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Abstract: (1) Background: MicroRNAs (miRNAs) are involved in a variety of biological processes,
such as cell proliferation, cell differentiation, and organ development. Recent studies have shown
that plant miRNAs may enter the diet and play physiological and/or pathophysiological roles in
human health and disease; however, little is known about plant miRNAs in chickens. (2) Methods:
Here, we analyzed miRNA sequencing data, with the use of five Chinese native chicken breeds and
six different tissues (heart, liver, spleen, lung, kidney, and leg muscle), and used Illumina sequencing
to detect the expression of plant miRNAs in the pectoralis muscles at fourteen developmental stages
of Tibetan chickens. (3) Results: The results showed that plant miRNAs are detectable in multiple
tissues and organs in different chicken breeds. Surprisingly, we found that plant miRNAs, such as
tae-miR2018, were detectable in free-range Tibetan chicken embryos at different stages. The results of
gavage feeding experiments also showed that synthetic tae-miR2018 was detectable in caged Tibetan
chickens after ingestion. The analysis of tae-miR2018 showed that its target genes were related to
skeletal muscle organ development, regulation of mesodermal cell fate specification, growth factor
activity, negative regulation of the cell cycle, and regulation of growth, indicating that exogenous
miRNA may regulate the development of chicken embryos. Further cell cultures and exogenous
miRNA uptake assay experiments showed that synthetic wheat miR2018 can be absorbed by chicken
myoblasts. (4) Conclusions: Our study found that chickens can absorb and deposit plant miRNAs
in various tissues and organs. The plant miRNAs detected in embryos may be involved in the
development of chicken embryos.

Keywords: chicken; plant miRNAs; expression; miR2018

1. Introduction

MicroRNAs (miRNAs) are small, non-coding RNAs which have a vital role in the post-
transcriptional mechanism by guiding protein-RNA complexes toward mRNAs [1]. Studies
showed that both plant and animal miRNAs are involved in essential roles in development,
aging and disease, and the shaping of the transcriptome of many cell types [2-5]. Some
studies indicate that a part of miRNAs can exchange between host and parasites and
regulate exogenous gene expression [6-9]. These reports showed the possibility of cross-
species regulation by miRNA. In addition, plant miRNAs are very common and have been
detected in the sera, feces, and tissues of animals [10]. Recent studies have shown that
mature plant miRNAs can be absorbed through mammalian digestion and perform cross-
species gene regulation [11,12], such as maize-derived miRNAs which could be detected in
porcine tissues and serum after feeding fresh maize to pigs [12]. Moreover, these exogenous
plant miRNAs in the maternal system can even be transferred to the fetus and directly
regulate fetal gene expression [13]. Plant miRNAs show uncontrolled dissemination after
they are absorbed into animals’ bodies. These reports demonstrate that the cross-species
regulation of plant miRNAs is a widespread phenomenon.
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Food-derived plant miR168a is found in the sera of mammals and regulates the ex-
pression of low-density lipoprotein receptor adapter protein 1 (LDLRAP1) in the liver [14].
MiR159 is abundant in broccoli and can inhibit cancer growth in mammals by targeting
transcription factor 7 (TCF7) [15]. Fungal hyphae can be specifically silenced by miR166
and miR159, which are from cotton plants as the response to infection with Verticillium
dahlia [16]. The C. campestris miRNAs may act as virulence factors and regulate host-gene
expression during parasitism [17]. A honeysuckle encodes the miRNA, miR2911, which can
directly target influenza A viruses in vitro and in vivo [18]. The plant miRNAs in beebread
can decrease body and ovary size in bee larvae, thereby delaying larval metamorphosis
development and inducing larvae development into worker bees [19]. Food-derived ginger
exosome-like nanoparticles can be taken up by the mice gut microbiota (Lactobacillaceae)
and contain ginger miRNAs that target various genes in Lactobacillus rhamnosus [20]. How-
ever, the expression and potential function of plant miRNAs in chickens has not been
explored yet.

