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Abstract: DNA (Deoxyribonucleic Acid) N4-methylcytosine (4mC), a kind of epigenetic modification
of DNA, is important for modifying gene functions, such as protein interactions, conformation, and
stability in DNA, as well as for the control of gene expression throughout cell development and
genomic imprinting. This simply plays a crucial role in the restriction–modification system. To further
understand the function and regulation mechanism of 4mC, it is essential to precisely locate the
4mC site and detect its chromosomal distribution. This research aims to design an efficient and high-
throughput discriminative intelligent computational system using the natural language processing
method “word2vec” and a multi-configured 1D convolution neural network (1D CNN) to predict
4mC sites. In this article, we propose a grid search-based multi-layer dynamic ensemble system
(GS-MLDS) that can enhance existing knowledge of each level. Each layer uses a grid search-based
weight searching approach to find the optimal accuracy while minimizing computation time and
additional layers. We have used eight publicly available benchmark datasets collected from different
sources to test the proposed model’s efficiency. Accuracy results in test operations were obtained as
follows: 0.978, 0.954, 0.944, 0.961, 0.950, 0.973, 0.948, 0.952, 0.961, and 0.980. The proposed model has
also been compared to 16 distinct models, indicating that it can accurately predict 4mC.

Keywords: DNA N4-Methylcytosine; deep learning; word embedding; grid search; natural language
processing

1. Introduction

DNA methylation is an epigenetic modification in which chromatin structure, DNA
orientation, DNA integrity, inactivation of the X chromosome, regulation of gene expression,
cell differentiation, cancer development, and DNA–protein interactions are altered, keeping the
original gene sequence unmodified. This modification plays a significant role in developmental
and pathological processes, such as aging, carcinogenesis, genomic imprinting, transposable
elements repression, X chromosome inactivation, etc. [1–3]. On the other hand, changes in
DNA methylation cause several illnesses including tumorigenesis, abnormalities of imprinting,
cardiovascular diseases, autoimmune diseases, neurological diseases, cancer, etc. [1,4]. N4-
Methylcytosine (4mC) occurs at the C4 position of cytosine in both prokaryotic and eukaryotic
cells. It is responsible for participation in the restriction–modification system to provide a
bacterial immune response against occupied DNA, as well as DNA repair, expression, or
replication. As for experimental methods and data, current knowledge about other biological
functions of 4mC is insufficient, and the dataset used to identify 4mC and studies related to
4mC is limited [5]. Although there are several approaches to identifying 4mC methylation, such
as mass spectrometry, methylation-precise PCR, single-molecule real-time (SMRT) sequencing,
and 4mC-Tet-assisted bisulfite, those experiments on the functional or biological behavior of
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4mC sites are expensive, time-consuming, and fail to identify 4mC areas with time efficiency
when applied to large sequencing data [5–8]. Recently, machine learning approaches have been
applied to identify 4mC sites with promising outcomes. Machine learning-based approaches
have enhanced 4mC identification research and have been highly successful in predicting
4mC sites. The success of machine learning-based techniques (i.e., their predictive power) in
distinguishing 4mC sites from non-4mC sites is highly dependent on the quality of the extracted
features [1]. Deep learning is also used extensively in studying proteins, DNA sequences, and
RNA sequences as a powerful and popular tool in machine learning [9]. Ensemble methods in
machine learning have also been used in several studies to detect 4mC sites. Although the state-
of-the-art methods have continuously yielded promising findings, their lack of generalizability
necessitates the creation and development of new prediction algorithms to accurately detect
4mC sites. Therefore, a reliable prediction model for detecting 4mC sites at a large scale in
a gene is highly desirable to fully understand the biological role of 4mC, as 4mC may play
a supporting role in genetic stabilization, regeneration, and development. The following
summarizes the aims and major contributions of this research work to achieving the objectives:

1. To develop a grid search-based weighted average ensemble (WAE) system for identi-
fying DNA N4-Methylcytosine where learned information is transmitted along from
a layer to the next (details are provided in Section 4).

2. The model applies multi-configuration 1D CNN to perform the ensemble method in
each layer to improve prediction efficiency and find the best results, in addition to
transferring learning knowledge from one layer to another.

3. A grid search-based weighted average ensemble (WAE) technique has been applied
to find the optimal accuracy at each layer.

4. We trained the model with eight large publicly accessible datasets and compared its
performance with the existing models.

The remaining paper is organized as follows. Section 2 describes tasks related to the
determination of DNA N4-methylcytosine, existing methods, and available techniques.
In Section 3, we give details about our proposed methodology. Section 4 contains the
experimental results, as well as a discussion of the proposed model. Section 5 ends with a
conclusion and future work.

2. Literature Review

To identify 4mC sites, several experimental studies have been conducted. We evaluated
existing works in this section by analyzing these related works, and the limitations of these
works are identified and documented in depth below.

S. Zhang et al. (2022) [10] proposed a multi-source feature and gradient boosting deci-
sion tree-based identification model of DNA N4-methylcytosine sites. They proceeded by
extracting features from original sequences using multi-source feature representation meth-
ods, which include the mononucleotide binary and K-mer frequency, dinucleotide binary
and position-specific frequency, ring-function hydrogen-chemical properties, dinucleotide-
based DNA properties, and trinucleotide-based DNA properties. Following this, a gradient
boosting decision tree was used to find the optimal feature set and to remove redundant
information. Finally, a support vector machine was utilized to predict whether a site was
4mC or not.

Yu. Lezheng et al. (2022) [11] proposed a convolutional recurrent neural network model
to identify DNA N4-methylcytosine. For representing DNA sequences, they considered
one-hot and dictionary encoding methods. Following that, three representative deep learning
algorithms with different network architectures for classification were chosen, including a
convolutional neural network (CNN), a recurrent neural network (RNN), and a recurrent
neural network (RNN) with bidirectional long-short-term memory cells (BiLSTM).

L. Wang et al. (2022) [12] proposed 4mCPred-FSVM, a tool that uses a fuzzy model to
identify DNA N4-methylcytosine sites. They used position-specific trinucleotide propensity
to construct the feature vectors, which were then fed into the FSVM (fuzzy support vector
machine) to build the final model.
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J. Jin et al. (2022) [13] proposed a deep learning model for predicting DNA N4-
methylcytosine sites in the mouse genome. This network architecture is composed of
three major segments: (A) the adaptive embedding module, (B) the GRU module, and
(C) the classification module. The adaptive embedding module was created to tokenize an
original DNA sequence and obtain appropriate embeddings adaptively using the encoding
matrix. Following that, the GRU module was then utilized to extract long and short distant
information in sequence. The classification module used a max-pooling layer to determine
which feature in each GRU unit is the most relevant or important.

