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Abstract: The microsatellite stable/epithelial-mesenchymal transition (MSS/EMT) subtype of gastric
cancer represents a highly aggressive class of tumors associated with low rates of survival and
considerably high probabilities of recurrence. In the era of precision medicine, the accurate and
prompt diagnosis of tumors of this subtype is of vital importance. In this study, we used Weighted
Gene Co-expression Network Analysis (WGCNA) to identify a differentially expressed co-expression
module of mRNAs in EMT-type gastric tumors. Using network analysis and linear discriminant
analysis, we identified mRNA motifs and microRNA-based models with strong prognostic and
diagnostic relevance: three models comprised of (i) the microRNAs miR-199a-5p and miR-141-3p,
(ii) EVC/EVC2/GLI3, and (iii) PDE2A/GUCY1A1/GUCY1B1 gene expression profiles distinguish
EMT-type tumors from other gastric tumors with high accuracy (Area Under the Receiver Operating
Characteristic Curve (AUC) = 0.995, AUC = 0.9742, and AUC = 0.9717; respectively). Additionally,
the DMD/ITGA1/CAV1 motif was identified as the top motif with consistent relevance to prognosis
(hazard ratio > 3). Molecular functions of the members of the identified models highlight the central
roles of MAPK, Hh, and cGMP/cAMP signaling in the pathology of the EMT subtype of gastric
cancer and underscore their potential utility in precision therapeutic approaches.

Keywords: gastric cancer; epithelial-mesenchymal transition; EMT subtype; precision medicine;
WGCNA; machine learning; microRNA; motif analysis

1. Introduction

Gastric cancer (GC) is one of the most common malignancies with extreme inter-
and intra-tumoral heterogeneity [1,2]. With more than a million new cases each year and
approximately 769,000 deaths in 2020, it comprises one of the leading causes of cancer-
related deaths worldwide [3]. Despite its substantial burden, little progress has been made
regarding the development of effective therapeutic interventions for GC patients [4]. This
reflects the inability of the conventional one-size-fits-all diagnostic/therapeutic approaches
for combatting such a heterogeneous disease.

Fortunately, in recent decades, various classifications with either histologic [5] or
molecular [6] bases have been developed for this malignancy. These classification systems
guide the development of disease management strategies that are tailor-made for specific
subtypes of GC. In comparison with histologic classifications, molecular classifications
display a wider association with tumor heterogeneity and patient prognosis, suggesting
their broader utility in the clinical setting [7]. One of the major molecular classifications
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of stomach cancer was developed based on the mRNA expression data of gastric tumors
almost a decade ago by the Asian Cancer Research Group (ACRG) [8]. This classification
stratifies gastric tumors into four subtypes, namely (i) microsatellite instability (MSI),
(ii) microsatellite stable/epithelial-mesenchymal transition (MSS/EMT; EMT for short),
(iii) microsatellite stable/TP53+, and (iv) microsatellite stable/TP53−. Among these, the
EMT subtype is associated with significantly poorer overall survival and a higher chance
of recurrence, possibly demanding a more aggressive treatment approach [8–10].

Despite the obvious benefits of tumor classifications, the substantial costs of the current
experimental approaches required for patient stratification impede the clinical translation
of these subtypes, underscoring the necessity of the development of practical biomarkers
for disease/patient management [7]. Specifically, considering the aggressive nature of
the EMT-type tumors, exploration of the molecular landscape of these tumors and the
development of practical means for the stratification of patients into EMT and non-EMT
cases is of substantial interest. In this line, Lee at el. [9] developed a NanoString-based 71-
gene signature assay that can potentially be used for diagnostic/prognostic purposes in the
clinical setting. Nevertheless, there is still room for reductions in the costs and availability
of patient stratification approaches, and the underlying biology of the phenotypes observed
in patients with EMT-type tumors remains elusive.

In this study, we established the EMT GC subtype, proposed by the ACRG, as the
subtype with the most distinct transcriptomic landscape and moved on to identify some of
the core elements involved in the pathology of this subtype through the combination of
co-expression module discovery and motif extraction approaches. These elements were
further explored in terms of their clinical utility, and the most potent candidates with
diagnostic and prognostic relevance were identified and discussed. The pipeline designed
for this study appears to be robust for the identification of central regulators of biological
phenomena and can readily be employed in other similar contexts. Moreover, the top
motifs identified represent potent candidates for further validation to be used as affordable
means for the stratification of GC patients in the clinical setting.

2. Materials and Methods
2.1. Datasets

We retrieved RNA-seq and miRNA-seq raw counts from treatment-naïve adenocar-
cinomas of The Cancer Genome Atlas-STomach ADenocarcinoma (TCGA-STAD) cohort
(n = 316; only the samples that were not flagged as low quality were retrieved) using the Ge-
nomic Data Commons (GDC) data portal [11] and microarray data from the ACRG cohort
(n = 300) and the Singapore cohort (n = 192) via the Gene Expression Omnibus (accession
numbers GSE62254 and GSE15459). The clinical information for the analyzed samples
is available in the Supplementary Table S1. The distribution of the clinical information
within each subtype for all three cohorts is also presented in Table 1. Since not all of the
316 TCGA samples possessed all the required data categories for the different steps of the
analysis (e.g., survival data, ACRG classification, etc.), for each specific step of the study,
only the subset of the original cohort that included all data modalities relevant to that step
was utilized. Tumors from all three cohorts have been previously classified into the four
ACRG-based molecular subtypes [8]. The same classification was used in this study. This
reduced the samples with classifications for the TCGA to a total of 167 samples (MSI = 37;
EMT = 47; TP53+ = 42; TP53− = 41). In the ACRG cohort, three samples (#369, #533, and
#542) were removed since they were identified as outliers based on the Principal Compo-
nent Analysis (PCA) of the log2 transformed intensities (total: 297; EMT = 46; MSI = 68;
TP53+ = 77; TP53− = 106). The RNA-seq data for gastric tumors and paired normal gastric
tissues were also retrieved from GSE184336 for tumor vs normal comparisons.
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Table 1. The distribution of the clinical information within each subtype for the TCGA-STAD, ACRG,
and Singapore cohorts.

