
Citation: Cao, P.; Huang, Y.; Zong,

M.; Xu, Z. De Novo Assembly and

Comparative Analysis of the

Complete Mitochondrial Genome of

Chaenomeles speciosa (Sweet) Nakai

Revealed the Existence of Two

Structural Isomers. Genes 2023, 14,

526. https://doi.org/10.3390/

genes14020526

Academic Editor: Christian Chevalier

Received: 14 November 2022

Revised: 1 February 2023

Accepted: 17 February 2023

Published: 19 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

genes
G C A T

T A C G

G C A T

Article

De Novo Assembly and Comparative Analysis of the Complete
Mitochondrial Genome of Chaenomeles speciosa (Sweet) Nakai
Revealed the Existence of Two Structural Isomers
Pei Cao 1, Yuan Huang 1, Mei Zong 2 and Zilong Xu 1,*

1 Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
2 College of Life Sciences, Anqing Normal University, Anqing 246133, China
* Correspondence: xuzilong@zaas.ac.cn

Abstract: As a valuable Chinese traditional medicinal species, Chaenomeles speciosa (Sweet) Nakai
(C. speciosa) is a natural resource with significant economic and ornamental value. However, its
genetic information is not well understood. In this study, the complete mitochondrial genome of
C. speciosa was assembled and characterized to explore the repeat sequences, recombination events,
rearrangements, and IGT, to predict RNA editing sites, and to clarify the phylogenetic and evolution-
ary relationship. The C. speciosa mitochondrial genome was found to have two circular chromosomes
as its major conformation, with a total length of 436,464 bp and 45.2% GC content. The mitochondrial
genome contained 54 genes, including 33 unique protein-coding genes, 18 tRNAs, and 3 rRNA genes.
Seven pairs of repeat sequences involving recombination events were analyzed. Both the repeat
pairs, R1 and R2, played significant roles in mediating the major and minor conformations. In total,
18 MTPTs were identified, 6 of which were complete tRNA genes. There were 454 RNA editing sites
in the 33 protein-coding sequences predicted by the PREPACT3 program. A phylogenetic analysis
based on 22 species of mitochondrial genomes was constructed and indicated highly conserved
PCG sequences. Synteny analyses showed extensive genomic rearrangements in the mitochondrial
genome of C. speciosa and closely related species. This work is the first to report the C. speciosa
mitochondrial genome, which is of great significance for conducting additional genetic studies on
this organism.

Keywords: Chaenomeles speciosa; mitochondrial genome; chloroplast; IGT; MTPTs; homologous
recombination

1. Introduction

C. speciosa, belonging to the genus Chaenomeles in the Rosaceae family, is a native
temperate plant widely cultivated in Asia and Europe. C. speciosa has been widely used
in medicine and the functional food industries [1,2]. The dried fruit of C. speciosa has
been utilized in traditional Chinese medicine for thousands of years. Previous studies
have shown that the chemical components of C. speciosa extracts are rich in flavonoids,
phenolics, terpenoids, and phenylpropionic acids [3–5]. The People’s Republic of China’s
Pharmacopoeia lists that oleanolic acid and ursolic acid are two triterpenoid acids that can
be used in medicine. Several traditional C. speciosa cultivars have recently been released on
the market and undergone increased production [6].

Mitochondria are involved in numerous metabolic processes and perform crucial roles
in cell differentiation, apoptosis, cell development, and cell division by converting biomass
energy into chemical energy for daily activities [7–9]. On the other hand, the mitochondrion
is a semi-autonomous organelle with a mitochondrial genome genetic system distinct
from the cell nucleus and typically exhibits maternal inheritance [10,11]. Coordinated
nucleocytoplasmic interaction is essential for plant growth. Artificial hybridization between
or within plant species could change the balance of cytonuclear interactions, often used
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to breed new varieties [12]. Cytoplasmic male sterility (CMS), driven by a genetic conflict
between the nuclear and mitochondrial genomes, is a typical example and has been reported
in many species [13].

