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Abstract: Stem cells encompass a variety of different cell types which converge on the dual capacity
to self-renew and differentiate into one or more lineages. These characteristic features are key for
the involvement of stem cells in crucial biological processes such as development and ageing. To
decipher their underlying genetic substrate, it is important to identify so-called stemness genes that
are common to different stem cell types and are consistently identified across different studies. In this
meta-analysis, 21 individual stemness signatures for humans and another 21 for mice, obtained from
a variety of stem cell types and experimental techniques, were compared. Although we observed
biological and experimental variability, a highly significant overlap between gene signatures was
identified. This enabled us to define integrated stemness signatures (ISSs) comprised of genes
frequently occurring among individual stemness signatures. Such integrated signatures help to
exclude false positives that can compromise individual studies and can provide a more robust basis
for investigation. To gain further insights into the relevance of ISSs, their genes were functionally
annotated and connected within a molecular interaction network. Most importantly, the present
analysis points to the potential roles of several less well-studied genes in stemness and thus provides
promising candidates for further experimental validation.

Keywords: stemness; stem cells; gene signatures; data integration

1. Introduction

Stemness is the potential of stem cells for self-renewal and differentiation into one
or more lineages. These inherent traits place stem cells in the core of complex biological
processes including human development [1] and ageing [2]. Additionally, stem cells have
attracted considerable interest in biomedicine, especially since the establishment of methods
for induced pluripotency that have revolutionized this research field [3]. The generation of
differentiated cell types from stem cells can help with studying degenerative disorders [3]
and can provide the basis for cellular replacement therapies in regenerative medicine [1,3].
Furthermore, several studies have shown the crucial role of stem cells in the development of
cancer by revealing similarities between stem cells and cancer cells, particularly regarding
the activation of similar pathways as well as on the phenotypic level [1,4], therefore
highlighting the importance of the stemness concept for cancer research.

There are numerous types of stem cells with different levels of plasticity, of which
some of the best-studied are embryonic, neural, and hematopoietic stem cells. Despite their
distinct functions, all these cell types share the fundamental property of stemness. Therefore,
it has been tempting to postulate that stemness is the consequence of the activation (or
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repression) of specific molecular pathways, and thus it can be linked to a defined set of
genes [5]. Indeed, the advent of genome-wide profiling technology led different groups to
identify so-called stemness signatures comprised of genes whose activity is characteristic
of a certain type of stem cells, or even of stem cells in general [6,7]. However, when the
initial microarray-based stemness signatures were compared, only a small number of genes
were found to be common [8]. Nevertheless, numerous other research groups have brought
forward stemness signatures for various types of stem cells using different methods [9].

In the present study, we greatly extend earlier comparisons of stemness signatures
by including more gene signatures for both mice and humans, and by covering a wider
range of distinct stem cell types. Notably, we have also broadened the methodological
techniques used to derive these stemness signatures. Gene sets were obtained not only
from transcriptomics experiments, but also RNAi screens, curated pathway databases,
and text-mining. Thus, a greater range of stem cell types, and methodological approaches
provided the basis for this extensive stemness signature meta-analysis, enabling us to detect
characteristic trends of genes associated with stemness.

Using this rich basis, we obtained integrated stemness signatures (ISSs), comprising
genes most frequently found among individual studies. Such consolidated signatures add
more confidence to the association of stemness with the included genes, and help to exclude
false positives that could have compromised individual studies. Our analysis allows the
pinpointing of genes that might have been overlooked in previous studies due to their low
scoring, for example in differential expression analyses, but which are repeatedly associated
with stemness across several studies. Finally, the defined ISSs were further functionally
annotated, and an analysis of their protein interaction network was performed to detect
distinct sub-clusters.

2. Materials and Methods
2.1. Individual Stemness Signatures

Gene sets compared in this analysis were retrieved from StemChecker (accessible at
http://stemchecker.sysbiolab.eu, accessed on 16 January 2020) [10]. This freely available
resource (developed by our lab), allows researchers to rapidly screen gene lists for the
presence of stemness signatures that were manually curated from published literature or
other relevant databases. These stemness signatures were classified into different categories
based on the method used for their prediction: (i) Expression profiling that identifies sets of
genes up-regulated in diverse stem cell types when compared to differentiated cells using
transcriptomics (31 signatures); (ii) RNAi screens that use the read-out of reporter genes
for pluripotency to assess the impact of genome-wide RNAi knock-downs (5 signatures);
(iii) Literature curation that links genes to stem cells based on the reviewing of published
literature (4 signatures) and (iv) Computational prediction where computational network
analysis and text-mining databases are used to associate genes with stem cells (2 signatures).
Furthermore, the stemness signatures were grouped into signatures for pluripotent, multi-
potent, unipotent, and mixed stem cell populations. The individual stemness signatures,
together with the sources and groupings, are listed in Supplementary Table S1 [6–8,11–27].