Cohort Subtype Sample
Size

Age (Mean ± sd)
Sex AJCC Pathologic Stage

Male Female I II III IV

TCGA-STAD

EMT 47 61.7 ± 10.06 62% 38% 7% 33% 51% 9%

MSI 37 70.16 ± 10.58 54% 46% 27% 32% 30% 11%

TP53+ 42 66.44 ± 11.02 71% 29% 15% 41% 39% 5%

TP53− 41 66.92 ± 9.59 68% 32% 23% 36% 31% 10%

NA 149 66.77 ± 11.02 64% 36% 13% 27% 48% 12%

ACRG

EMT 46 55.72 ± 12.44 59% 41% 4% 15% 39% 41%

MSI 68 64.82 ± 9.94 66% 34% 21% 38% 28% 13%

TP53+ 78 61.86 ± 11.67 72% 28% 5% 38% 34% 23%

TP53− 105 62.86 ± 10.48 65% 35% 8% 32% 31% 30%

Singapore

EMT 83 62.64 ± 13.15 60% 40% 11% 16% 36% 37%

MSI 11 69.33 ± 12.67 55% 45% 36% 9% 36% 18%

TP53+ 37 63.15 ± 13.2 73% 27% 19% 16% 38% 27%

TP53− 61 66.58 ± 13.24 69% 31% 18% 15% 39% 28%

2.2. Data Analysis and Visualization

R version 4.1.1 and Cytoscape version 3.9.0 were used for the statistical and network-
based analysis of the data and visualization of the results. Differential gene expression
analysis was carried out using the DESeq2 R package [12], which uses negative binomial
generalized linear models for the identification of the differentially expressed genes. Venn
diagrams were constructed using the VennDiagram package and PCA was carried out
using the prcomp function in R.

2.3. Evaluation of ACRG Subtypes

Enrichment analysis of the TCGA tumor samples classified into the four distinct
subtypes in comparison to the normal samples was carried out using the Hallmark gene
sets of the Gene Set Enrichment Analysis (GSEA) desktop application version 4.1.0 [13].
GSEA is one of the most popular methods from the second generation of enrichment
analysis techniques. This method ranks genes based on the correlation of their expression
levels with the phenotype under investigation and calculates an enrichment score for each
predefined gene set (in this case, the gene sets in the Hallmark collection of the GSEA)
based on the aggregation of the members of these sets at the top or the bottom of the ranked
list of genes. Identification of the top modules of the differentially expressed genes for each
subtype was conducted using the greedy search algorithm of the jActiveModules plug-in
in the Cytoscape [14].

2.4. Weighted Gene Co-Expression Network Analysis and Motif Identification

Co-expression modules are, in essence, clusters of genes that present a coordinated
variation in their expression levels across samples, and they potentially represent groups
of genes with related functions regulated by the same transcriptional program. The in-
terpretation of these modules within specific biological contexts can reveal novel insights
regarding how specific functions/phenotypes are regulated [15]. Here, the identification of
co-expression modules was performed using the Weighted Gene Co-expression Network
Analysis (WGCNA) algorithm [16]. WGCNA first constructs an adjacency matrix by apply-
ing a hard or soft thresholding procedure on the co-expression similarity measurements
between each pair of genes and then utilizes a clustering approach for the identification of
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the co-expression modules. In this study, the co-expression module discovery was carried
out with the following parameters: a signed topological overlap matrix was used, the
minimum module size was set to 20, the optimum soft threshold was identified as 20 using
the scale independence and mean connectivity plots, and the dendrogram cut height for
module merging was set to 0.25. The significance of the modules was determined by taking
the average of the −log10(adj. p-value) of the differential expression of their members
in the EMT samples compared to the pooled samples of the other subtypes (Wald test;
corrected for multiple hypothesis testing by the Benjamini–Hochberg method).

Motifs in protein–protein interaction (PPI) networks are small subgraphs that occur
much more often than is expected by chance. Alterations in the activity and expression
levels of these regulatory units are a common observation in pathological states such as
cancer [17]. In this context, the identified top module was further queried for biologically
relevant regulatory subunits through the utilization of motif identification approaches. The
PPI data were retrieved from the STRING database version 11.5 [18], and the NetMatchStar
plug-in in the Cytoscape [19] was used to identify triangle motifs with three nodes and three
edges. The choice of the triangle motifs was based on the high frequency with which they
are observed in the biological systems and the fact that many larger motifs are comprised
of multiple triangle motifs [20].

A modified version of the multi-objective scoring function used in [21,22] was used
for motif scoring:

Sij =
W1j

2
× (ND)i

max(ND)
+

W1j

2
× (BC)i

max(BC)
+ W2j ×

(DP)i
max(DP)

+ W3j ×
(AUC)i

max(AUC)
+ W4j ×

(|LFC|)i
max(|LFC|) ,

where W stands for the weight, i is any given motif, j is any one of the weighting scenarios
(all of the 13 utilized weighting scenarios are available in the Supplementary Table S2), ND
is the mean of the node degree of each of the motif members, BC is the mean betweenness
centrality, DP is the number of the nodes in a given motif that are members of the pathways
in the cancer KEGG pathway (hsa05200), AUC is the mean area under the ROC curve, and
the LFC is the mean absolute log2 fold change of the expression of the nodes in a motif in
the EMT subtype in comparison to the pooled samples of the other subtypes. The ‘max
(parameter)’ denotes the maximum value of each parameter achieved by a motif.