J. Khanal et al. (2021) [3] proposed a deep learning model to identify DNA N4-
methylcytosine sites in the Rosaceae genome, relying on distributed feature representation.
In the first stage, the K-mer (k = 3) feature encoding technique was used to represent each
DNA sequence as a fixed length of words. Then, the ‘word2vec’ embedding method was
applied to map each word to its corresponding vector form. The authors used convolutional
neural networks (CNN) in the second stage to classify 4mCs and non-4mCs based on
selected features.

A. Wahab et al. (2021) [5] proposed an identification model of N4-methylcytosine
using deep learning, and natural language processing. The K-mer (k = 2, 3, 4) feature
encoding technique was used to transfer the combination of nucleotides (A, C, G, T) into
the sequence of words in this model. The ‘word2vec’ embedding method was applied to
present each word in the vector form. A continuous bag-of-word (CBOW) approach was
employed to train the word2vec model. Finally, a CNN was used to classify the 4mC and
non-4mC sites. Three different k-fold cross-validations (three-fold, five-fold, and ten-fold)
were applied to carry out the preeminent identification.

G. Fang et al. (2021) [6] proposed a word2vec based deep learning network to predict
DNA N4-methylcytosine sites. Using the word2vec embedding method, each feature
derived from K-mers (K = K = 3, 4, 5, 6) was presented in vector form. The feature matrix
sequence was then fed into 3-CNN to categorize the 4mCs and non-4mCs.

M. Tahir et al. (2021) [9] proposed an intelligent and robust computational prediction
model for DNA N4-methylcytosine sites via natural language processing. The authors
examined two input sequence representations. The initial encoding method was one-hot
encoding, which encoded each DNA sequence with (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and
(0, 0, 0, 1) for A, C, G, and T, respectively. The distributed feature representation learnt
by the word2vec model, on the other hand, was the second encoding approach. Then,
new word representation was fed into the convolution neural network (CNN) model. The
CNN model has various layers, including a convolution layer, pooling layer, ReLU layer,
normalization layer, dropout layer, fully connected layer, etc.

H. Zulfiqar et al. (2021) [14] proposed Deep-4mCW2V, where a sequence-based
predictor was used to identify N4-methylcytosine sites. In this model, the training data were
first converted into numerical feature vectors using the “word2vec” technique. Following
this, the feature vectors were fed into the 1-D CNN for classification. A 10-fold CV was
applied to split the entire dataset into 10 groups of relatively equal size.

D.Y. Lim et al. (2021) [15] developed the iRG-4mC tool, which is based on the CNN-
LSTM model. The DNA sequence was encoded using a combination of one-hot encoding
and nucleotide chemical properties in the proposed system (NCP). The final sequence was
transmitted into the LSTM for feature optimization, and three fully connected layers were
used for the final outcome.

M.M. Hasan et al. (2020) [8] proposed a model named i4mC-Mouse to identify DNA
N4-methylcytosine sites in the mouse genome using multiple encoding schemes. The
authors used six encoding techniques, namely K-space nucleotide composition (KSNC), K-
mer nucleotide composition (K-mer), mononucleotide binary encoding (MBE), dinucleotide
binary encoding (DBE), electron–ion interaction pseudopotential (EIIP), and dinucleotide
physicochemical composition (DPC), to represent a DNA sequence as fixed-length feature
vectors. The WR feature selection method was used to remove the noisy feature. Finally,
five machine learning classifiers were employed to differentiate between 4mC and non-4mC
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sites, namely random forest (RF), Bayesian network (NB), support vector machine (SVM),
K-nearest neighbor (KNN), and AdaBoost (AB). A 10-fold cross-validation was applied to
partition the whole data into training and testing sets.

A. Wahab et al. (2020) [16] proposed a model named DNC4mC-Deep to identify DNA
N4-methylcytosine sites based on different encoding schemes by using deep learning. Deep
learning techniques were used to classify a DNA sequence that was represented as a fixed
length of feature vectors. To generate methylcytosine samples, six types of feature encoding
methods were used: binary encoding (BE), DNC (2-mer), TNC (3-mer), multivariate mutual
information (MMI), nucleotide chemical property (NCP), and nucleotide chemical property
and nucleotide frequency (NCPNF).

Z. Zhao et al. (2020) [17] proposed a model of DNA N4-methylcytosine sites via
boost-learning various types of sequence features. The DNA sequence was first encoded
with one-hot binary (OHB), sequential nucleotide frequency (SNF), K-nucleotide frequency
(KNF), K-spectrum nucleotide pair frequency (KSNPF), and PseDNC. Top-ranked features
from the XGBoost training procedure were chosen. Finally, the chosen features were used
to train the support vector machine (SVM) classification model. A K-fold cross-validation
(K = 10) was used to split the dataset into training and test sets.

J. Khanal et al. (2019) [18] proposed an identification model of N4-methylcytosine
sites in prokaryotes using a convolutional neural network. In this model, every DNA
sequence was represented as a binary vector using a one-hot encoding technique. The
K-fold cross-validation technique was used to split the datasets into the training and testing
sets and, finally, CNN was employed to classify the 4mCs and non-4mCs sequences.

B. Manavalan et al. (2019) [19] proposed a sequence-based meta-predictor for accurate
DNA 4mC site prediction using effective feature representation. They began by generating
56 probabilistic features using four ML algorithms: SVM, random forest [RF], gradient
boosting [GB], and extremely randomized tree [ERT], as well as seven feature encodings:
K-mer composition, binary profile [BPF], dinucleotide binary profile encoding [DPE],
local position-specific dinucleotide frequency [LPDF], ring-function-hydrogen-chemical
properties [RFHC], and dinucleotide physicochemical composition. They subsequently fed
these probabilistic features into a SVM to construct a final prediction model.