2.2. Accessing Similarity among Stemness Signatures

To determine the similarity among different human or mouse stemness signatures,
we generated clustered heatmaps based on the significance level of the overlap of genes
between stemness signatures. The significance of the overlap was determined by the hy-
pergeometric test as implemented in R [28] and adjusted for multiple hypothesis testing
using the ‘Bonferroni’ correction. The universe of genes for each organism was defined by
genes annotated in Gene Ontology (GO). Clustered heatmaps of log10 (adjusted p-value)
of gene overlap and the dendrograms representing the Euclidean distance between stem-
ness signatures were produced using the heatmap.2 function from the gplots [29] package
(Supplementary Figure S1). Colour schemes were derived using the RColorBrewer [30]
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package. The R Bioconductor packages org.Hs.eg.db [31] and org.Mm.eg.db [32] were used,
respectively, for human and mouse gene annotation.

2.3. Deriving Integrated Stemness Signatures

To obtain ISSs, for both mouse and human, the genes were ranked according to how
often they appear (i.e., their frequency) in mouse and human signatures, respectively. The
two lists were then sorted based on their respective scores. To assess the likelihood of
obtaining the observed scores by chance, we applied a randomization procedure. First,
gene sets of the same size as the original stemness signatures were generated, but with
randomly selected genes from the relevant universe of genes. Subsequently, we recorded
the frequency of occurrence for each gene across the random gene sets. To obtain an
empirical background distribution, we repeated this procedure 105 times and calculated
the likelihood of obtaining a certain score by chance. Comparing the empirical background
distribution with the scores obtained for the ISSs provides an estimate of the false discovery
rate for the different scores observed [33]. Scores equal to or larger than 4 for human
sets or equal to or larger than 5 in mouse sets show empirical FDR lower than 1 × 10−3

(Supplementary Figures S2 and S3). Subsequently, thresholds for the score were chosen, so
that at least 100 genes of each ranked list were included in the ISSs to have enough genes for
robust functional enrichment analysis. Thus, genes with a score equal to or higher than 4 in
the human gene list (FDR = 4 × 10−4) and equal to or higher than 7 in the mouse gene list
(FDR = 1 × 10−5) were selected (Supplementary Tables S2 and S3). Similarly, we calculated
the frequency that a gene is occurring in stemness signatures associated with pluripotency
or multipotency (Supplementary Tables S2 and S3). To make the different scores more
comparable, they were optionally normalized by division of the maximum possible score
(i.e., the number of signatures either associated with pluripotency or multipotency.) The
R packages used to identify orthologs between mouse and human ISSs were DBI [34]
and hom.Hs.inp.db [35]. To obtain the number of publications associated with genes in a
specific context, the entrez_search function of the rentrez package [36] was used. For each
gene included in the ISSs, a search was performed in PubMed to gather the number of
publications where the gene name co-occurred with the term stem cell(s), either in the full
article or in the title or abstract.

2.4. Functional Analysis of Integrated Stemness Signatures

For functional enrichment analysis based on Gene Ontology (GO) [37,38], the hy-
pergeometric test implemented on the GOstats [39] package was applied. GO terms
were mapped to their corresponding gene identifiers using org.Hs.egGO2ALLEGS and
org.Mm.egGO2ALLEGS objects of the R packages org.Hs.eg.db [31] and org.Mm.eg.db [32],
respectively. Since the hierarchical GO structure often results in the detection of a large
number of dependent terms as significant, a conditional algorithm implemented in GOstats
was used to reduce the number of significant GO terms. This algorithm uses the structure of
the GO graph to estimate for each term whether there is evidence beyond the one provided
by the term’s children to call the term in question as being statistically overrepresented [39].
For this purpose, a cut-off p-value of 0.05 was set. For detecting enrichment in Reactome
pathways [40], we used the ReactomePA package [41]. The p-value was adjusted for multiple
testing using the Benjamini–Hochberg (‘FDR’) correction method as implemented in R.
GO terms and pathways were considered significantly enriched when the correspond-
ing adjusted p-value was below 0.05. The gene universe was composed of all human or
mouse genes mapped to biological processes, molecular functions, cellular components,
or Reactome pathways depending on the analysis performed. The Bioconductor package
biomaRt [42] was used for this analysis.