2.5. Assessment of Diagnostic and Prognostic Values of the RNAs

Survival analysis was performed using the survival and survminer packages in R.
The TCGA RNA-seq data for 288 solid tumor samples with appropriate clinical infor-
mation based on the criteria used by Anaya [23] were subjected to Variance Stabilizing
Transformation (VST), and the ACRG microarray data were Robust Multichip Average
(RMA)-normalized prior to the survival analysis.

The top and bottom 40% of the samples (based on the expression of the gene under
investigation) were used as the high-expression and low-expression groups, respectively.
As for the motifs, the intersection of the samples in the top/bottom 40% based on the
expression of each motif member was used to form the high-expression and low-expression
groups. The age and sex of the patients were used as covariates in the Cox regression
analysis in order to account for their possible confounding effects. Due to the inclusion
of samples that exhibited concordant high/low expression of all of the motif members in
each analysis, a varying number of samples were analyzed for each motif. Considering
this, only motifs with at least 30 samples in each group (high- and low-expression groups)
and a total of at least 100 samples were selected for further examination. Among these, we
specifically looked for motifs that were consistently present among the top five motifs of
both cohorts (based on their Hazard Ratio [HR]).

The glm built-in function in R was used for the logistic regression analysis. Since
quantile normalization was found to be an excellent method for making the microarray
and RNA-seq data comparable for machine learning applications [24], the raw counts and
intensities for TCGA and ACRG samples were pooled, log2 transformed, and quantile
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normalized prior to logistic regression analysis. After normalization, the TCGA and ACRG
samples were again separated, and the regression models for discrimination between tumor
subtypes were first fitted to the TCGA data and then validated on the ACRG data. To assess
the robustness of the models, their performance on the independently quantile normalized
data of the samples from the Singapore cohort was also evaluated. The ability of the motifs
to distinguish tumors from normal samples was also assessed by fitting a model to the
TCGA RNA-seq data for both STAD solid tumors (n = 316) and the available adjacent
normal tissue samples from the gastric cancer patients in the TCGA-STAD cohort (n = 30;
cases for which adjacent normal tissue samples were available are distinguished with bold
script in the Supplementary Table S1) after VST normalization. The same method was
also applied to the GSE184336 dataset (with 70% of the samples as the training set and the
remaining samples as the validation set) for independent validation of the capacity of the
motifs for discrimination between normal and tumor samples.

Multi-candidate miRNA combinations capable of discriminating EMT-type tumors
from other subtypes were identified using the linear discriminant analysis (LDA) with
leave-one-out cross-validation, using the method described in [25]. Eighty percent of the
samples were allocated to the training set for this analysis and the remaining samples were
used for validation. The validated mRNA targets of the differentially expressed miRNAs
were obtained using the multiMiR library in R [26].

2.6. MiRNA-mRNA Network Construction

The miRNA-mRNA network was constructed in R using the PPI interaction informa-
tion from STRING and the validated miRNA-target interactions obtained from multiMiR.
Twenty-three centrality measures were calculated for the network using the igraph and
centiserve [27,28] packages in R. PCA was used to identify the most suitable centrality mea-
sure among these 23 centrality measures based on the structure of the network, using the
method described in Ashtiani et al. [29]. The final network was visualized using Cytoscape.

3. Results
3.1. EMT-Type Gastric Cancer Displays a Distinct Transcriptional Profile

In order to assess the transcriptional rewiring of the tumors in different ACRG sub-
types, we performed a set of exploratory analyses on 167 TCGA samples classified into
four distinct subtypes (MSI, EMT, TP53+, and TP53−) [8]. GSEA has shown that EMT-type
tumors did indeed exhibit hallmarks of epithelial–mesenchymal transition (False Discovery
Rate (FDR) = 0.038) and angiogenesis (FDR = 0.047) as their top enrichment signals. Other
subtypes, however, have consistently shown G2M checkpoint and E2F/MYC targets as
their top enrichment results (FDR < 0.05) (Supplementary Figure S1). This suggests a more
profound difference in the transcriptional rewiring of EMT-type tumors compared to other
subtypes.

Next, we reconstructed PPI networks, highlighting interactions among the differentially
expressed genes in each subtype compared to normal samples (adjusted p-value ≤ 0.05,
absolute LFC ≥ 3). We then identified and compared the top-scoring modules of the
different subtypes based on the greedy algorithm of the jActiveModules Cytoscape plug-in.
Considerable overlap between the top modules of MSI, TP53+, and TP53− subtypes was
observed, yet the top module of the EMT subtype did not share any genes with the other
subtypes (Supplementary Figure S2).

Finally, the results of the PCA on the complete expression matrices of TCGA tumors
revealed that the samples belonging to the EMT subtype are roughly distinguished in
PC1; this is while no tangible difference can be observed between the other three subtypes
(Supplementary Figure S3). In accordance with our observations in the TCGA samples,
similar results were also observed in the PCA of the ACRG samples (Supplementary
Figure S3).