Limitations: All the aforementioned models are unable to expand their current knowl-
edge from their resources. We have proposed a multilayer dynamic system in which the
learning knowledge flows from layer to layer, and every layer can achieve an optimal
accuracy that enhances the overall model’s performance. The related studies covered in
this section is summarized in Table 1 with respect to diverse attributes.
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Table 1. Brief description of related studies adopted from the Refs. [3,5–13,15–19].

Authors Contributions Datasets Performances

S. Zhang et al. (2022) [10]
1. Applied three types of feature extraction methods to extract sequence information.
2. Used a gradient boosting decision tree (GBDT) to select the important features and remove redundant information.
3. Used six benchmark datasets to test the performance of the model.

C. elegans (3108 samples) Acc: 0.851, Mcc: 0.703, Sn: 0.872, Sp: 0.83

D. melanogaster (3538 samples) Acc: 0.859, Mcc: 0.717, Sn: 0.868, Sp: 0.849

A. thaliana (3956 samples) Acc: 0.801, Mcc: 0.602, Sn: 0.793, Sp: 0.81

E. coli (776 samples) Acc: 0.881, Mcc: 0.763, Sn: 0.886, Sp: 0.877

G. subterraneus (1812 samples) Acc: 0.859, Mcc: 0.719, Sn: 0.862, Sp: 0.856

G. pickeringi (1138 samples) Acc: 0.901, Mcc: 0.802, Sn: 0.898, Sp: 0.905

Yu. Lezheng et al. (2022) [11]

1. Focused on three types of deep learning architectures: convolutional neural networks (CNNs), recurrent neural networks
(RNNs), and convolutional recurrent neural networks (CNN-RNNs).
2. Analyzed several important factors, such as model architecture and its hyperparameters (the number of filters, kernel,
pooling, and BiLSTM sizes, etc.), encoding methods, and attention mechanisms.
3. Introduced UMAP and Deep SHAP to better analyze and understand deep learning models.

C. elegans (3108 samples) Acc: 0.839, Mcc: 0.678, Recall: 0.84

D. melanogaster (3538 samples) Acc: 0.894, Mcc: 0.789, Recall: 0.903

A. thaliana (3956 samples) Acc: 0.874, Mcc: 0.749, Recall: 0.896

L. Wang et al. (2022) [12]

1. Fuzzy support vectors were used to design the machine learning model.
2. Trinucleotide positional preference was used to convert the DNA sequence into a numerical vector that fully extracts the
information from the benchmark dataset.
3. Analyzed model architecture and hyperparameters (for example, the number of filters, kernel, pooling, and BiLSTM
sizes), encoding methods, and attention mechanisms.
4. Applied a grid search algorithm to find the best parameters.

C. elegans (3108 samples) Acc: 0.875, Mcc: 0.750, Sn: 0.873, Sp: 0.876

D. melanogaster (3538 samples) Acc: 0.871, Mcc: 0.743, Sn: 0.874, Sp: 0.868

A. thaliana (3956 samples) Acc: 0.828, Mcc: 0.756, Sn: 0.824, Sp: 0.834

E. coli (776 samples) Acc: 0.962, Mcc: 0.923, Sn: 0.962, Sp: 0.961

G. subterraneus (1812 samples) Acc: 0.901, Mcc: 0.804, Sn: 0.909, Sp: 0.893

G. pickeringi (1138 samples) Acc: 0.911, Mcc: 0.824, Sn: 0.914, Sp: 0.910

J. Jin et al. (2022) [13]

1. The adaptive embedding approach that has been proposed may automatically change the original input feature to better
represent the prediction task.
2. An effective network of bidirectional gated recurrent units was applied to efficiently extract the complete and meaningful
representation of the full DNA sequence from both near and far information.

G. subterraneus (1812 samples) Acc: 0.825, Mcc: 0.651, Sn: 0.8, Sp: 0.85

J. Khanal et al. (2021) [3] 1. Applied a word embedding method to capture the high-level input features.
2. Double-layer 1D CNN was applied to process the captured features.

F. vesca (25,922 samples), Acc: 0.869, Auc: 0.940, Sn: 0.897, Sp: 0.860

R. chinensis (14,502 samples) Acc: 0.854, Auc: 0.937, Sn: 0.871, Sp: 0.885

A. Wahab et al. (2021) [5] 1. Used word2vec embedding to transfer the sequences into the form of vectors.
2. Fed the vectors of word embedding into CNN by applying grid search-based algorithm. C. elegans(12,726 samples). Acc: 0.935, Auc: 0.973, Sn: 0.956, Sp: 0.899

G. Fang et al. (2021) [6]
1. Used word2vec encoding and one-hot encoding to conduct comparative tests on the same dataset.
2. Designed a deep learning framework to combine a three-CNN module to extract the hidden high-level features and more
biological features.

C. elegans(17,808 samples). Acc: 0.932, Auc: 0.971, Sn: 0.950, Sp: 0.916

H. Zulfiqar et al. (2021) [7] 1. Applied a word embedding method to capture the high-level input features.
2. Double-layer 1D CNN was applied to process the captured features on the basis of 10-fold cross-validation. E. coli (776 samples) Acc: 0.861, Mcc: 0.670, Sn: 0.876, Sp: 0.773

D.Y. Lim et al. (2021) [15]
1. Applied LSTM to solve the vanishing gradient problem by adding extra interactions.
2. Hyper-parameter tuning was applied to optimize filter sizes, number of filters, number of convolution layers, pool sizes,
stride length, and dropout values.

F.vesca (12,942 samples) Acc: 0.859, Mcc: 0.706, Sn: 0.835, Sp: 0.882

R. chinensis (6232 samples) Acc: 0.865, Mcc: 0.714, Sn: 0.854, Sp: 0.875
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Table 1. Cont.

Authors Contributions Datasets Performances

M. Tahir et al. (2021) [9] 1. Applied “word2vec” to automatically extract features from DNA sequences and feed the vectors into CNN.
2. Compared to the state-of-the-art methods for all six benchmark datasets and independent datasets.