2.5. Network Analysis of Integrated Stemness Signatures

Interactions for proteins that correspond to genes with minimum scores of 3 and 6
for the human (FDR = 1 × 10−3) and mouse ranked lists (FDR = 1 × 10−5), respectively,
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were retrieved from STRING [43] to provide a network context for the genes. Only in-
teractions between the queried proteins (in the 1st shell) with a high confidence score
(at least 0.7) based on experiments and database evidence were extracted together with
corresponding confidence scores (combined scores in STRING). For the visualization of the
network, the Edge-weighted Spring Embedded layout weighted by the confidence scores was
applied in Cytoscape [44]. Nodes without interactions were excluded. To identify protein
clusters we used the Cytoscape app ClusterOne [45] weighted by interaction confidence
scores. Then, nodes of each significant cluster (with p-value < 0.05) were arranged in
circles according to their betweenness centrality with Cytoscape Attribute circle layout. For
humans, nodes that did not link to the main network were excluded before the clustering
analysis. For mice, nodes that did not interact with the main network and were part of a
small network (with less than three nodes) were excluded before the clustering analysis.
Average stemness scores, corresponding to the mean of the stemness scores of the genes
comprising a cluster, were calculated for each cluster (Supplementary Tables S4 and S5).
Clusters were ranked according to the significance of the clustering (p-value rank column of
Supplementary Tables S4 and S5) and the average stemness score (Average Stemness score
rank column of Supplementary Tables S4 and S5). Pathway and GO enrichment analysis
was carried out as previously described for the ISSs.

3. Results and Discussion

Forty-two individual stemness signatures (21 gene sets for mice and 21 for humans)
based on transcriptomics experiments, RNAi screens, curated pathway databases, as well
as computational and text-mining studies were collected (Supplementary Table S1). A
diverse set of stem cell types was analysed. Signatures for well-studied stem cell types, such
as embryonic or induced pluripotent, hematopoietic, neuronal, mesenchymal, and cancer
stem cells were represented, as well as stemness signatures for less studied types, such as
epithelial, intestinal, hair bulge, and spermatogonial stem cells (Supplementary Table S1).
Altogether, these cover a total of 3602 unique human genes (Supplementary Table S2) and
6390 unique mouse genes (Supplementary Table S3).

Overall, the majority of stemness signatures showed significant overlap. In total, 119
of the 210 pairwise comparisons for human, and 148 of the 210 comparisons for mouse
signatures led to the detection of significant overlap, with an adjusted p-value < 0.05. To
examine the influence of biological and experimental methodology factors on the similarity
between stemness signatures, we performed a pairwise comparison of stemness signatures’
genes, and subsequently clustered the stemness signatures based on the significance of the
overlap. Our examination of the resulting cluster structures indicates that both stem cell
origin and methodology play a role (Supplementary Materials: Influence on stem cell origin
and methodology on individual stemness signatures and Supplementary Figure S1).

3.1. Integration of Stemness Signatures

As shown above, the experimental methodology and biological features are a con-
founding factor in individual stemness signatures, and therefore it is difficult to judge
whether the genes included in those signatures are truly functionally relevant in the context
of stem cell biology, or if they are false positives. If such genes, however, appear repeatedly
in stemness signatures that were independently obtained, the statistical likelihood that they
are false positives reduces [46]. Accordingly, to reduce the influence of the experimental
methodology as a confounding factor, in this study we identified genes consistently associ-
ated with stemness across distinct individual signatures despite the different experimental
setups applied and stem cell types tested.