Plant mitochondria contain the largest and most complex organelle genomes, with
various sizes and structures [14,15]. These mitochondria are recognized as obtaining
foreign sequences through intracellular gene transfer (IGT) and horizontal gene transfer
(HGT) [16–19]. Numerous well-known genes, introns, and varied intergenic regions can be
found in mitochondrial genomes [20]. The size of mitochondrial genomes varies signifi-
cantly, by up to three orders of magnitude, because of differences in non-coding regions,
such as repeat sequences, introns, intracellularly transferred sequences from plastids (mito-
chondrial plastid sequences, MTPTs), and horizontal gene transfer from foreign donors [21].
As previously reported, the Viscum scurruloideum mitochondrial genome exhibited a size of
66 Kb [22], while the Lactuca sativa and Siberian larch mitochondrial genomes were estimated
at 11.7 Mb [23,24]. The mitochondrial genome was previously thought to have a conven-
tional, single-circular chromosome structure. However, previous reports indicate that the
conformations are diverse, with polycyclic being the most common in Cucumis sativus [25]
and a variety of linear, circular, and branched structures in Quercus acutissima [26]. More-
over, the multi-chromosomal mitochondrial genome has been reported in many species.
For example, 54 distinct circular chromosomes in Lophophytum mirabile range from 7.2 to
580 kb in size [27], while 21 smaller circular chromosomes in Rhopalocnemis phalloides range
from 4.95 to 7.86 kb [28].

Plant mitochondrial genomes have a dynamic structure with multiple configura-
tions [29,30]. It has generally been accepted that large repeats of several kilobases of DNA
mediate the presence of multiple mitochondrial genome conformations via recombination
at a high frequency [31]. Emily et al. [32] found that only 13 of the 72 species of angiosperms
showed no repeats with lengths exceeding 600 bp, and the repeats were more extensive and
more frequent in vascular plants. Further, the accumulation of sub-genomic interconvert-
ible through recombination events could change the flexibility of plant mtDNA and help
mtDNA evolve through genetic diversity [14,31,33]. The abundance of repeat sequences is
typically related to mitochondrial genome structural rearrangements [34]. In addition to the
mitochondrial genome’s variability in genome size, gene content, and genomic structure,
functional genes also differ significantly due to post-transcriptional editing, namely RNA
editing, which may lead to incredibly diverse gene sequences [35,36]. Despite the high rate
of rearrangement and recombination, the mitochondrial genome typically shows a low
mutation rate, which may result from the mitochondrial repair processes [14,33,37].

Understanding genetic information is of great significance, but, until now, only the
chloroplast genome of C. speciosa has been sequenced and studied [38]. In this study, the
mitochondrial genome of C. speciosa was first assembled and annotated. This study aimed
to analyze the mitochondrial genome structure mediated by repeated sequences, IGTs, RNA
editing sites, and selective pressure and explore the synteny and phylogenetic relationships.
Our results expand the genetic information in Rosaceae and provide a theoretical basis for
further utilization and genomic breeding studies of the C. speciosa species.

2. Materials and Methods
2.1. Plant Materials, DNA Extraction, and Sequencing

The fresh C. speciosa materials were collected from Houyi Garden of Southwest Uni-
versity, 2 Tiansheng Road, Beibei District, Chongqing (longitude 106.4242178◦, latitude
29.8251892◦, or 106◦25’ 27.184” E, 29◦49’ 30.681” N). Total genomic DNA was obtained
using the cetyltrimethylammonium bromide (CTAB) method [39]. The DNA library (Il-
lumina) was constructed with an insert size of 500 bp using the NEBNext®® Ultra™ II
DNA Library Prep Kit (NEB, Beijing, China) [40]. The Hiseq X platform was used for
short-read sequencing (Novogene, Tianjin, China) [41]. Purified DNA was prepared for
long-read sequencing with the SQK-LSK108 genomic sequencing kit (Oxford, UK). The
purified library was loaded into an R9.4 Spot-On Flow for nanopore sequencing.
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2.2. Assembly and Annotation of the Mitochondrial Genome and Chloroplast Genome

The organelle genome in this study was assembled using a hybrid assembly strategy.
First, GetOrganelle (version v1.7.5) [42] was used to obtain short reads of the chloroplast and
mitochondrial genomes separately. The short reads were then assembled by SPADES [43]
into a unitig graph. The contigs in the unitig graph served as the reference genomes for the
nanopore read mapping using BWA software [44]. The mapped reads were extracted using
Samtools (v1.9) [45], and then the long reads mapped to the repeat region of the unitig
graph were used for solving the repeat region. Finally, the contigs were merged using
bandage software [46] to form the circular DNA molecule. The mitochondrial genome
was annotated by the Geseq software (v2.03) [47]. CPGAVAS2 (v1.0) [48] was utilized to
annotate the chloroplast genome with Database 3. The chloroplast genome annotation was
checked via the CPGView web server (v1.0) [49].