C. elegans (3108 samples) Acc: 0.87, Auc: 0.937, Sn: 0.887, Sp: 0.857

D. melanogaster (3538 samples) Acc: 0.882, Auc: 0.938, Sn: 0.894, Sp: 0.870

A. thaliana (3956 samples) Acc: 0.840, Auc: 0.902, Sn: 0.894, Sp: 0.829

E. coli (776 samples) Acc: 0.868, Auc: 0.946, Sn: 0.873, Sp: 0.866

G. subterraneus (1812 samples) Acc: 0.886, Auc: 0.949, Sn: 0.888, Sp: 0.884

G. pickeringi (1138 samples) Acc: 0.925, Auc: 0.968, Sn: 0.912, Sp: 0.938

M.M. Hasan et al. (2020) [8] 1. Employed six encoding schemes to cover various aspects of DNA sequences.
2. Optimized the successive features via the WR feature selection method. G. subterraneus (1812 samples) Acc: 0.816, Auc: 0.920, Sn: 0.807, Sp: 0.825

A. Wahab el al. (2020) [16]
1. Applied six encoding techniques.
2. Applied a grid search algorithm to obtain the optimal model.

F. vesca (12,942 samples) Acc: 0.815, Auc: 0.89, Sn: 0.878, Sp: 0.753

R. chinensis (6232 samples) Acc: 0.783, Auc: 0.87, Sn: 0.801, Sp: 0.765

Cross-species (17,722 Samples) Acc: 0.780, Auc: 0.85, Sn: 0.849, Sp: 0.706

Z. Zhao et al. (2020) [17] 1. Applied embedded feature selection scheme to rank with the feature relevance scores.
2. Extracted the sequence properties of contiguous nucleotides as features to characterize the sequences.

C. elegans (3108 samples), Acc: 0.826, Mcc: 0.653, Sn: 0.849, Sp: 0.804

D. melanogaster (3538 samples) Acc: 0.843, Mcc: 0.686, Sn: 0.854, Sp: 0.832

A. thaliana (3956 samples) Acc: 0.794, Mcc: 0.589, Sn: 0.783, Sp: 0.805

E. coli (776 samples) Acc: 0.843, Mcc: 0.686, Sn: 0.861, Sp: 0.825

G. subterraneus (1812 samples) Acc: 0.847, Mcc: 0.694, Sn: 0.836, Sp: 0.857

G. pickeringi (1138 samples). Acc: 0.877, Mcc: 0.754, Sn: 0.863, Sp: 0.891

J. Khanal et al. (2019) [18] 1. Selected the best performing hyper-parameters using the grid search method.
2. Extracted the features of the 4mC sites from DNA sequence automatically using the CNN model.

C. elegans (3108 samples) Acc: 0.842, Mcc: 0.694, Sn: 0.894, Sp: 0.825

D. melanogaster (3538 samples) Acc: 0.853, Mcc: 0.686, Sn: 0.864, Sp: 0.853

A. thaliana (3956 samples), Acc: 0.797, Mcc: 0.621, Sn: 0.803, Sp: 0.792

E. coli (776 samples) Acc: 0.859,Mcc: 0.687, Sn: 0.881, Sp: 0.788

G. subterraneus (1812 samples) Acc: 0.860, Mcc: 0.703, Sn: 0.851, Sp: 0.843

G. pickeringi (1138 samples) Acc: 0.871, Mcc: 0.750, Sn: 0.857, Sp: 0.893

B. Manavalan et al. (2019) [19]
1. Applied a feature representation learning scheme and generated 56 probabilistic features based on 4 different ML
algorithms and 7 feature encodings covering diverse sequence information, including compositional, physicochemical, and
NT position-specific information.
2. Compared the performance of the proposed predictor with those of three state-of-the art predictors.

C. elegans (3108 samples) Acc: 0.826, Auc: 0.892, Sn: 0.840, Sp: 0.812

D. melanogaster (3538 samples) Acc: 0.842, Auc: 0.904, Sn: 0.831, Sp: 0.854

A. thaliana (3956 samples) Acc: 0.792, Auc: 0.861, Sn: 0.761, Sp: 0.822

E. coli (776 samples) Acc: 0.848, Auc: 0.911, Sn: 0.869, Sp: 0.827

G. subterraneus (1812 samples) Acc: 0.855, Auc: 0.856, Sn: 0.854, Sp: 0.904

G. pickeringi (1138 samples) Acc: 0.891, Auc: 0.951, Sn: 0.884, Sp: 0.898
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3. Materials and Methods
3.1. Dataset Construction

The benchmark and independent datasets in this paper are collected from different
sources [3,5,6,8,9,16–19] to measure the efficiency of the proposed model for a fair com-
parison with current predictors. These datasets contain eight different species, namely
Caenorhabditis elegans (C. elegans), Drosophila melanogaster (D. melanogaster), Arabidopsis thaliana
(A. thaliana), Escherichia coli (E. coli), Geoalkalibacter subterraneus (G. subterraneus),
Geobacter pickeringii (G. pickeringi), Fragaria vesca (F. vesca), and Rosa chinensis (R. chinensis).
All samples are 41 bp long, with the 4mC site in the middle. The threshold of CD-HIT was
adjusted at 80% in order to eliminate redundant sequences and to prevent the predictor
from overfitting. As a result, the number of negative samples will outnumber the number
of positive samples. An identical number of negative samples were picked at random from
the eight species in order to equalize the positive and negative samples. Therefore, these
datasets can be written in the following form:

Si = S+
i ∪ S−i Where i = 1, 2, 3, 4, . . . . . . ., 8 (1)

where Si represents the total number of positive and negative samples for the eight
species. The eight positive datasets from the various species are included in the subsets
S+

i (i = 1, 2, 3, 4, . . . . . . ., 8); S−i (i = 1, 2, 3, 4, . . . . . . ., 8) contains the negative samples. In
set theory, the union is represented by the symbol ∪. Table 2 lists the specifics of the eight
benchmark datasets.

Table 2. The number of positive and negative samples collected from each of the eight species.

