure S4: F1 score with the number of hidden units and number of
layers for all 12 real datasets.
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