2.3. Analysis of Repeated Sequences and Genome Recombination

BLASTN [50] was used to detect the repeated sequences in the C. speciosa mitochondrial
genome, followed by manual exclusion. Then, two repeated units of the repeated sequences
and their flanking 1000 bp regions were extracted as the primary conformation. Afterward,
the repeat unit’s 1000 bp regions upstream and downstream were exchanged to simulate
the secondary conformation that could result from artificial recombination. BWA software
mapped the nanopore data to major and minor conformation sequences [44]. By counting
the number of long reads that completely overlapped the regions of the repeated sequence,
it was feasible to determine whether there was mitochondrial genome recombination.

2.4. DNA Transfer and Phylogenetic Tree Construction

Due to the lack of a published nuclear genome for C. speciosa, only two organelle
genomes can be utilized to analyze intracellular sequence migration. To identify the MTPTs,
the chloroplast genome of C. speciosa was compared with the mitochondrial genome using
the BLASTN program with the parameter “-evalue 1e-5”. The results were visualized using
TBtools (v1.112) [51].

Mitochondrial genome data of 21 species from 6 families of angiosperm were selected
and downloaded. PhyloSuite (v1.1.16) was used to extract the common protein-coding
genes (PCGs) [52]. The MAFFT in PhyloSuite was used for multiple sequence align-
ment [53]. A maximum likelihood (ML) phylogenetic tree was constructed using IQtree
(v1.6.12) (bootstrap = 1000) [54]. GTR + F + R2 was chosen as the best-fit model according
to the Bayesian information criterion (BIC) [55]. Bayesian inference (BI) analysis was per-
formed using MrBayes (v3.26) with default parameters and 1000 bootstrap replicates [56].
ITOL software (v6) was used to visualize the results of the phylogenetic analysis [57].

2.5. RNA Editing Site Identification and Synteny Analysis

The PCGs of C. speciosa were extracted using PhyloSuite software. The extracted PCGs
were submitted to the PREPACT3 web server (http://www.prepact.de/prepact-main.php,
accessed on 3 August 2022) for RNA editing site prediction with the default parameters [58].

The mitochondrial genome data of seven species (Pyrus betulifolia, Sorbus torminalis,
Malus domestica, Eriobotrya japonica, Prunus avium, Rosa chinensis, and Fragaria orientalis)
from the Rosaceae family that properly represent their genera were downloaded from
the NCBI public database at https://www.ncbi.nlm.nih.gov (accessed on 3 August 2022).
BLASTN was performed to compare eight mitochondrial genomes pairwise and obtain
homologous sequences. For the Multiple Synteny Plot, conserved colinear blocks longer
than 0.5 Kb were selected. The Multiple Synteny Plot of C. speciosa with the seven species
was constructed based on sequence similarity using MCscanX [59].

2.6. dN/dS Analysis

Twenty-eight genes from 12 Rosaceae species’ mitochondrial genomes were series
connected for polygenic nucleotide alignment to estimate the selective pressure at the

http://www.prepact.de/prepact-main.php
https://www.ncbi.nlm.nih.gov
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species level. The 12 species were P. betulifolia, Pyrus pyrifolia, M. domestica, Malus hupehensis,
Sorbus aucuparia, S. torminalis, C. speciosa, E. japonica, P. avium, Prunus salicina, F. orientalis,
and R. chinensis. The Yn00 module in PAML (v4.9) [60] was used to estimate the separate
non-synonymous substitutions (dNs), synonymous substitutions (dSs), and dN/dS rates.
The parameters were as follows: verbose = 0, icode = 0, weighting = 0, common 3×4 = 0
(use one set of codon frequencies for all pairs), ndata = 1. The boxplot and heatmap were
created using the R-package (v3.2.2) (ggplot2 and heatmaply) [61,62].