Although we did not find any gene common to all stemness signatures, we ob-
served several genes reoccurring in different signatures. Thus, we sought to obtain an
ISS for humans and another for mice where genes were ranked according to their fre-
quency in individual studies. First, scores corresponding to the number of occurrences
in individual stemness signatures were calculated for each gene and used to rank genes
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(Supplementary Tables S2 and S3). To assess the significance of scores, a randomization
procedure was carried out to estimate the probability of observing a specific score by
chance, as described in Materials and Methods. Then, human genes with a minimum score
of four, and mouse genes with a minimum score of seven, were assigned to the respective
ISSs, as these scores showed high significance when compared to the random background
distribution, i.e., FDR < 1 × 10−3 (Supplementary Figures S2 and S3). Resulting ISSs
comprised the top 164 genes, corresponding to 4.55% of all ranked genes for humans; and
the top 115 genes, corresponding to 1.8% of all ranked genes for mice.

The master transcription factor genes for pluripotency, i.e., NANOG, SOX2, and
POU5F1 (the last one encoding OCT4), ranked at the top of the human ISS (Figure 1A and
Supplementary Table S2), hence showing the effectiveness and relevance of our ranking
approach. The gene with the highest ranking in humans was POU5F1, found in 12 of the
individual human stemness signatures (Supplementary Table S2).
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Figure 1. Association of top-scoring genes with stemness signatures. The checkerboards display the
association (indicated by red) of genes (rows) with human (A) and mouse (B) stemness signatures.
The stemness signatures were classified into signatures for pluripotency, multipotency, unipotency
or of mixed potency based on the stem cell types (Supplementary Table S1). Furthermore, the
underlying evidence for the stemness signatures is indicated (expression, RNAi, literature curation,
computational derivation).

Phc1 gene obtained the highest-ranking score of 13 in the mouse ISS (Supplementary
Table S3). Phc1 codes for a protein of the PolyComb repressive complex 1 (PRC1) required
to maintain the transcriptionally repressive state of many genes via chromatin remodelling
and histone modification [47]. It has been involved with DNA repair in yeast [48], as well as
in the maintenance of the proliferation capability and self-renewal ability of hematopoietic
stem cells [49].

For the mouse ISS, we noted an absence of key pluripotent marker genes such as
Pou5f1 (Oct4 protein), Sox2, and Nanog among the top-scoring genes (Figure 1B). Those
three genes were present in the mouse ISS, however with lower scores (scores 6, 8, and 7,
respectively) due to the lower percentage of stemness signatures derived from pluripotent
cells for mice compared to humans. To alleviate potential biases due to this difference, we
additionally calculated distinct scores for pluripotent and multipotent stemness signatures
(Supplementary Tables S2 and S3). Visualization of the presence in stemness signatures
showed a considerable reordering among the genes with the highest pluripotency and
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multipotency scores (Supplementary Figures S4 and S5). The top human genes based on the
multipotency scores were all included in the hemopoietic stem cell (HSC) signatures, with
a subset such as DNMT3B, MYCN, and PROM1 also included in signatures for pluripotent
stem cells (Supplementary Figure S4B). For mice, ordering based on the pluripotency scores
led to the appearance of Pou5f1 (Oct4 protein), Sox2, and Nanog among the top-scoring
genes (Supplementary Figure S4C), while other genes such as Phc1 and Trim28 retain a
relatively high score.

In general, genes of the ISS were included in both pluri- and multipotent signatures,
indicating shared biological features between pluri- and multipotency. However, a subset
of genes was exclusively associated with either pluri- or multipotent stemness signatures.
For instance, if we require that genes should be included in at least 30% of the stemness
signatures of one potency class, and not in any of another potency class, we would ob-
tain 61 human pluripotency- and 100 multipotency-specific genes, as well as 34 murine
pluripotency- and 175 multipotency-specific genes. The top-scoring genes are presented
in Supplementary Figure S5, and include, for instance, Frizzled Class Receptor 2 (Fzd2),
which is a receptor in the Wnt pathway, among the multipotency-specific murine genes.

Notably, 17 orthologous genes were shared between mouse and human ISSs
(Supplementary Table S6), forming an evolutionarily conserved core of stemness. For this
set of conserved genes, we calculated an overall score for each gene as the sum of the scores
for that gene in human and mouse ISSs (Supplementary Table S6). The largest scores were
obtained for Pou5f1, Sox2, Mycn, and Msh2. Among these top genes, Msh2 appears to be
the least studied in the context of stem cell biology. Msh2 is part of the post-replicative
DNA mismatch repair system and is frequently mutated in hereditary nonpolyposis colon
cancer [47].