Dataset Name S+
i S−i Si=S+

i ∪S−i
Caenorhabditis elegans (C. elegans) 1154 1154 2308
Drosophila melanogaster (D. melanogaster) 1769 1769 3538
Arabidopsis thaliana (A. thaliana) 1978 1978 3956
Escherichia coli (E. coli) 388 388 776
Geoalkalibacter subterraneus (G. subterraneus) 906 906 1812
Geobacter pickeringii (G. pickeringi) 569 569 1165
Fragaria vesca (F. vesca) 4321 4321 8642
Rosa chinensis (R. chinensis) 2421 2421 4842

3.2. Feature Representation

A DNA sequence is represented as a fixed length of feature vectors which can be
classified by deep learning algorithms. We used the K-mer approach to break the genomic
sequence into fixed-length words (3-mer). It is a standard feature encoding algorithm
widely used in various prediction tasks. When K = 2, we call this method dinucleotide
composition (DNC), and when K = 3, we call this method trinucleotide composition (TNC).
In this study, we have used K = 3. Trinucleotide composition in K-mers is commonly used
to predict DNA N4-methylcytosine (4mC) using deep learning approaches, because 4mC
modification tends to occur in specific patterns within DNA sequences, and these patterns
are often related to the surrounding trinucleotide context of the 4mC site. In K-mer analysis,
the K-mer size is the length of the substring that is extracted from the DNA sequence for
analysis. Trinucleotide composition specifically refers to K-mers of length 3, where the
substring consists of three adjacent nucleotides. By using trinucleotide composition in
K-mers of length 3, we can capture information about the surrounding nucleotides in a
DNA sequence that are most relevant for predicting 4mC modification. This is because the
presence of 4mC is known to be influenced by the nucleotides that immediately precede
and follow the modification site. Therefore, analyzing trinucleotide composition allows
the model to capture these important contextual features in the data. In addition, using
trinucleotide composition in K-mers of length 3 also reduces the total number of K-mers
that need to be considered in the analysis, compared to using larger K-mer sizes. This
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can improve the efficiency of the analysis and reduce the computational requirements for
training the deep learning model. In TNC, all samples of 41 nt produce 39 components
with the equation of L − k + 1. Here, L stands for the sequence length, and k stands for the
K-mer value as an integer [11–24]. ATG, TGC, GCG, and CGA are the four 3-mers that can
be tokenized from the DNA sequence “ATGCGA,” for instance.

3.3. Distributed Feature Representation

We converted each K-mer word into a 100-dimensional vector format in attempt to
acquire discriminating information between the two classes. We used a word embedding
approach known as word to vector (word2vec) to transfer the sequences into vector form.
This technique generates an optimal set of feature vectors based on the distributional
hypothesis. Each word (K-mer) in word2vec is represented by an n-dimensional vector.
Here, (L-2) × n array shapes represent the length of each sequence. It is a two-layer neural
network that processes text by vectorizing words. It receives input as a text corpus, and
its output is feature vectors representing words in that corpus. This technique decreases
computational complexity and reduces the noise, ultimately leading to improved perfor-
mance in the resultant computational model [3,6,25,26]. Either the continuous bag-of-words
(CBOW) approach or the skip-gram method can be used to apply the word2vec model. The
current word (w(t)) or input is employed in the skip-gram model to predict the surround-
ing window of context words. The CBOW technique, in contrast, makes an attempt to infer
the target word from its nearby (context) words [3]. A five-window CBOW model was
developed using the following inputs:

2

∑
k=2,k 6=0

w(t + k) (2)

The skip-gram is more practical and produces better results for infrequent words. We
used CBOW for word2vec training since in our study we are interested in frequent words.
Each word sequence (3-mer) was fed into a word2vec model with two layers. Each sequence
of length L was represented by an array of form (L-2) 100, and each word had its own
100-dimension (D) vector representation. As an illustration, the words “ATG” and “TGC”
were each represented as a 100-(D) vector of letters [0.141, 0.322, 0.333, . . . . . . . . . . ., 0.11100] and
[0.321, 0.142, 0.313, . . . . . . . . . . ., 0.23100], respectively. Table 3 provides a list of the word2vec
training parameters. The abovementioned three steps are illustrated in Figure 1a.

Table 3. Training parameters used in word2vec.

Parameters word2vec Model

Training Method CBOW

Corpus
C. elegans, D. melanogaster, A. thaliana, E. coli, G. subterraneus, G.

pickeringi, F. vesca, and
R. chinensis.

Context word 3-mer
Vector size 100
Window size 5
Minimum count 5
Negative sampling 5
Epochs 25
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3.4. Proposed Deep Learning Model

In the final step, the weighted average ensemble technique is adopted on the train-
ing and testing set to identify 4mC and minimize generalization error. It combines the
predictions from multiple models, where the contribution of each model is weighted pro-
portionally to its capability or skill. As the basic learning model for this work, we used
a 1D CNN (deep feed forward neural network) that included several parameters to tune.
Afterwards, the convolution neural network (CNN) model was fed the feature vectors as
input. Convolution layer, pooling layer, activation layer, normalizing layer, dropout layer,
fully connected layer, etc., are some of the layers in the CNN model. The training phase
involves adjusting the hyper-parameters. The number of convolution layers, the number
of filters within each convolution layer, the size of these filters, and the dropout rate are
the hyper-parameters of each CNN. Table 4 displays the ranges of these parameters. Each
CNN in the proposed approach is composed of a pair of one-dimensional convolution
layers. Each basic learning model has 16 and 32, 32 and 42, and 42 and 64 filters in the
first and second layers, respectively. Each model’s first and second layers have filters with
sizes of 3 and 5, 5 and 7, and 7 and 9, respectively. A ReLU activation function is applied
after each convolution layer. Each convolution layer was followed by a dropout layer
with a rate of 0.7 in order to address the overfitting issue. Each model’s two convolution
layers’ best features are given to a dropout layer with a probability of 0.5, 0.3, and 0.6
separately, followed by a fully connected layer with one node and a sigmoid function
for prediction. Furthermore, the activation layer predicts whether a given DNA sample
contains N4-methylcytosine or not, depending on the target class. This layer’s output is
normalized to lie within the interval [0,1]. The detailed configurations of the proposed
4mCCNN model are shown in Table 5. This model utilizes a stratified prediction technique.
Based on the same training dataset, the three models at each level categorize the same
test set. After each layer’s classification is complete, the correctly classified data is added
to the pre-training data and compared with the predefined target values in the original
data set and inserted into the next layer. In the next iteration, the misclassified data is
used as new test data. This process continues until all models have improved performance
(TP and TN = 0). However, a complicated aspect of using weighted average ensemble is
choosing the relative weight for each ensemble member to achieve the optimal accuracy
in each layer. At each layer, a grid search method is used to find the optimal weights
for the model, resulting in more “accurate” predictions. The whole approach is called a
grid search-based multilayer dynamic system (GS-MLDS). These steps are illustrated in
Figure 1b. The working procedure is demonstrated in Algorithm 1. The overall accuracy
for GS-MLDS can be calculated using the following formula:
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Table 4. Hyper-parameters tuning demonstration.