3. Results
3.1. General Features of the C. speciosa Mitochondrial Genome

The major conformation of the C. speciosa mitochondrial genome was two circular chro-
mosomes, with a total length of 436,464 bp and 45.2% GC content (Figure 1). The lengths of
the two circular chromosomes (chromosome 1 and chromosome 2) were 307,720 bp and
128,744 bp, and the GC contents were 45.15% and 45.33%, respectively (Table 1).
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Figure 1. C. speciosa mitochondrial genome gene map. For both circular chromosomes, inner genes
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Table 1. Basic information of C. speciosa mitochondrial genome.

NCBI Accession Number Contigs Type Length GC Content

OL450370-OL450371 Chromosome 1-2 Branched 436,464 bp 45.20%
OL450370 Chromosome 1 Circular 307,720 bp 45.15%
OL450371 Chromosome 2 Circular 128,744 bp 45.33%
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The C. speciosa mitochondrial genome was annotated with 33 unique PCGs, including
24 mitochondrial core genes, 9 variable genes, 18 tRNA genes (2 were multiple copies),
and 3 rRNA genes (Table 2). The set of core genes included five ATP synthase genes (atp1,
atp4, atp6, atp8, and atp9), nine NADH dehydrogenase genes (nad1, nad2, nad3, nad4, nad4L,
nad5, nad6, nad7, and nad9), four cytochrome C biogenesis genes (ccmB, ccmC, ccmFc, and
ccmFn), three cytochrome C oxidase genes (cox1, cox2, and cox3), one transport membrane
protein gene (mttB), one maturase (matR), and one cytochrome c biogenesis gene (cob). The
non-core genes consisted of three large subunits of ribosome genes (rpl5, rpl10, and rpl16),
five small subunits of ribosome genes (rps1, rps3, rps4, rps12, and rps13), and one succinate
dehydrogenase gene (sdh4). Additionally, two tRNAs, trnF-GAA and trnM-CAU, were
represented by two copies.

Table 2. Gene composition in the mitochondrial genome of C. speciosa.

Group of Genes Name of Genes

ATP synthase atp1, atp4, atp6, atp8, atp9
NADH dehydrogenase nad1, nad2, nad3, nad4, nad4L, nad5, nad6, nad7, nad9

Cytochrome c biogenesis cob
Ubiquinol cytochrome c reductase ccmB, ccmC, ccmFC, ccmFN

Cytochrome c oxidase cox1, cox2, cox3
Maturases matR

Transport membrane protein mttB
Large subunit of ribosome rpl5, rpl10, rpl16
Small subunit of ribosome rps1, rps3, rps4, rps12, rps13
Succinate dehydrogenase sdh4

Ribosome RNA rrn5, rrn18, rrn26

Transfer RNA

trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA (×3),
trnG-GCC, trnH-GUG, trnK-UUU, trnL-CAA,

trnM-CAU (×3), trnN-GUU, trnP-UGG, trnQ-UUG,
trnS-GGA, trnS-UGA, trnT-GUA, trnV-GAC,

trnW-CCA, trnY-GUA
Note: The number following gene names indicates the number of copies; for example, trnF-GAA and trnM-CAU
each had three copies.

3.2. Repeats and Homologous Recombination

As shown in Figure 2, seven pairs of repeated sequences were detected as being
involved in mediating mitochondrial genome recombination, including R1 and R2 as long
repeats (>1000 bp), R15 as short repeats (<100 bp), and R4, R5, R7, and R14 as medium-sized
repeats. Among them, R4, R7, R14, and R15 were reverse repeats; R1, R2, and R5 were
forward repeats. In addition, R2, R7, and R14 were located separately in chromosomes
1 and 2, and the other four pairs of repeated sequences were located in chromosome 1
(Table 3).

After simplifying, four chromosomes were presented (Table 4) and mediated by R1 and
R2. As shown in Figure 3, R1 and R2 may mediate mtDNA formation into three independent
circular chromosomes or one united circular chromosome. The major conformation was
two circular chromosomes, which were supported by the majority of long reads. R1,
with the most extensive length, was 7887 bp and obtained similar rates, supporting long
reads for both routes from the major conformation (combined in one circular) and minor
conformation (divided into two circulars) (21 + 20/16 + 18). In contrast, another pair of R2
repeated sequences allowed for many more reads on a single circular chromosome than on
two circular chromosomes (168 + 100/3 + 0).
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Figure 2. The location of seven repeated sequences in the C. speciosa mitochondrial genome. The
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chromosome 1.