Both human and mouse ISSs genes showed significant enrichment in all groups tested,
namely, biological processes, molecular functions, cellular components, and Reactome
pathways (Supplementary Material: Functional Analysis of integrated stemness signatures,
and Supplementary Figure S6), further validating the association of ISSs and stemness.
Furthermore, we obtained distinct functional profiles when we compared genes that were
highly ranked based on pluripotency and multipotency scores, or were exclusively associ-
ated with pluripotent or multipotent stemness signatures based on the previous definition
(Supplementary Figure S7). Comparing the top 200 human genes for pluripotency and mul-
tipotency, both groups shared a significant enrichment of the GO term stem cell population
maintenance, while somatic stem cell population maintenance was more significantly enriched
among multipotency genes and DNA replication was only significantly enriched (adj. p-
value < 0.05) among pluripotent genes (Supplementary Figure S7A). For murine genes
exclusively associated with pluripotency, we found that genes in the GO term response
to leukemia inhibitory factor (LIF) were significantly overrepresented, reflecting the typical
supplementation of LIF to the culture medium of murine ESCs (Supplementary Figure S7D).
In contrast, genes associated with epithelial cell proliferation and regulation of hemopoiesis were
overrepresented among exclusively multipotency genes.

3.2. Integrative Stemness Signature Reveals Genes Whose Function Has Not Been Linked Yet to
Stem Cells

Inspection of ISSs reveals many genes that have already been linked in previous
studies to the properties of stem cells. Nevertheless, these integrated signatures might also
contain genes that, while consistently associated with many stem cell signatures (and thus
high ranking in the ISSs), have been rarely, or not at all, the focus of dedicated experimental
stem cell studies.

To identify genes that tended to be included in stemness signatures but whose function
has not been linked yet to stem cells, we conducted a text-mining approach. We derived for
each gene of human and mouse ISSs the number of associated publications in PubMed that
include the term “stem cell(s)” in the full-text version of the articles or only in their titles or
abstracts. This number should provide a measure for conducted research on a specific gene
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in stem cell biology, and was subsequently plotted against the previously calculated scores
for occurrences in stemness signatures.

For most genes of the human ISS, we found co-citation with the term stem cell(s)
in PubMed (Figure 2A). Notably, ISS genes with the highest score have a substantial
number of publications, demonstrating that they have been well studied in the context
of stem cell research. For example, the high-scoring master regulators of pluripotency
(POU5F1, SOX2, NANOG) were among the genes with the most stem cell-associated
publications. However, there are some notable divergences. For instance, SEPHS1, which
is involved in the selenium metabolism [47] with a relatively high score of 7, was only
associated with stem cells in two publications [50,51] at the time of analysis (Figure 2B).
Strikingly, four genes (RFC3, MIS18A, HINT1, and KDELC1) have never been named
together with the term stem cell(s) in the title or abstract of PubMed articles at the time
of the conducted literature mining (Figure 2B), although they were found in 4 stemness
signatures (Supplementary Table S2). MIS18A and KDELC1 are particularly attractive
candidates for further study since they never co-occurred with the term stem cell(s) in any
part (not even the main body) of a PubMed article. MIS18A codes for a protein essential for
the recruitment of the centromere protein A (CENPA) to centromeres, hence being pivotal
for normal chromosome segregation during mitosis [52]. Mouse phenotypes associated
with MIS18A are Embryo and Mortality/Aging [53]. KDELC1 codes for a protein found in
the lumen of the endoplasmic reticulum (ER) containing a motif (KDEL) that prevents its
secretion to the outside [47]. Very little is known about the function of KDELC1, although
it has been associated with the molecular function of glucosyltransferase, and with the
biological processes of carbohydrate and lipid metabolism [54]. We propose that these
two genes could be novel players in the context of stem cell biology, and hence good
candidates for further experimental studies. Notably, MIS18A was recently independently
suggested as a biomarker for leukaemia stem cells based on bioinformatics analysis of the
Cancer Genome Atlas [55]. For the mouse ISS, every gene occurred in at least one PubMed
reference together with the term stem cell(s) in the title or abstract (Figure 2C,D).

3.3. Network Analysis of Integrated Stemness Signatures

Many cellular functions are based on the interactions of proteins. Thus, we expect
that proteins encoded by genes frequently found in stemness signatures interact with one
another to perform processes that are important for stem cells. Therefore, we built protein
interaction networks for enlarged ISSs containing the genes with minimum scores of 3 and
6 respectively, for the human and mouse ranked lists.