Parameters Range

The number of convolutional layers (1, 2, 3, 4, 5)
The number of filters in each convolutional layer (16, 32, 42, 64)
The size of filters of the convolutional layers (3, 5, 7, 9)
Dropout rate (0.2, 0.4, 0.5, 0.6)

Table 5. The detailed architecture of the proposed CNN.

Layer (Model: 1) Layer (Model: 2) Layer (Model: 3)

Input; Shape (39, 100) Input; Shape (39, 100) Input; Shape (39, 100)
Conv 1D (16, 3, 1) Conv 1D (32, 5, 1) Conv 1D (42, 7, 1)
Conv 1D (32, 5, 1) Conv 1D (42, 7, 1) Conv 1D (64, 9, 1)

Dropout (0.5) Dropout (0.3) Dropout (0.6)
Dense (1) Dense (1) Dense (1)
Sigmoid Sigmoid Sigmoid
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Number of train data in layer, i: Number of train data in layer (i− 1) + Number of TP,
TN in layer (i− 1).

Test data in layer, i: Number of FP, FN in layer (i− 1).
Where i = layer number; i = 1, 2, 3, . . . , n.

TA =

n
∑

i=1
(TP + TN)i

STest(S+ + S−)
(3)

where TA, (TP + TN)i, and STest represent the total accuracy, total number of correctly
classified data in each layer, and total number of testing data, respectively. Furthermore,
S+, and S− represent the total number of 4mC and non 4mC sites, respectively.

In Table 5, the Conv1D ( f , s, t) is a one-dimensional convolution operator where f , s,
and t stand for the number, size, and stride of filters, respectively. The operator Dropout
(p) represents a dropout layer with a probability of p. Dense (n) is a densely connected
layer with n nodes. Finally, the sigmoid function is then used to determine if a sequence
has a 4mC site or not.
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Algorithm 1: Proposed Algorithm

Input:
The DNA sequence dataset.
Output:
Classify 4mC and non-4mC

1. Begin
2. Remove the redundant sequences.
3. If total number of (S+

i ) 6= total number of (S−i ) then
5. Randomly select the equal number of (S+

i ) and (S−i )
6. Else
7. Si = S+

i ∪ S−i [Where i = 1, 2, 3, 4, . . . . . . ., 8]
8. End If
9. Transform each DNA sequence into a fixed length of word.
10. Convert each word into n-dimensional vector form.
11. Split the dataset into training (STrain) and testing (STest) set. Where (STrain) > (STest). The ratio between S+

i
and S−i of each data set is the same as in the entire dataset.

12. Tuning the base classifiers with numerous hyper-parameters.
13. Apply training set to fit each classifier.
14. Integrate the base classifiers and apply gird search to choose the relative weight for each ensemble member.
15. Predict new data.
16. For i = 2 to n do
17. If TN and TP 6= 0 then
18. STrain = STrain (i− 1) + Number of TP, TN in layer (i− 1)
19. STest = Number of FP, FN in layer (i− 1) [Where i = layer number]
20. Repeat Step 13 to 15.
21. Else
22. Calculate total accuracy using the following formula:

TA =

n
∑

i=1
(TP+TN)i

STest(S++S−) [Where = 1, 2, 3, . . . . . . ., n]
23. End If
24. End For
25. Stop

4. Result and Discussion

The effectiveness of a machine learning model is evaluated using a performance matrix.
The “scikit-learn” library’s matrix module contains the methods required to compute
performance evaluation metrics. The model’s performance is calculated using a confusion
matrix. The confusion matrix produces four results based on the datasets: TP (true positive),
TN (true negative), FP (false positive), and FN (false negative). The confusion matrix results
of our proposed GS-MLDS are shown graphically in Figure 2a,b. The accuracy, precision,
true positive rate, false positive rate, true negative rate, and false negative rate [18] are
calculated by employing the following equations:

Accuracy = 1−
R+
− + R−+

R+ + R−
(4)

Precision =
R+

R+ + R−+
(5)

Sensitivity/True Positive Rate/Recall = 1−
R+
−

R+
(6)

False Positive Rate =
R−+

R−+ + R−
(7)

Specificity/True Negative Rate = 1−
R−+
R−

(8)
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False Negative Rate =
R−+
R−

(9)

where R+ is the total number of 4mC investigated, while R+
− is the number of 4mC in-

correctly classified as non-4mC sequences. Here, R− is the total number of non-4mC
investigated, while R−+ is the number of non-4mC incorrectly classified as 4mC.
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Figure 2. (a) Comparison between TP and FN, (b) Comparison between TN and FP.

True positive and true negative are represented as TP and TN in Figure 2a,b above,
with the correct number of identified sequences related to 4mC and non-4mC, respectively.
False positive and false negative denoted are as FP and FN, respectively, and indicate the
false number of identified sequences for 4mC and non-4mC. We have split each dataset
80:20, where 80% is the training set and 20% is the testing set. The total number of 4mC
sites correctly identified by this proposed model for C. elegans, D. melanogaster, A. thaliana,
E. coli, G. subterraneus, G. pickeringi, F. vesca, and R. chinensis datasets are 226 out of 231, 337
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out of 354, 379 out of 396, 75 out of 78, 177 out of 182, 112 out of 114, 852 out of 865, and 476
out of 485, respectively. The non-4mC sites correctly identified by this proposed model for
the same datasets are 222 out of 231, 331 out of 354, 352 out of 396, 74 out of 78, 179 out of
181, 108 out of 114, 799 out of 864, and 461 out of 484, respectively.