Table 3. The recombination frequency of seven repeat pairs in the C. speciosa mitochondrial genome.

ID
Length

(bp)
Identity

(%) Position

Number of Supported Reads Percentage (%)

Major 1 Major 2 Alternative 1 Alternative 2 Major
Conformation

Alternative
ConformatioN

R1 7887 100 chr1: 299834-307720;
chr1: 107714-115600 16 18 21 20 0.4533 0.5467

R2 1235 100 chr1: 63771-65005;
chr2: 1-1235 168 100 3 0 0.9889 0.0111

R4 331 100 chr1: 48854-48524;
chr1: 116771-117101 161 188 1 0 0.9971 0.0029

R5 244 100 chr1: 12185-12428;
chr1: 33887-34130 244 206 0 1 0.9978 0.0022

R7 163 100 chr1: 107876-107714;
chr2: 121991-122153 242 237 2 0 0.9958 0.0042

R14 163 100 chr1: 299996-299834;
chr2: 121991-122153 17 26 1 0 0.9773 0.0227

R15 89 96.629 chr1: 169238-169150;
chr1: 207012-207100 228 146 1 0 0.9973 0.0027

Table 4. The segments and repeats are contained in four chromosomes.

Chromosome Order in Contigs

Contig 1 3-R12-1-R12-12-R10-10-R11-8-R4-6
Contig 2 27-R13-31-R7/R1-R7-26-R8-25-R11-24-R9-23-R6-30-R3-29-R6-28
Contig 3 22-R3-21-R5-20-R5-19-R9-18-R4-17-R8-16-R13-15
Contig 4 14-R10-13-R7

In addition, as large repeats involving recombination events, R1 exhibited a recombi-
nation frequency of 45.33%, while R2 showed a recombination frequency of 1.1%. The other
repeats were involved in recombination, with frequencies ranging from 0.22% to 2.27%.
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3.3. Gene Transfers between Chloroplast and Mitochondrial Genomes

According to the sequence similarity analysis, 18 MTPTs (Table S1), with a total length
of 3237 bp, accounted for 0.74% of the total length of the mitochondrial genome (Figure 4).
Among them, five MTPTs exceeded a length of 100 bp, with MTPT11 and MTPT12 being the
longest at 879 bp. By annotating these homologous sequences, six complete tRNA genes were
identified, including trnD-GUC, trnH-GUG, trnI-CAU, trnM-CAU, trnN-GUU, and trnW-CCA.
In addition to two partial tRNA genes (trnA-UGC and trnA-UGC) and two partial rRNA genes,
five unique partial PCGs were identified, including psbC, psbA, ndhC, atpA, and psbE.
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3.4. Phylogenetic Analysis

To understand the evolutionary status of the C. speciosa mitochondrial genome, a
phylogenetic tree of 22 species from six families of angiosperm was constructed (Figure 5).
Two mitochondrial PCGs from Brassicaceae (A. alpina and B. oleracea) were established as
an outgroup. The taxa from six families (Rosaceae, Rhamnaceae, Cannabaceae, Moraceae,
and Ulmaceae) were well clustered. In the cluster of the Rosaceae family, species from the
Pyrus, Malus, and Prunus genera were well grouped.
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and B. oleracea, were settled as the outgroups, and the bootstrap support values were recorded at each
node.

3.5. RNA Editing Sites Prediction

Four hundred fifty-four potential RNA editing sites were predicted on 33 mitochon-
drial PCGs (Table S2). The predicted RNA editing sites in each gene are shown in Figure 6.
All the RNA editing events ranged from C to U. The ccmFN and the mttB genes were edited
most frequently, 38 and 34 times, respectively. In total, eight genes (atp9, rps1, rps12, sdh4,
atp8, rps3, rpl10, and nad4L) were edited no more than five times. No potential RNA editing
events were predicted in the nad4L gene.