Overall, these results indicated that the samples belonging to the EMT subtype display
the most distinct transcriptional profile among all the ACRG subtypes.
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3.2. WGCNA and Motif Ranking Identify 39 Core mRNA Motifs

In order to find robust prognostic/diagnostic RNA markers, we sought to take ad-
vantage of co-expression module and motif identification approaches to identify core
RNA regulators of EMT-type tumors. The workflow implemented for the identification
of these RNAs is shown in Figure 1A. Fourteen co-expression modules with varying
numbers of genes were identified by applying WGCNA on the expression data of the
47 EMT-type tumors in the TCGA cohort. A list of members of each module is provided in
Supplementary Table S3. We used the negative logarithm of each gene’s adjusted p-value,
after differential expression analysis between EMT-type samples and other subtypes, as the
criterion for gene significance. Using this criterion, the module with the most significant
average differential expression was designated as the “EMT” module and the members
of this module were selected for further investigation (Figure 1B). Since a high level of
module membership indicates that the expression level of a gene is an adequate proxy for
the general behavior of a module, the label for the rest of the modules was based on the
gene with the highest level of module membership in that module. The association of the
eigengenes of each module with clinical parameters (gender, age at diagnosis, pathological
stage, TNM stages, and the tissue of origin) was also assessed (Figure 1C). There is a
significant negative correlation between the eigengene of the EMT module and the age at
diagnosis, suggesting the potential role of the members of this module in the earlier onset
of the disease.
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Figure 1. Workflow and co-expression modules. (A) Schematic presentation of the overall workflow
of this study; (B) Bar plot of module significance (defined here as the minus logarithm of the adjusted
p-values of the differential expression of all the members of a module in the epithelia-mesenchymal
transition (EMT) subtype in comparison to the pooled samples of the other subtypes); (C) Association
of the co-expression modules with clinical parameters. There is a significant negative correlation
between the eigengene of the EMT module and the age at diagnosis (R = −0.31; p-value = 0.03).
It should be noted that since all of the co-expression modules were identified on the same set of
samples, the observation that the eigengene of the EMT module is negatively correlated with the age
at diagnosis is not biased by possible age imbalances in the data. Tumor staging system: T—size and
spread of the primary tumor; N—level of spread to lymph nodes; M—metastasis.
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Triangle motifs (with three nodes and three edges) are the most common type of
motifs and are known to largely regulate the higher network structures and serve as the
core building blocks of complex biological networks [20,30]. To identify core regulatory
elements of the EMT module by taking advantage of the biological relevance of triangle
motifs, the PPI network of the members of this module was reconstructed in Cytoscape.
A total of 920 triangle motifs were identified. Each one of these motifs was scored based
on 13 different weighting scenarios (Supplementary Table S2) using the multi-objective
scoring function (see Section 2). Supplementary Table S4 contains all 920 motifs with their
corresponding scores in each of the weighting scenarios. The top 10 motifs based on each
of the weighting scenarios were selected. After removing the redundant motifs, a total
of 39 top motifs remained and were used for further evaluation (Table 2). These motifs
represent potent candidates for playing central roles in GC, specifically the EMT subtype.
This is due to the fact that the utilized scoring function was designed to designate the best
scores to the motifs with the most profound topological significance, diagnostic value, and
differential expression in the EMT subtype in comparison to the other subtypes.

Table 2. The results of Cox regression analysis for the 39 top motifs.

Node1 Node2 Node3 HR in
TCGA

Cox Regression
p-Value in

TCGA
HR in ACRG

Cox Regression
p-Value in

ACRG

ACTN2 LDB3 PDLIM3 1.199 0.51 2.936 0.019
ADCY5 CAV1 CACNA1C 2.396 0.007 4.406 >0.001

CAMK2A ADCY5 CACNA1C 1.853 0.054 1.234 0.585
CAMK2A ACTN1 CACNA1C 2.499 0.003 0.958 0.919
CAMK2A ADCY5 ADCY2 1.716 0.077 0.994 0.989

CNN1 MYH11 ACTG2 1.608 0.042 2.179 >0.001
DMD ITGA1 CAV1 3.636 >0.001 3.13 >0.001
EVC EVC2 GLI3 2.035 0.007 2.746 >0.001

FLNA ITGB3 CAV1 2.997 0.001 2.088 0.019
FLNA ITGB3 VCL 2.438 0.01 2.299 0.03

GUCY1A1 GUCY1B1 PDE3A 1.716 0.034 1.905 0.006
GUCY1A1 GUCY1B1 PRKG1 1.852 0.012 1.76 0.02

IGF1 FGF7 FGFR1 2.133 0.009 2.47 0.001
IGF1 FGF10 FGFR1 1.926 0.02 2.984 0.002
IGF1 FGF10 HGF 2.223 0.009 1.768 0.054
IGF1 FGF10 KIT 1.622 0.102 1.559 0.104
IGF1 FGF2 FGFR1 1.741 0.051 2.303 0.003
IGF1 FGF2 KIT 1.388 0.273 1.377 0.233
IGF1 FGF2 HGF 1.874 0.033 1.663 0.056
IGF1 FGF7 KIT 1.691 0.088 1.489 0.12

ITGA1 ITGB3 CAV1 4.165 >0.001 2.079 0.009
ITGA9 JAM3 JAM2 2.101 0.004 2.13 0.003
ITGB3 VCL ACTN1 2.45 0.014 1.669 0.22

KCNA1 LGI1 CNTN2 1.184 0.542 1.113 0.782
LMOD1 MYH11 ACTG2 1.534 0.065 2.105 0.002
LMOD1 CNN1 ACTG2 1.599 0.044 1.92 0.004
LMOD1 CNN1 MYH11 1.43 0.113 1.872 0.006
MYH11 MYL9 ACTG2 2.106 0.005 3.318 >0.001
MYH11 TAGLN ACTG2 1.741 0.03 2.52 >0.001
MYLK MYH11 ACTG2 1.552 0.071 2.691 >0.001