ROC curves are a tool that aids in the understanding of probabilistic forecasts for binary
(two-class) classifications of predictive modeling problems. The ROC curve demonstrates
how well a classification model performs at different thresholds. ROC is a probability curve.
TPR and FPR are used to plot the ROC curve, with TPR on the y-axis and FPR on the x-axis.
Compared to the existing model, the proposed model outperforms it at classifying and
testing datasets when the ROC curve has a lower x-axis and a higher y-axis value. The level
or measurement of separability is represented by AUC. The entire two-dimensional region
from (0, 0) to (1, 1) below the entire ROC is measured by AUC. A model with a higher AUC
predicts 0 s as 0 s and 1 s as 1 s more frequently. The AUC ROC values are graphically
presented in Figure 3.
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In Figure 3, the blue dots represent the True Positive Rate (TPR) at different classifi-
cation thresholds, while the orange dots represent the AUC of this proposed model. The
proposed model obtained AUC values of 96.97, 94.35, 92.30, 95.51, 98.07, 96.49, 95.49, and
96.70 for the C. elegans, D. melanogaster, A. thaliana, E. coli, G. subterraneus, G. pickeringi,
F. vesca, and R. chinensis datasets, respectively. That is, the proposed model has 96.97%,
94.35%, 92.30%, 95.51%, 98.07%, 96.49%, 95.49%, and 96.70% probability of distinguish-
ing 4mC from non-4mC for each dataset, respectively. The results of other performance
evaluation matrices are shown in Table 6.

Table 6. Performance evaluation metrics result from the proposed approach (GS-MLDS) based on a
different datasets.

Dataset Name
Parameters (%)

ACC AUC Precision Recall
/TRP FPR TNR FNR

C. elegans 96.96 96.97 96.17 97.83 3.89 96.10 2.16
D. melanogaster 94.35 94.35 93.61 95.19 6.49 93.50 4.80
A. thaliana 92.29 92.30 89.59 95.70 11.11 88.88 4.29
E. coli 95.51 95.51 94.93 96.15 5.12 94.87 3.84
G. subterraneus 98.07 98.07 98.88 97.25 1.10 98.89 2.74
M. pickeringi 96.49 96.49 94.91 98.24 5.26 94.73 1.75
F. vesca 95.48 95.49 92.91 98.49 7.52 92.47 1.50
R. chinensis 96.69 96.70 95.39 98.14 4.75 95.24 1.85

The proposed predictor obtained accuracies greater than 90% for each dataset. This
model enhances prediction accuracy through layer-by-layer classification techniques. To
maximize the accuracy at each layer, we used a grid-based search technique to find the
best variety of weights for each layer. For example, Table 7 demonstrate the classification
performance of GS-MLDS in each layer. The precision values of this suggested model
for each dataset are 96.17%, 93.61%, 89.59%, 94.93%, 98.88%, 94.91%, 92.91%, and 95.39%,
respectively. A model’s accuracy specifies how many identified objects are genuinely
relented. Precision can also be thought of as the likelihood that a randomly chosen item that
is marked as “important” is a true positive, in addition to being a measurement of model
performance. Recall and TNR values of more than 90% were obtained for each dataset using
the proposed approach. The recall is determined as the proportion of positive samples that
were correctly identified as positive to all positive samples. The recall measures how well
the model can identify positive samples. The more positive samples that are identified, the
larger the recall. This is often referred to as sensitivity or true positive rate. The specificity,
also known as the true negative rate, is the likelihood of a negative test if it is actually
negative. For each dataset, the corresponding false positive and true negative ratios are
3.89%, 6.49%, 11.11%, 5.12%, 1.10%, 5.26%, 7.52%, and 4.75%, respectively. For each dataset,
the false negative and actual positive ratios are 2.16%, 4.80%, 4.29%, 3.8%, 2.7%, 1.75%,
1.5%, and 1.85%, respectively.

Based on experimental results [27], we mentioned, “The appropriately categorized data
from one layer may be utilized as a new training set for the following layer. In circumstances,
such as these, this training set can reveal new hidden patterns in incorrectly classified data.
That is, appropriately identified input from the preceding layer contributes to the model
gaining new knowledge”. Although the prior version of the approach gradually improves
the accuracy in each layer based on an improved training set, one drawback of this method
is that it does not provide guidance on how to achieve maximum accuracy in a layer. As a
result, this is a time-consuming process due to the increased number of layers. Furthermore,
our main concern in this research work is how to determine the maximum accuracy at each
layer to limit the number of additional layers in order to improve the training set to extract
new hidden patterns from its resources. We found that each layer’s best combination of
weight sets can overcome this limitation. Other researchers commonly used these eight
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datasets. We have tested the accuracy and compared the proposed model with the existing
models on the same independent datasets, as shown in Table 8. We directly submitted
the independent datasets to the GS-MLDS. The proposed GS-MLDS yielded accuracies of
0.978, 0.954, 0.944, 0.961, 0.950, 0.973, 0.948, 0.952, 0.961, 0.953, and 0.980. The GS-MLDS
outperformed other models with different ratios. GS-MLDS performs well due to the
following factors: extending its learning knowledge from its resources to continue the
classification process from one layer to another layer, using multi-configured 1D CNN to
perform ensemble methods at each layer, and using the grid search technique to determine
the optimal combination of weights for each layer.

Table 7. Layer to layer classification performance of GS-MLDS.

Dataset Name Layer
No.

Train Data, xi =
xi−1+(TP,TN)i−1

Test Data,
yi=(FP,FN)i−1

Method
Total

Accuracy,
N
∑
i=1

(TP,TN)i
initial, y

AE
(Average Ensemble)

WAE
(Weighted Average

Ensemble)