The human network comprised 232 nodes and 822 edges in total (Figure 3A). On aver-
age, each node is linked to 3.5 other nodes. The nodes with the highest degree centralities
(i.e., number of direct connections) are CDK1, CCNB1, and AURKB with 34, 30, and 27 in-
teractions, respectively (Supplementary Table S7). The first two (cyclin-dependent kinase,
and cyclin B1) are well-known regulators of the cell cycle. AURKB is part of the aurora
kinase subfamily of serine/threonine kinases participating in the regulation of alignment
and segregation of chromosomes during mitosis and meiosis through association with
microtubules [47].

Visual inspection suggested that several interconnected clusters exist and pointed to
proteins that are important for the structural cohesiveness of the network. To further explore
the community structure of the network, a graph-based clustering approach was carried
out and revealed 11 significant clusters (p-value < 5 × 10−2) (Figure 3B and Supplementary
Figure S8). These clusters are not mutually exclusive. For example, some nodes (genes)
of cluster A are also nodes of cluster C (light green nodes with a red border in Figure 3B),
while cluster B is a sub-cluster of cluster A (light blue nodes with a red border). We observe
that the clusters with higher ranking significance are clusters A, C, and D (‘p-value rank’
column Supplementary Table S4). Functional enrichment analysis based on KEGG gene
annotations showed that cluster A is enriched in DNA synthesis and cell cycle checkpoints,
cluster B is mainly related to DNA repair and telomere synthesis and extension, while genes
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in cluster C tend to be associated with mitotic phases (Supplementary Table S8). Cluster
D includes the main transcription regulators POU5F1, SOX2, and NANOG, explaining its
enrichment in the Transcriptional regulation of pluripotent stem cells. Besides ranking third
for cluster significance, cluster D is also the one showing the highest average stemness
score (‘Average stemness score rank’ column Supplementary Table S4). The cluster with
the second-highest average stemness score is cluster I (Supplementary Table S4), which is
associated with Epigenetic regulation of gene expression and RNA Polymerase I Transcription
(Supplementary Table S8).
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Figure 2. Identification of stemness genes overlooked in individual studies. Number of occurrences
in individual stemness signatures versus number of stem cell-related publications for each gene in
human ISS (A,B); and in mouse ISS (C,D). Number of publications is defined by the number of all
articles containing the gene name together with the term stem cell(s) in the title or abstract in PubMed.
(A,C) show gene names with at least one stem cell-related publication. Note, not all genes are labelled
and the number of publications is on a logarithmic scale (log10). (B,D) show genes referenced in only
up to 3 stem cell-related publications. Bold font highlights gene names that had never been referred
to together with the term stem cell in the full text of any article in PubMed.
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the main text. (A) Overall network visualized with the edge-weighted spring embedded layout.
Red nodes represent genes that belong to the human ISS (with score ≥ 4). Edge thickness reflects
the interaction confidence score, whereas node size and colour opacity are proportional to node
betweenness centrality and the stemness score of the gene, respectively. (B) Significantly interacting
network clusters (p-value < 5 × 10−2). Nodes of each cluster are placed in circles according to
their betweenness centrality. Nodes of a cluster share the same colour (see legend) and node size is
proportional to node betweenness centrality. Nodes without interactions were excluded. Nodes that
did not interact with the main network were excluded before the clustering analysis.

The calculation of betweenness centrality, defined by the number of times each node
lies in the shortest path connecting two other nodes divided by the total number of shortest
paths, was used for the stringent identification of proteins that are most important for
the integrity of the network. We found that MYC has the largest betweenness centrality
(Supplementary Table S7) and connects, directly and indirectly, several clusters (clusters
A–F and H, Figure 3B). MYC is a proto-oncogene that forms a dimer with the MAX
transcription factor, regulating the transcription of genes related to cell cycle progression,
apoptosis, and cellular transformation. It is also one of the Yamanaka factors for induced
pluripotency [47]. MYC is among the nodes with the highest degree of centrality values,
describing the number of nodes with which a node is directly linked. Together with
MYC, LCK, and STAT3 are the nodes of the main network with the highest betweenness
centralities (Supplementary Table S7). LCK is a proto-oncogene and an important signalling
molecule in the maturation of developing T-cells [56], contributing to the hematopoietic
system and immune system phenotypes in mice [53], whereas STAT3 is a member of the
STAT family of proteins, which mediate cell growth and apoptosis among other processes in
response to cytokines and growth factors [57]. Although there are other proteins with higher
betweenness centrality, those were found in small isolated clusters and their betweenness
centrality values do not reflect node relevance to the overall network (greyed-out proteins
in Supplementary Table S7). The proteins corresponding to genes with larger stemness
scores, OCT4 (encoded by POU5F1 gene), NANOG, and SOX2, present medium node
degree and betweenness centralities (Supplementary Table S7).