3.6. Synteny Analysis

The colinear blocks were not arranged in the same order among individual mitochon-
drial genomes (Figure 7). A significant number of blocks was detected among C. speciosa,
M. domestica, and E. japonica. R. chinensis, S. torminalis, and P. betulifolia shared numerous
conserved colinear blocks. On the contrary, colinear blocks among R. chinensis, F. orientalis,
and P. betulifolia were relatively weak.
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3.7. Evolutionary Selection Pressure Analysis

As shown in Figure 8, the dN/dS values at the species level by series-connecting
28 PCGs were conducted (Figure 8A). In C. speciosa, the dN/dS values were 0.32–1.12,
which were higher in genera Pyrus, Malus, and Sorbus than in Rosa, Fragaria, Prunus, and
Eriobotrya.
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The pairwise dN/dS values of all PCGs are shown in Figure 8B. The dN/dS values of
PCGs from R. chinensis, F. orientalis, P. salicina, and P. avium differed significantly. The dN/dS
values of the pairwise comparison from the other eight species (E. japonica, P. betulifolia,
P. pyrifolia, M. domestica, M. hupehensis, S. aucuparia, S. torminalis, and C. speciosa) varied
slightly, except for three genes (cox2, matR, and rps3) from C. speciosa.

As shown in Figure 8C, the rps1 gene showed a dN/dS value over 1.0, implying
possible positive selection. In comparison, the dN/dS values of the rest of the genes
revealed diverse differences among species. Nad4L exhibited higher dN/dS values among
R. chinensis and F. orientalis but low dN/dS values among the other eight species. Atp9, cox1,
cox3, nad5, and nad9 showed low dN/dS values among all the species, which indicated
they had undergone negative selection during evolution.

4. Discussion
4.1. Features of the C. speciosa Mitochondrial Genome and IGT Events

Our study produced the first detailed characterization of the complete mitochondrial
genome of C. speciosa. The size of the C. speciosa mitochondrial genome is equivalent to that
of E. japonica and matches within the range of previously reported mitochondrial genomes
in the Rosaceae family. The GC content of the C. speciosa mitochondrial genome is 45.20%,
equaling the average 45% of the 38 species in the Rosaceae family [63].

Structurally, the two circular chromosomes forming the major conformation of the
C. speciosa mitochondrial genome demonstrated multi-chromosomes, as previously re-
ported for many plants. The mitochondrial genomes of C. sativus and Q. acutissima are
assembled into three chromosomes [25]. Additionally, the mitochondrial genome of Silene
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conica is arranged into numerous circular chromosomes, though some exhibit no protein-
coding capability [23].

Among the 41 protein-coding genes from the mitochondrial genome of the common
ancestor of angiosperms, 33 genes were annotated in the C. speciosa mitochondrial genome,
including 29 core genes and 4 non-core genes. This result indicates that the deleted relevant
genes might have been transferred to the nucleus, a common phenomenon during long-
term angiosperm evolution [64,65]. Transferring functional genes from the mitochondria to
the nucleus is an ongoing process that has helped both the mitochondria and the nucleus
change over time [12]. Liu et al. [66] found all 41 genes in Cycads and Ginkgo mitochondrial
genomes. In comparison, Gnetum gnemon and Welwitschia mirabilis lost 11 genes, and 4–7
intact lost mitochondrial genes were found after further searching the transcriptomes,
representing the 4–7 mitochondrial genes being transferred to the nucleus. Additionally, in
Gossypium raimondii, nearly all mitochondrial genes are transferred to the nucleus on Chr1.
Some of these genes have more than one copy on different chromosomes [67]. As for other
genes, it is possible that they are not activated by acquiring a promoter and other regulatory
elements, or they are active with low or specific undetected expression. In contrast to
functional gene transfers, nonfunctional gene transfers are also possible. Mitochondrial
pseudogenes have been found in the nuclei of a wide range of animal species [68].

IGTs also occurred between the chloroplast, plastid, and nucleus. In the C. speciosa
mitochondrial genome, MTPTs 1–10 were located on chromosome 1, MTPTs 11–18 were
located on chromosome 2, and no MTPTs were found in the repeated sequences. Six com-
plete tRNAs were found in the mitochondrial genome that migrated from the chloroplast,
which similarly occurs in other plants’ mitochondria. In both Suaeda glauca [69] and G.
raimondii [67], it was shown that 8 and 15 tRNAs were transferred from the chloroplast
genome to the mitochondrial genome. However, protein-coding genes were less numerous
and frequent.