Free-range is a term that refers to a method of animal husbandry where farm animals
are allowed to move around outside and are not kept in cages; it is a more animal-friendly
way of farming. Especially in China, native chicken breeds are adapted to free-range
breeding, and long-term farming civilization has also retained this native breeding method.
Furthermore, chickens can be raised in the mountains, woods, and grasslands. Free-
range chickens are assumed to consume low to moderate levels of pasture, which improves
intestinal microbiome and health, and microbial cellulases and hemicellulases may improve
the nutritive value of cereal-based diets [21,22]. The long-term intake of plants and even
Chinese herbal medicines promote the utilization of probiotics or prebiotics for digestive
tract health [23,24]. On a more microscopic level, plant miRNAs in food enter the body to
improve the healthy growth and meat flavor of chickens.

In this study, we focused on free-range chickens whose foraging behavior is unre-
stricted. We collected and examined various tissues and organs of five Chinese native
free-range chicken breeds and detected the expression of plant miRNAs through compar-
ison to the mature miRNAs of four different common edible plants, which were wheat,
rice, maize, and soybean. The results showed that exogenous plant miRNAs were de-
tectable in multiple tissues and organs of these free-range chickens. Even in embryos,
plant miRNAs, such as tae-miR2018, were also detected to have a high expression level.
Functional analysis of tae-miR2018 showed that it might be involved in chicken embryo
development regulation.

2. Materials and Methods
2.1. Sample Preparation and Small RNA Sequencing

A total of 20 pectoralis samples were collected from 7 development stages (at the age
of 1 day, 36 days, 100 days, 2 years, 5 years, 8 years, and 12 years, respectively) from free-
range Tibetan chicken. Meanwhile, we collected 21 free-range Tibetan chicken pectoralis
embryo samples, which included 7 embryo stages (chick embryos at 5,7, 9, 12, 15, 18, and
20 days of incubation, respectively). Except for the 12-year-old Tibetan chickens, which
only consisted of two individuals, the other stages all had three replicates. These chickens,
raised in the open woodland, consume food freely from their environment and receive a
supplementary feed in the form of grains, such as rice, corn, and soybeans. In addition, a
lot of fixed sinks were placed to provide clean drinking water. The total RNA was isolated
from pectoralis samples by the standard TRIzol method [25] and sequenced on the Illumina
HiSeq 2500 (Illumina Inc.; San Diego, CA, USA). To explore plant-derived miRNAs in
different chicken breeds, we also downloaded the miRNA transcriptome data of different
breeds of free-range chickens from NCBI. The sample information used in this study is
listed in Table 1.
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Table 1. The summaries of sample information.

Chicken Breed Tissues Number NCBI Access Age
Number
Heart 3 >200 days
Liver 3 >200 days
Tibetan chicken Spleen 3 >200 days
(TC) Lung o PRINASLSSY >200 days
Kidney 3 >200 days
Leg muscle (Tibialis anterior) 3 >200 days
Heart 3 >200 days
Liver 3 >200 days
Qingyuan chicken Spleen 3 >200 days
Qy) Lung 2 PRINA511987 >200 days
Kidney 3 >200 days
Leg muscle (Tibialis anterior) 3 >200 days
Xmghzlxag?mken Pectoralis muscle 2 PRINA266323 7 Weeks
- Fat (Abdominal adipose tissue) 4 PRJNA528858 6, 14, 22 and 30 weeks
Gushi chicken (GS) Pectoralis muscle 4 PRINA516961 6,14, 22 and 30 weeks
Lushi chicken (LS) Liver 6 PRJNA299589 20 and 30 weeks
Embryo stage (5,7, 9,
21 PRINA699998 12,15, 18 and 20 days)
leet(aﬂlrﬂlcc)hllcken Pectoralis muscle After hatching (1, 36,
20 PRINA699998 100 daysand 2,5, 8
and 12 years)
Broiler (ROSS308) skeletal muscle 24 PRINAS5les45 ~ mbryostage (10,13,