The mouse network contained 134 nodes and 280 edges in total (Figure 4A), where
each node interacted on average with 2.1 other nodes. Cdk1 and Plk1 are the nodes that
present the highest degree centralities, 21 and 16, respectively (Supplementary Table S9).
Plk1 is a protein kinase regulating the cell cycle, cytokinesis, and DNA damage response,
while Cdk1 is part of the cell cycle protein complex [47]. Among nodes with the largest
stemness score, the one with the highest node degree and betweenness centrality is Cdk4
(Supplementary Table S9), which is a kinase with an important role in the cell cycle [47]. We
identified 16 significant clusters (p-value < 5 × 10−2) in the mouse network (Figure 4B and
Supplementary Figure S9). Clusters with higher cluster significance are A and B (‘p-value
rank’ column Supplementary Table S5). Cluster A is enriched in proteins associated with
cell cycle phases and mitotic checkpoints. Surprisingly, cluster B is related to extracellular matrix
pathways and cell interaction (Supplementary Table S10). Clusters ranking higher for average
stemness score are B and J (‘Average stemness score rank’ column Supplementary Table S5).
Cluster J is related to gene transcription and post-transcriptional processing (Supplementary
Table S10). Rap3 and Gtf2h4 code for proteins connecting directly or indirectly most clusters
of the network (clusters A, D, E, G, H and clusters J-P, Figure 4B) and are together with
Trp53 the nodes of the main network with the highest betweenness centralities. Those 3 pro-
teins are also among the nodes demonstrating high degrees of centrality (Supplementary
Table S9). Rap3 is reported as having a role in the regulation of plasma triglyceride levels.
It is a component of high-density lipoprotein and is very similar to a rat protein that is
upregulated in response to liver injury [58]. In mice, it is associated with homeostasis and
metabolism phenotype [59]. Gtf2h4 is a component of a transcription factor involved in
nucleotide excision repair of DNA and, when complexed with CAK, in transcription, while
Trp53 is a tumour suppressor transcription factor [47].
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the main text. (A) Overall network visualized with the edge-weighted spring embedded layout.
Red nodes represent genes that belong to the mouse ISS (with score ≥ 7). Edge thickness reflects
the interaction confidence score, whereas node size and colour opacity are proportional to node
betweenness centrality and the stemness score of the gene, respectively. (B) Significantly interacting
network clusters (p-value < 5 × 10−2). Nodes of each cluster are placed in circles according to
their betweenness centrality. Nodes of a cluster share the same colour (see legend) and node size
is proportional to node betweenness centrality. Nodes without interactions were excluded. Nodes
that did not interact with the main network and were part of a smaller network (with less than four
nodes) were excluded before the clustering analysis.

3.4. Limitations of the Integrative Analysis of Stem Cell Signatures

In contrast to conventional meta-analysis, our analysis was not based on pooling effect
sizes such as differential expression observed in individual studies, but on pooling the final
dichotomous results, i.e., the presence or absence of genes in the ISSs. While this approach
might have led to a loss of statistical power (e.g., detecting genes with small expression
changes), it facilitated the integration across different underlying methodologies (i.e., tran-
scriptomic analysis, knock-down screens, literature curation and computational approaches).