TP|TN FP|FN TP|TN FP|FN Weights

C. elegans
(17,808 Instances)

1 1846 462 124 338 196 266 0.3, 0.1, 0.2 42.42

2 2042 266 78 260 118 148 0.0, 0.1, 0.3 67.96

3 2160 148 23 237 88 60 0.0, 0.1, 0.2 87.01

4 2248 60 12 225 46 14 0.1, 0.5, 0.2 96.96

D. melanogaster
(3538 Instances)

1 2830 708 362 346 384 324 0.2, 0.1, 0.3 54.23

2 3214 384 194 152 197 127 0.2, 0.1, 0.0 82.06

3 3411 197 66 86 87 40 0.0, 0.3, 0.2 94.35

A. thaliana
(3956 Instances)

1 3164 792 321 471 337 455 0.0, 0.4, 0.2 42.55

2 3501 425 103 368 227 228 0.1, 0.3, 0.7 71.21

3 3728 198 87 281 167 61 0.3, 0.5, 0.2 92.29

E. coli
(776 Instances)

1 620 156 87 69 110 46 0.3, 0.5, 0.2 70.51

2 730 46 37 32 39 7 0.2, 0.1, 0.4 95.51

G. subterraneus
(1812 Instances)

1 1449 363 123 240 200 163 0.1, 0.0, 0.3 55.00

2 1649 64 55 185 99 64 0.1, 0.2, 0.5 82.36

3 1748 7 36 149 57 7 0.1, 0.0, 0.2 98.07

G. pickeringi
(1165 Instances)

1 910 228 106 122 108 120 0.4, 0.1, 0.2 47.36

2 1018 120 67 55 77 43 0.0, 0.2, 0.1 81.14

3 1095 43 22 33 35 8 0.4, 0.2, 0.6 96.49

F. vesca
(25,922 Instances)

1 6913 1729 857 872 1184 545 0.2, 0.1, 0.3 68.47

2 8097 545 127 745 343 202 0.1, 0.4, 0.6 88.31

3 8440 202 53 692 124 78 0.1, 0.0, 0.2 95.48

R. chinensis
(14,502 Instances)

1 3837 969 353 616 689 280 0.1, 0.4, 0.2 71.10

2 4526 280 157 459 248 32 0.5, 0.3, 0.2 96.69

The benefits of the model that we have developed are as follows. This model can
carry out the classification process from one layer to another by expanding its learning
knowledge. During the classification phase, the learning knowledge is improved from its
internal resources. Each layer determines the ideal weighting combination to produce the
best results. Finally, the predictions from multiple CNN models are combined to reduce the
variance of predictions and reduce generalization error. The limitations of our proposed
model are as follows. The computational time is high for a high dimensional dataset. Lots
of training data is required. Furthermore, it cannot encode the position or orientation of a
DNA sequence and, finally, it needs more memory space.
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Table 8. Comparison of GS-MLDS with another author’s model utilizing their datasets.

Authors Splitting Ratio Dataset Name Authors Model
Accuracy

GS-MLDS
Accuracy

S. Zhang et al. (2022) [10] 10-fold

C. elegans 0.851 0.978

D. melanogaster 0.859 0.954

A. thaliana 0.801 0.944

E. coli 0.870 0.961

G. subterraneus 0.859 0.950

G. pickeringi 0.901 0.973

Yu. Lezheng et al. (2022) [11] 10-fold

C. elegans 0.894 0.978

D. melanogaster 0.874 0.954

A. thaliana 0.839 0.944

L. Wang et al. (2022) [12] 10-fold

C. elegans 0.875 0.978

D. melanogaster 0.871 0.954

A. thaliana 0.828 0.944

E. coli 0.962 0.961

G. subterraneus 0.901 0.950

G. pickeringi 0.911 0.973

S. Zhang et al. (2022) [20] 10-fold

C. elegans 0.851 0.978

D. melanogaster 0.859 0.954

A. thaliana 0.801 0.944

E. coli 0.87 0.961

G. subterraneus 0.859 0.950

G. pickeringi 0.901 0.973

J. Jin et al. (2022) [13] 10-fold G. subterraneus 0.825 0.950

J. Khanal et al. (2021) [3] 5-fold
F. vesca 0.869 0.948

R. chinensis 0.854 0.952

G. Fang et al. (2021) [6] 3-fold C. elegans 0.932 0.961

A. Wahab et al. (2021) [5] 3-fold C. elegans 0.935 0.961

M. Tahir et al. (2021) [9] 10-fold

C. elegans 0.872 0.978

D. melanogaster 0.882 0.954

A. thaliana 0.840 0.944

E. coli 0.868 0.961

G. subterraneus 0.886 0.950

G. pickeringi 0.925 0.973

H. Zulfiqar et al. (2021) [14] 10-fold E. coli 0.861 0.961

D.Y. Lim et al. (2021) [15] 10-fold
F. vesca 0.859 0.953

R. chinensis 0.865 0.953

A. Wahab el al. (2020) [16] 10-fold
F. vesca 0.815 0.953

R. chinensis 0.783 0.953
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Table 8. Cont.

Authors Splitting Ratio Dataset Name Authors Model
Accuracy

GS-MLDS
Accuracy

Z. Zhao et al. (2020) [17] 10-fold

C. elegans 0.826 0.978

D. melanogaster 0.842 0.954

A. thaliana 0.794 0.944

E. coli 0.843 0.961

G. subterraneus 0.847 0.950

G. pickeringi 0.877 0.973

M.M. Hasan et al. (2020) [8] 80:20 G. subterraneus 0.816 0.980

J. Khanal et al. (2019) [18] 10-fold

C. elegans 0.842 0.978

D. melanogaster 0.853 0.954

A. thaliana 0.797 0.944

E. coli 0.859 0.961

G. subterraneus 0.860 0.950

G. pickeringi 0.871 0.973

B. Manavalan et al. (2019) [19] 10-fold

C. elegans 0.826 0.978

D. melanogaster 0.842 0.954

A. thaliana 0.792 0.944

E. coli 0.848 0.961

G. subterraneus 0.855 0.950

G. pickeringi 0.891 0.973

5. Conclusions and Future Work

DNA 4mC is a crucial epigenetic modification that causes various diseases and is
also a restriction–modification system. Therefore, accurately identifying 4mC sites is an
essential step towards understanding the exact biological functions. This work presented an
influential computational model named GS-MLDS for predicting 4mC and non-4mC sites.
We have proposed a reusable knowledge model that aids in the transmission of a previous
layer’s knowledge to the next layer. This study finds the optimal accuracy of each layer by
applying a grid-based search technique to find the best weight set combinations in each
layer. This study has experimented with eight different types of datasets. With an 80:20
split between the training and testing sets, our proposed model attained accuracy levels of
0.978, 0.954, 0.944, 0.961, 0.950, 0.973, 0.978, 0.954, 0.948, 0.952, 0.953, and 0.980. The correct
classification probability of 4mC and non-4mC of the proposed system has been pointed
out by the AUC curve. That is, the proposed model has 96.97%, 94.35%, 92.30%, 95.51%,
98.07%, 96.49%, 95.49%, and 96.70% probability of distinguishing 4mC from non-4mC for
each dataset, respectively. The suggested methodology has shown improved performance
compared to other machine learning models. Our proposed approach outperformed the
state-of-the-art predictors for each dataset in terms of detecting 4mC sites in both balanced
and unbalanced class labels. The study presented in the paper may be useful for more
pervasive bioinformatics applications. The goal of this research’s future work is to produce
more semantic characteristics and create a model that has already been trained on a big
dataset to address a similar issue.
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