MYOCD CNN1 MYH11 1.487 0.096 2.002 0.003
OGN OMD PRELP 2.052 0.005 1.48 0.095
OGN ST3GAL3 OMD 1.614 0.079 1.725 0.069
OGN ST3GAL3 PRELP 1.797 0.037 2.089 0.017

PDE1A GUCY1A1 GUCY1B1 1.981 0.009 1.761 0.018
PDE2A GUCY1A1 GUCY1B1 2.254 0.003 2.23 0.003
PRNP CAV1 CACNA1C 2.972 0.003 4.006 >0.001

SNAP25 CAV1 CACNA1C 3.014 0.001 3.29 0.001
TPM2 MYH11 ACTG2 1.648 0.069 2.901 >0.001

HR: Hazard Ratio. Note: The complete results of cox regression analysis for each node and motif are available in
Supplementary Table S5.
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3.3. Expression of the DMD/ITGA1/CAV1 Motif Is a Strong Predictor of Patient Survival

Next, we set out to characterize the 39 top motifs and identify the most potent candi-
dates in terms of their prognostic capability. To this end, we conducted a survival analysis
on the motifs based on the expression levels of the members of the motifs. For each member
of the motifs, and for each motif considered a single entity, samples were divided into high
expression and low expression groups both for the TCGA and ACRG cohorts, Kaplan–
Meier curves were constructed (Figure 2A), and multivariate cox regression results (to
account for the effects of age and sex) were extracted (Table 2). Considering our stringent
criteria (Section 2), the DMD/ITGA1/CAV1 motif was identified as the top motif with
consistent relevance to prognosis (HR > 3 in both TCGA and ACRG cohorts).
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Figure 2. Diagnostic and prognostic capacities of the identified top motifs and members of the
miRNA-based diagnostic model. (A) DMD/ITGA1/CAV1 was identified as the top motif with
consistent relevance to prognosis in both TCGA (left) and ACRG (right) cohorts (hazard ratio > 3 in
both cohorts); (B) Receiver Operating Characteristic (ROC) curves of the top motifs with diagnostic
relevance in the validation set (ACRG cohort). For the complete set of plots for TCGA survival
analysis, ACRG survival analysis, and ROC curves, refer to Supplementary Figures S4–S6.

3.4. EVC/EVC2/GLI3 and PDE2A/GUCY1A1/GUCY1B1 Are Robust Diagnostic Motifs

In order to assess the diagnostic capacity of the motifs and identify the most significant
motifs with diagnostic relevance, we conducted a logistic regression analysis. Members of
the motifs were used as predictors and the subtype of the samples (EMT versus non-EMT)
as the response variable. We used the TCGA cohort as the training set and the ACRG cohort
as the validation set. Additionally, the independently normalized data from the samples
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of the Singapore cohort were used to assess the robustness of the models. The top two
motifs based on their Area Under the Receiver Operating Characteristic Curve (AUC) in
the validation set were EVC/EVC2/GLI3 (AUC = 0.97) and PDE2A/GUCY1A1/GUCY1B1
(AUC = 0.97) (Figure 2B; Table 3). We also assessed the diagnostic capacity of the motifs
for distinguishing tumors from normal samples using the data from TCGA-STAD normal
and tumor tissues and the GSE184336 dataset as an independent test set. Interestingly,
PDE2A/GUCY1A1/GUCY1B1 achieved the highest AUC in the TCGA cohort (AUC = 0.95)
and an AUC of 0.85 in the test set of the GSE184336 dataset, reinforcing its diagnostic
importance (Table 4).

Table 3. The diagnostic capacity of the logistic regression models for distinguishing between the
EMT subtype and the other subtypes for the 39 top motifs.

Node1 Node2 Node3
AUC in the
Training Set

(TCGA)

AUC in the
Validation Set

(ACRG)

AUC in the
Independent Set

(Singapore)

EVC EVC2 GLI3 0.943 0.974 0.92
PDE2A GUCY1A1 GUCY1B1 0.935 0.972 0.947

IGF1 FGF2 FGFR1 0.932 0.969 0.935
ITGA9 JAM3 JAM2 0.944 0.969 0.935

GUCY1A1 GUCY1B1 PDE3A 0.927 0.967 0.944
IGF1 FGF7 FGFR1 0.938 0.967 0.926

GUCY1A1 GUCY1B1 PRKG1 0.927 0.965 0.944
IGF1 FGF10 FGFR1 0.941 0.965 0.932

SNAP25 CAV1 CACNA1C 0.877 0.961 0.904
PRNP CAV1 CACNA1C 0.9 0.954 0.914
MYLK MYH11 ACTG2 0.908 0.952 0.913
PDE1A GUCY1A1 GUCY1B1 0.936 0.949 0.941
ACTN2 LDB3 PDLIM3 0.927 0.948 0.934

IGF1 FGF2 KIT 0.91 0.944 0.9
IGF1 FGF2 HGF 0.911 0.942 0.907

ADCY5 CAV1 CACNA1C 0.893 0.939 0.892
IGF1 FGF7 KIT 0.923 0.937 0.902

MYH11 MYL9 ACTG2 0.904 0.937 0.916
MYH11 TAGLN ACTG2 0.915 0.935 0.918
DMD ITGA1 CAV1 0.883 0.929 0.899
OGN OMD PRELP 0.935 0.925 0.914
FLNA ITGB3 VCL 0.888 0.921 0.92
OGN ST3GAL3 OMD 0.937 0.92 0.893
IGF1 FGF10 KIT 0.931 0.918 0.904
OGN ST3GAL3 PRELP 0.938 0.916 0.883
FLNA ITGB3 CAV1 0.897 0.915 0.925
IGF1 FGF10 HGF 0.928 0.915 0.911

