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In this supplementary material, we describe the performance of our method scAGN on 
additional simulated datasets. In addition to that, we also look at the impacts of hidden 
units and the number of layers on performance metrics.

1 Results and Discussion on Simulation Study
To generate simulated cell-gene count matrices for the scRNAseq dataset, we use the Splatter 
package. The splatter package provides several parameters that can be tuned to create 
simulated scRNAseq data with desired properties such as the number of classes (or cell 
types), class imbalance, sparsity level, the number of cells, genes, expression levels, technical 
noise, etc. This can be useful for testing and evaluating scRNA-seq analysis methods, or 
for training machine learning models on simulated data. For completeness, we provide a 
description of a few parameters we used for the generation of the simulated dataset in the 
simulation study:

• de.prob: It specifies a probability that a gene can be differentially expressed in a
group.

• dropout.mid: It specifies the midpoint parameter for the dropout logistic function
that is used to induce dropout in the synthetic dataset.

• dropout.shape: It specifies the shape parameter for the dropout logistic function that
is used to induce dropout in the synthetic dataset.

1.1 Sparsity of 95%

In the main text, we discussed results using a simulated dataset with a sparsity of 95%. We
generated 50 replicates of simulated datasets with a sparsity of 95%. Each simulated dataset
contains 1,000 cells and 800 genes with equiprobable 4 cell types. dropout.mid value was
chosen to be 7 for all 50 replicates. dropout.shape was -1 for all fifty replicates which is
the default value in the Splatter package. Further, an additional parameter de.prob was set
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to 0.2 which is the probability of genes being differentially expressed. Similar settings were
used for simulated datasets with imbalanced classes.

1.2 Sparsity of 80%

In this section we evaluate the performance of scAGN on 50 replicates of simulated datasets
with 80% sparsity where de.prob set to 0.2. Each simulated dataset contains 1,000 cells
and 800 genes with equiprobable 4 cell types.

The performance of all methods on simulated datasets with 80% sparsity is illustrated in
Figure S1 via boxplot. Only the method Chetah is comparable with scAGN for the precision
metrics. In all other performance metrics, the new method scAGN is superior among all the
methods.
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Figure S1: Boxplot to illustrate the performance of scAGN against other baseline methods 
using simulated datasets with sparsity of 80%. We note that scAGN’s performance is better 
overal although Seurat’s performance was relatively stable compared to our method. SingleR 
and Chetah performed similar while scMAP-cell and scMAP-cluster failed to identify cell 
types for most cell samples.
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1.3 de.prob set to 0.5

This section provides a comparison of our method against baseline methods using simulated
datasets where datasets were generated using Splatter by de.prob set to 0.5 which is the
probability of genes being differentially expressed. We use simulated datasets with the
sparsity 95% which were generated using dropout.mid values of 4 and 7 respectively. Overall
performance of scAGN was superior to that of all baseline methods for datasets with a
sparsity of 95%. Boxplot illustrating performances of all methods are provided in Figure S2.
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Figure S2: Boxplot to illustrate the performance of scAGN against other baseline methods 
using simulated datasets with sparsity of 95%-97%. The simulated dataset was generated by 
setting de.prob=0.5 in Splatter. We see that for datasets with such high sparsity, scAGN’s 
performance was superior and consistent for all four metrics. Seurat came second while 
SingleR and Chetah were third and fourth respectively. However, scMAP-cell and scMAP-
cluster didn’t work with datasets having such high sparsity. Hence, we didn’t provide 
boxplots for these two methods.
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2 Impact of Hidden Units and Number of Layers

A neural network architecture plays a crucial role in determining the predictive power of a
neural network classifier. Finding the best neural architecture is important for the superior
performance of a neural network classifier. For scAGN, a neural network classifier, hidden
units, and the number of layers matter. While we didn’t perform any hyperparameter search
for the best neural network, we varied the number of hidden units and number of layers to
study the trend of performance with hyperparameters such as the number of hidden units
and the number of layers. We visualize the impact of the number of hidden units and the
number of layers on performance metrics for a few datasets in Figure S3 and Figure S4. We
only provide the impact of hidden units and the number of layers for prediction accuracy and
the F1 score only for brevity as the F1 score captures the trend seen in the recall score and
precision score. A similar trend was observed in recall score, precision score, and MCC. In
general, we found that with an increase in the number of hidden units, prediction accuracy,
as well as F1 score, improves. Increasing the number of layers didn’t have a significant
impact on the performance metrics of the scAGN classifier.
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Figure S3: Prediction accuracy with the number of hidden units and number of layers for 
all 12 real datasets. The number of hidden units used were 32, 64, 128, and 256. The number 
of layers were varied from 2 to 5. Size of the bubble represents the number of layers used in 
the graph neural network. For a fixed hidden units, varying number of layers doesn’t provide 
a definite conclusion on a trend of prediction accuracy with the number of l ayers. Lines were 
drawn passing through the average of number of layers where the number of hidden units 
is fixed. With Tasic d ataset, we s ee an e xception where t rend o f p rediction a ccuracy with 
the number of hidden units is inconclusive. Similarly, with GSE118389 dataset, we see an 
exception where trend of prediction accuracy with the number of hidden units is inconclusive.
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Figure S4: F1 score with the number of hidden units and number of layers for all 12 real 
datasets. The number of hidden units used were 32, 64, 128, and 256. The number of layers 
were varied from 2 to 5. Size of the bubble represents the number of layers used in the 
graph neural network. For a fixed h idden u nits, varying number o f l ayers d oesn’t provide 
a definite c onclusion o n a  t rend o f F1 s core w ith t he number o f l ayers. L ines were drawn 
passing through the average of number of layers where the number of hidden units is fixed. 
With Tasic dataset, we see an exception where trend of F1 score with the number of hidden 
units is inconclusive. Similarly, with GSE118389 dataset, we see an exception where trend 
of F1 score with the number of hidden units is inconclusive.
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