4.2. The Conformations of C. speciosa Mitochondrial Genome Mediated by Repeated Sequences

The mitochondrial genome is likely composed of several subgenomic chromosomes
produced by reversible recombination events, mediated by repeated sequences [30]. In
contrast to the circular molecule previously described, the mitochondrial genome structure
has appeared as a variable and dynamic combination in many species [70]. As previously
reported, repeated sequences play an essential role in shaping the mitochondrial genome
structures through genome rearrangements, recombination, and duplications [71]. Large
repeats (>1000 bp) may induce mitochondrial genome isomerization during more frequent
recombination activity, whereas short- (100 bp) and medium-sized repeated sequences
(100–1000 bp) show minor to moderate recombination activity [72–74]. As reported in the
Rosaceae family, the recombination frequency of repeated sequences ranges from 0.33% to
89.69%. In the repeats of recombination frequency over 50%, 95% are large repeats (19/20),
while in the repeats of recombination frequency below 1%, short- and medium-sized
repeated sequences account for 99.56% [63].

In the C. speciosa mitochondrial genome, seven pairs of repeated sequences were de-
tected as involved in recombination events. The most extensive repeated sequences of R1
were detected, mediating the conformational changes at a frequency of nearly 50%. This
finding indicates that R1 medicates the presence of the major and minor conformations
in nearly equal proportions. The situation discovered in the mitochondrial genome of
C. speciosa was similar to that found in the mitochondrial genome of Scutellaria tsinyunen-
sis [73], with one extensive repeated sequence forming the major and minor conformations.
Nearly equimolar recombined molecules in the mitochondrial genome were generated by
large repeats [75], as found in our study, as well as those reported in Silene vulgaris [76] and
Ginkgo biloba [77].

Except for R1, which has a high recombination frequency, the rest of the repeated
sequences took part in recombination events at relatively low rates (less than 3% in the
C. speciosa mitochondrial genome). Such low recombination frequencies have been reported
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in other plants. In P. salicina, nine pairs of medium-sized repeats were recombined at
frequencies ranging from 0.55% to 5.7% [78]. In Nymphaea colorata, seven medium-sized
repeated sequences exhibited a frequency range of 0.11% to 1.28% [72].

Short- and medium-sized repeats rarely participate in recombination, in contrast to
large repeats, which have a high frequency of recombination. This can further lead to
complex rearrangements [30], which have been hypothesized to involve Break-Induced
Replication (BIR) [79] and Single-Strand Annealing (SSA) pathways [80]. Small repeats
are generally assumed to recombine sporadically and irreversibly and produce new and
stable DNA arrangements. Furthermore, recombinations of short repeat sequences may
contribute significantly to heteroplasmy and the evolution of plant mtDNA [81,82]. In
Arabidopsis thaliana, medium-sized repeats can recombine in response to genome damage
or DNA maintenance mutants [83].

4.3. Evolutionary Analysis and dN/dS Analysis

The inconsistent order of the colinear blocks’ arrangement suggested that the C. speciosa
mitochondrial genome had undergone extensive genomic rearrangements, likely contribut-
ing to the evolution and diversification of the C. speciosa mitochondrial genome.

Most of the mitochondrial genes underwent neutral and negative selections and were
highly conserved. The genes analyzed in the C. speciosa mitochondrial genome exhibited
mostly neutral and negative selections. However, the rps1 gene, with a dN/dS value over
1.0 in most species, suggests that it might have undergone positive selection during the
evolution of Rosaceae. The rps1 gene is among the most dynamic genes and has been found
in rice [84], maize [85], and tobacco [86]. However, in Medicago sativa, rps1 seemed to be a
pseudogene, and a functional copy was located in the nucleus [87], which might provide
evidence for the intercellular transfer from the mitochondria to the nucleus.

5. Conclusions

In this study, the C. speciosa mitochondrial genome was assembled and annotated.
The total length of the C. speciosa mitochondrial genome was 436,464 bp, with 45.2%
GC content, consistent with related species from the Rosaceae family. The C. speciosa
mitochondrial genome was found to be composed of multiple circular chromosomes. R1
altered the conformation of the C. speciosa mitochondrial genome by recombination events
with high frequency, whereas R2 achieved it through low frequency. Extensive genomic
rearrangements were exhibited in the mitochondrial genome of C. speciosa and closely
related species, while the protein-coding genes were highly conserved. Our study enriches
the genetic information for the genus Rosaceae and provides an essential basis for protecting
genetic information and improving the molecular breeding of C. speciosa.
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