LMOD1 CNN1 ACTG2 0.899 0.912 0.876
CNN1 MYH11 ACTG2 0.889 0.911 0.836
ITGA1 ITGB3 CAV1 0.876 0.906 0.904
TPM2 MYH11 ACTG2 0.864 0.882 0.881
ITGB3 VCL ACTN1 0.815 0.881 0.868

LMOD1 MYH11 ACTG2 0.897 0.877 0.88
LMOD1 CNN1 MYH11 0.887 0.876 0.886

CAMK2A ACTN1 CACNA1C 0.888 0.864 0.814
MYOCD CNN1 MYH11 0.847 0.829 0.844
KCNA1 LGI1 CNTN2 0.914 0.783 0.587

CAMK2A ADCY5 ADCY2 0.887 0.777 0.732
CAMK2A ADCY5 CACNA1C 0.895 0.765 0.725

AUC: Area Under the Receiver Operating Characteristic Curve. The complete results of all of the logistic regression
models, including their p-values, area under the receiver operating characteristic curves, and area under the
precision-recall curves are available in Supplementary Table S6.
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Table 4. The diagnostic capacity of the logistic regression models for distinguishing between the
normal and gastric cancer tissues for the 39 top motifs.

Node1 Node2 Node3 AUC in the TCGA
AUC in the
GSE184336
(Training)

AUC in the
GSE184336
(Validation)

PDE2A GUCY1A1 GUCY1B1 0.95 0.772 0.854
DMD ITGA1 CAV1 0.932 0.835 0.822

KCNA1 LGI1 CNTN2 0.929 0.83 0.826
PDE1A GUCY1A1 GUCY1B1 0.92 0.737 0.803
MYLK MYH11 ACTG2 0.914 0.821 0.884
ITGA9 JAM3 JAM2 0.912 0.663 0.614
ADCY5 CAV1 CACNA1C 0.904 0.696 0.804

IGF1 FGF7 KIT 0.895 0.888 0.868
IGF1 FGF2 KIT 0.893 0.888 0.868
IGF1 FGF10 KIT 0.889 0.887 0.864

ITGA1 ITGB3 CAV1 0.876 0.699 0.757
CAMK2A ADCY5 CACNA1C 0.858 0.752 0.807

OGN OMD PRELP 0.857 0.629 0.691
ACTN2 LDB3 PDLIM3 0.85 0.74 0.709
LMOD1 CNN1 MYH11 0.85 0.707 0.705

OGN ST3GAL3 OMD 0.849 0.615 0.7
LMOD1 MYH11 ACTG2 0.844 0.682 0.707
LMOD1 CNN1 ACTG2 0.844 0.689 0.677

IGF1 FGF2 HGF 0.831 0.843 0.83
TPM2 MYH11 ACTG2 0.829 0.704 0.72
FLNA ITGB3 CAV1 0.828 0.691 0.728

MYH11 TAGLN ACTG2 0.822 0.787 0.812
IGF1 FGF10 HGF 0.821 0.813 0.817

CNN1 MYH11 ACTG2 0.82 0.702 0.701
MYOCD CNN1 MYH11 0.82 0.698 0.689

PRNP CAV1 CACNA1C 0.815 0.634 0.69
MYH11 MYL9 ACTG2 0.814 0.751 0.754
SNAP25 CAV1 CACNA1C 0.813 0.74 0.832

OGN ST3GAL3 PRELP 0.808 0.58 0.606
GUCY1A1 GUCY1B1 PRKG1 0.807 0.741 0.783
CAMK2A ADCY5 ADCY2 0.792 0.646 0.566

FLNA ITGB3 VCL 0.768 0.687 0.735
IGF1 FGF2 FGFR1 0.762 0.828 0.776
IGF1 FGF10 FGFR1 0.752 0.773 0.736

CAMK2A ACTN1 CACNA1C 0.745 0.802 0.811
EVC EVC2 GLI3 0.734 0.658 0.567

GUCY1A1 GUCY1B1 PDE3A 0.665 0.718 0.748
IGF1 FGF7 FGFR1 0.655 0.791 0.777

ITGB3 VCL ACTN1 0.613 0.712 0.703

AUC: Area Under the Receiver Operating Characteristic Curve. The complete results of all of the logistic regression
models, including their p-values, area under the receiver operating characteristic curves, and area under the
precision-recall curves are available in Supplementary Table S6.

3.5. A Two-Membered miRNA Model Accurately Distinguishes EMT-Type Tumors from Other
Gastric Tumors

The candidate miRNAs regulating the expression of the identified motifs were de-
termined through the identification of differentially expressed miRNAs (EMT vs other
subtypes; n = 220) that targeted one or more genes among the members of the top 39 motifs
(109 miRNAs). The top multi-candidate miRNA combination was identified using LDA
with leave-one-out cross-validation. The top two-membered miRNA combination consist-
ing of hsa-miR-199a-5p and hsa-miR-141-3p with an AUC of 0.963 in the training set and an
AUC of 0.995 in the test set was identified as the best discriminant multi-candidate miRNA
combination (index: (0.597167 × hsa-miR-199a-5p) + (−0.798247 × hsa-miR-141-3p) +
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2.02755). The results of the survival analysis for these miRNAs and their combination are
demonstrated in Figure 3.
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components and (B) their combination. Only the expression levels of hsa-miR-199a-5p are significantly
associated with patient prognosis. (C) The two-membered miRNA-based diagnostic model presents
an almost perfect Area Under the Receiver Operating Characteristic Curve (AUC) of 0.995 in the
validation set.