Importantly, the absence of a gene in the ISSs does not necessarily signify that it does
not play a role in stem cells. This can be illustrated with members of the Polycomb group
(PcG) genes, whose role for stem cells has been intensively studied [60]. Although Phc1 was
the gene with the highest score in the murine ISS, confirming its experimentally established
role in stem cell maintenance [61], many PcG genes have either low scores or were absent
in the ISSs (Supplementary Figures S10A and S11A). Although such absence appears
unexpected, it is a consequence of methodological limitations of the approaches defining
stemness signatures and the propensities of affected genes. For instance, expression-based
stemness signatures use over-expression in stem cells to define stemness-associated genes
and thus miss genes that are important for stem cell biology but do not show higher
transcript levels in stem cells. Expression data from the StemMapper database [26], which
merges expression data for stem cells and various cell lineages, indicate that this is also
the case for PcG genes (Supplementary Figures S10B and S11B). Compared to Nanog,
downregulation of gene expression in differentiated cells is less prominent or not apparent
at all for PcG genes. Furthermore, RNAi-based stemness signatures depend on observable
effects (measured by a chosen assay) of single gene knockdowns. If redundancies between
stemness genes exist, knockdown or knockouts of single genes might not be sufficient to
reveal their role. For PcG genes, for example, recent experiments demonstrated widespread
functional redundancies, as single PcG gene knockouts did not result in changes in Pou5f1
and Sox2 expression in murine ESCs [62]. This was also reflected in the RNAi-based
stemness signatures, which did not include any PcG genes apart from one exception
(Supplementary Figures S10A and S11A).

Due to these limitations in the underlying methodologies, an absence of genes from
the ISSs should not be taken as an indication that they do not play a role in stem cell biology.
Rather, our compendium of stemness signatures and the derived ISSs can point to genes
whose functional role in stem cells has been less studied or not investigated at all. Thus, it
may serve as a rational evidence basis to broaden stem cell research [63].

4. Conclusions

In conclusion, the application of genome-wide profiling techniques greatly facilitated
the detection of stemness genes. While many studies generated gene signatures for vari-
ous types of stem cells, caution in their interpretation is warranted due to the biological
heterogeneity of stem cell populations, as well as the technical variability of profiling
platforms and protocols. Indeed, earlier comparisons of stemness signatures yielded lim-
ited overlap even for the same microarray platform. Such study-specific effects can be
mitigated by comparing a greater number of stemness signatures obtained from several
different experimental approaches for different stem cell types. With this meta-analysis
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approach, to the best of our knowledge the largest to date, we were able to detect trends
based on the overlap of individual stemness signatures for humans and mice. Despite the
lack of genes common to all stemness signatures, our study revealed significant overlap
between most individual signatures. Therefore, it was possible to define an ISS comprised
of genes most frequently found among individual studies. With this signature, we expect
to enhance confidence regarding the genes associated with stemness, and help to exclude
false positives that can compromise individual studies. The relevance of our approach
and results is supported by the fact that mouse and human signatures were functionally
enriched in biological processes, molecular functions, and cellular components, as well
as pathways related to stem cell properties. Importantly, we could pinpoint stemness
genes that occurred frequently in stemness signatures but have eluded dedicated studies in
stem cell biology so far. Such under-researched genes can provide prime targets for future
investigations elucidating the molecular basis of stemness.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/genes14030745/s1. Figure S1: Significance of overlap of genes between individ-
ual stemness signatures; Figure S2: Distribution and significance of stemness scores for human genes;
Figure S3: Distribution and significance of stemness scores for mouse genes; Figure S4: Association
of human and mouse genes with stemness signatures; Figure S5: Human and mouse genes specific to
pluripotent or multipotent stemness signatures; Figure S6: Functional characterization of Integrated
Stemness Signatures; Figure S7: GO enrichment analysis for genes associated with pluripotency or
multipotency stemness signatures; Figure S8: Complementary figure to Figure 3; Figure S9: Com-
plementary figure to Figure 4; Figure S10: Stemness association and expression of human Polycomb
group (PcG) genes; Figure S11: Stemness association and expression of murine PcG genes; Table S1:
Description of individual stemness signatures; Table S2: Human stemness genes ranked list; Table S3:
Mouse stemness genes ranked list; Table S4: Significant clusters of human ISS network; Table S5:
Significant clusters of mouse ISS network; Table S6: Evolutionary conserved stemness genes; Table S7:
Node betweeness and degree centrality for network of human ISS; Table S8: Reactome pathways
overrepresented in significant clusters of human ISS network; Table S9: Node betweenness and de-
gree centrality for mouse ISS network; Table S10: Reactome pathways overrepresented in significant
clusters of mouse ISS network [6–8,11–25,27].
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