Finally, the integrated interaction network of the members of the top 39 motifs and the
109 differentially expressed miRNAs targeting them was visualized (Figure 4).
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Figure 4. A network of top motifs from the 13 motif ranking scenarios and their miRNA regulators.
The top 10 central RNAs based on the Latora closeness [31] are marked by blue margins. Yellow
edges represent protein–protein interactions. MiR-182-5p, miR-195-5p, miR-1-3p interactions are
represented with blue, red, and black solid lines, respectively. The interactions of the members
of the miRNA diagnostic model are represented by dashed lines. To reduce complexity, only the
3 miRNAs that were among the top 10 central RNAs and the two miRNAs from the multi-candidate
discriminatory miRNA combination are shown. The complete interaction data of the network
consisting of 109 miRNAs, 51 mRNAs, and 435 edges are available in Supplementary Table S7.

4. Discussion

Among the molecular classifications of gastric tumors by ACRG, tumors of the EMT
subtype are associated with significantly worse patient prognosis and likely demand more
drastic therapeutic interventions [9]. Coupling this with the vastly unknown nature of the
tumors of this subtype, further investigation of the molecular landscape of these tumors
and the development of diagnostic and predictive biomarkers are of utmost importance.
Here, we have identified a differentially expressed co-expression network in the tumors of
the EMT subtype using WGCNA. The negative correlation of this module with the age of
the patients at the time of diagnosis (Figure 1C) is in line with the characterization of this
subtype by ACRG [8] and indicates the relevance of this module to the EMT subtype. We
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have further explored this co-expression module in order to extract its central motifs and
regulatory miRNAs with relevance to diagnosis and prognosis.

4.1. Poor Outcomes for Patients with High Expressions of DMD/ITGA1/CAV1 Motif

Our results are able to characterize the signaling circuits involved in the aggres-
sive phenotypes often observed in the gastric tumors of the EMT subtype (e.g., invasion,
chemoresistance, etc.). We have identified the DMD/ITGA1/CAV1 motif as the top motif
with consistent relevance to prognosis (HR > 3 in both TCGA and ACRG cohorts). The
ITGA1 gene encodes the α-1 subunit of the integrin superfamily of glycoproteins. These
transmembrane receptors are responsible for a variety of cellular functions including cell ad-
hesion, migration, and intracellular signaling in response to the extracellular environment
(ECM) [32]. ITGA1 is extensively associated with cancer invasiveness and poor patient
prognosis in various tumor types. It promotes EMT, proliferation, and drug resistance in re-
sponse to dysregulations in the tumor extracellular matrix. This is in part realized through
upregulation of the Ras/MEK/ERK (MAPK) pathway [33–36]. Additionally, a wealth of
studies indicate that the EMT-promoting effects of dysregulation in various molecules in
GC converge on ITGA1, highlighting its potential as a therapeutic target [37,38].

Upon stimulation, the integrin receptors activate Ras through the recruitment of the
Grb2/SOS complex. This is a process in which Caveolin-1 (Cav-1), a protein encoded by
another member of the identified motif (CAV1), has been shown to play a pivotal role [39].
Cav-1 is best known for its crucial roles as a component of the caveolae—invaginations in
the cell membrane involved, among other functions, in cell surface receptor localization
and signal transduction [40]. Similar to ITGA1, Cav-1 is strongly associated with poor
treatment outcomes, poor prognosis, and EMT [41,42]. Importantly, MAPK is not the only
pathway through which Cav-1 has been associated with EMT. It has been shown that Cav-1
stimulates the dephosphorylation of β-Catenin, culminating in the activation of the WNT
pathway and upregulation of Met receptor tyrosine kinase. Met (also known as HGFR),
through its positive crosstalk with HER2, contributes to tumor aggressiveness, migration,
proliferation, and chemoresistance by upregulating MAPK, WNT, and PI3K/AKT path-
ways [40]. Studies investigating the role of DMD, the last member of the identified motif,
are sparse and contradictory [43], warranting a need for further investigation of the role of
the DMD in the GC EMT subtype and its functional association with ITGA1 and Cav-1.

4.2. The EVC/EVC2/GLI3 Motif Performs Well Both as a Diagnostic and a Prognostic Marker

Our analysis pipeline resulted in the identification of two motifs with superior rel-
evance to the diagnosis of gastric tumors of the EMT subtype. The top identified motif
consists of EVC, EVC2, and GLI3; genes coding for essential members of the Hedgehog
(Hh) signaling pathway [44]. The Hh pathway is firmly associated with the exhibition of
stem-like phenotypes in cancer, cancer cell migration, EMT, and drug resistance in various
cancer types including GC [45–47]. GLI3 is a transcription factor central to the regulation
of the Hh pathway and plays dual roles both as an activator and a repressor of the genes
downstream of this pathway [44]. In the absence of the Hh pathway ligands, GLI3 is
bound to SUFU, which mediates its proteolytic cleavage, resulting in the abundance of
cleaved GLI3 proteins, which act as suppressors of the Hh pathway. In the presence of
the Hh ligands, SUFU dissociates from the GLI3 in a process in which both EVC and
EVC2 have been shown to be of vital importance [48]. The dissociated full-length GLI3
promotes upregulation of the Hh pathway. The activity of GLI3 is strongly associated with
various malignancies. For example, it promotes proliferation and EMT in multiple cancer
types [49,50] and plays a role as a cancer driver gene in GC [51]. Importantly, multiple lines
of evidence associate the overexpression of GLI3 with poor prognosis in various tumor
types [50,52]. In line with these reports, our results indicate considerably worse outcomes
for patients with higher expression of the EVC/EVC2/GLI3 motif in both TCGA (HR = 2)
and ACRG (HR = 2.7) cohorts, suggesting the possible utility of this motif as a prognostic
indicator as well as a diagnostic marker.
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4.3. PDE2A/GUCY1A1/GUCY1B1—A Strong Diagnostic Marker

The other identified top motif with potential diagnostic capacity for the EMT subtype
of GC is comprised of PDE2A (a member of the phosphodiesterase superfamily), GUCY1A1,
and GUCY1B1 (also known as GUCY1A3 and GUCY1B3, respectively). These molecules
are central regulators of the metabolism of cyclic guanosine monophosphate (cGMP) and
cyclic adenosine monophosphate (cAMP), secondary messengers involved in many cellular
functions including cell proliferation, differentiation, and apoptosis [53]. Interestingly, in
addition to its exceptional performance in discriminating the samples of the EMT subtype
from other gastric tumors, this motif presented a capacity for distinguishing gastric tumors
from normal samples (AUC = 0.95; highest AUC among the assessed motifs), demonstrating
its potential use as a diagnostic marker of GC in general. Notably, the presence of other
proteins of the phosphodiesterase superfamily (PDE1A and PDE3A) and adenylate cyclase
5 (ADCY5) in addition to guanylate cyclase (GUCY) proteins among the identified top
motifs (Table 3; Figure 4) points to a likely central role of cAMP and cGMP metabolism
in the EMT subtype of GC. In line with this, there are a plethora of studies indicating
the viability of phosphodiesterase inhibition as a treatment approach for the suppression
of proliferation and reduction of the invasion capacity of tumors in various cancers [54].
However, the exact role of these molecules in tumorigenesis and cancer progression is
ambiguous, and specifically, the interplay between the cyclase and phosphodiesterase
proteins in cancer remains largely unexplored.

4.4. MiR-199a-5p and miR-141-3p Dysregulations Are Associated with Tumor Invasiveness

Another important result of this study is the identification of a candidate two-membered
miRNA diagnostic biomarker (AUC = 0.995; Figure 3) consisting of hsa-miR-199a-5p (upreg-
ulated in the samples of the EMT subtype; LFC = 1.4) and hsa-miR-141-3p (downregulated
in the samples of the EMT subtype; LFC = −1.9). In contrast to its downregulation in
various tumor types, the expression of hsa-miR-199a is shown to be increased in the case of
GC and has been associated with increased tumor invasiveness and metastasis in multiple
studies [55,56]. These reports are in accordance with the observations of the current study
and support the positive coefficient of this molecule in the identified diagnostic model. The
other member of our two-membered diagnostic model, hsa-miR-141-3p, is a member of
the miR-200 family of miRNAs, the downregulation of the members of which is tightly
associated with increased proliferation, EMT, and invasiveness of gastric tumors among
other tumor types [57–59]. Altogether, these results highly support the relevance of the
identified two-membered miRNA-based diagnostic model in distinguishing gastric tumors
of the EMT subtype. Additionally, the expression of both of these miRNAs was associated
with patient outcomes in GC in previous studies [55,59]. However, our results only indicate
a positive association between the high expression of hsa-miR-199a-5p and poor survival
(p-value = 0.034). No association between the expression of hsa-miR-141-3p and patient
prognosis could be observed (p-value = 0.34; Figure 3).

5. Conclusions

A few points regarding the implemented methods for motif identification and their
limitations in this study should be noted. Considering the effects of multi-collinearity,
the coefficients in the logistic regression modeling of the motifs should be utilized with
caution when inferring the behavior of the mRNAs in these motifs since they are all
extracted downstream of WGCNA. Nevertheless, this does not affect the precision of the
prediction of the disease status by the motifs, and thus the top motifs with diagnostic
capacity represent viable candidates. One should also take note that, based on the design
of this study, the identified motifs are inclined to be more important in the EMT subtype,
but their importance is not necessarily restricted to it; especially due to the inclusion of
weighting factors such as the topological significance and previous association with cancer
pathways in the motif ranking procedure. Additionally, while the top motifs in terms of
prognostic and diagnostic capacity were the main focus of this discussion, all of the other
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high-scoring motifs in different weighting scenarios (Supplementary Table S4) represent
potential candidates for playing significant roles in the pathology of GC and are encouraged
to be further explored. Finally, this investigation was carried out entirely in silico, and
subsequent wet-lab experiments are necessary for further validation of the results.

Overall, the current study took advantage of the biological relevance of both co-
expression modules and network motifs through the combination of their identification
methods in an end-to-end analysis workflow. Exploiting the abilities of WGCNA, a multi-
objective motif scoring function, and machine learning approaches, we identified combi-
nations of mRNAs and regulatory miRNAs with considerable prognostic and diagnostic
capability. These results highlight the central roles of MAPK, Hh, and cGMP/cAMP signal-
ing in the pathology of the EMT subtype of GC and provide an unprecedented picture of
rewired signaling circuits that possibly contribute to the phenotypes observed in tumors
of this subtype. Additionally, the identified co-expression modules and the large number
of characterized motifs provide an opportunity for further exploration of this subtype of
gastric tumors through various study designs.
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