16 and 19 days)

! Represented data generated in this study. Data of other breeds were downloaded from NCBI. The Gushi chicken
is a domestic Chinese breed in Henan, and it is often used for breeding and production. Lushi chicken is one of
the three best breeders in Henan. It is an ancient chicken breed suitable for mountain stocking. Lushi chickens
are light, sturdy, and resistant to rough feeding. The Qingyuan and Xinghua chickens are indigenous chicken
breeds in Guangdong that grow in beautiful mountains. Mainly, it is the mountain and forest chicken, and, in the
mountain forest, slopes run all day to feed.

2.2. Analysis of lllumina Sequencing Data

Fifty miRNA-seq data from five Chinese native free-range chicken breeds and twenty-
four miRNA-seq data of ROSS308 were also downloaded from the National Center for
Biotechnology Information (NCBI database, https:/ /www.ncbi.nlm.nih.gov/ (accessed on
10 March 2020)) for analysis. The sample information was listed in Table 1. All samples
were sequenced on [llumina HiSeq 2500. A total of 115 samples were used for subsequent
analysis. Trim Galore (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
(accessed on 20 March 2020)) was employed to remove the adapter and low-quality reads
(trim_galore -output_dir Trim_galore_out —phred33 —length 20 —quality 20 —stringency
1 seq.fasq.gz). The miRNA detection was performed through Bowtie [26]. We had made
two mapping works. The clean data was first to alignment with mature chicken miRNA
data that was downloaded from miRbase (http://www.mirbase.org/ (accessed on 23
March 2020)). Then the unmapped reads were mapped to the mature miRNA data of
4 different common edible plant organisms, Triticum aestivum (tae), Oryza sativa (osa), Zea
mays (zma), and Glycine max (gma), which were also download from miRbase. RNAhy-
brid [27] was used to do a prediction of miRNA target genes with the main screen-
ing condition e < —25 kcal/mol and p value < 0.01. In consideration of the frequent
noncanonical regulation of miRNA-mRNA [28] and the uncertainty of the function of
plant miRNAs in animals’ bodies, we mapped the seed sequences of plant miRNAs to
the integrated mRNA sequences of chickens that were downloaded from UCSC (http:
/ /hgdownload.soe.ucsc.edu/downloads.html (accessed on 25 March 2020)). The target
gene set enrichment was performed with metascape [29]. Because there is no chicken
database in metascape, we mapped the target genes to human homologous genes for
enrichment analysis.
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2.3. Animals and Gavage Feeding

The experimental animals were Tibetan chickens, a native poultry breed, with a small
body size of a type this is unique to the Qinghai-Tibet Plateau. The bird is distributed at an
altitude of 2200-4100 in semi-agricultural and semi-pastoral areas. Animal experiments
were carried out in compliance with animal care protocols and all efforts were made to
minimize suffering. The protocol was approved by the Institutional Animal Care, and the
Use Committee (IACUC) of Sichuan Agricultural University approved the study. Chickens
were cage-reared and fed with compound feed with at least 16.5% crude protein and 3.5%
crude fat and at most 6.5% crude fiber and 7.4% total ash. Furthermore, it contained
0.9-1.8% calcium, 45% soybean meal, and 0.50% vitamin premix. All diets were treated
with high-temperature puffing, and the water was boiled at a high temperature to ensure
the experimental chickens were not exposed to exogenous plant miRNAs. The chickens at
42 days of age were fed synthetic miR2018 (1 nmol/kg) by gavage after fasting overnight.
After a fixed time interval (i.e., 1 h, 2 h, 3 h, and 4 h), three chickens were euthanized
directly. Two tissues (liver and pectoralis) were collected, and the total RNA was extracted.
To determine the level of miR2018 in each sample, qRT-PCR was used.

2.4. Cell Culture and Exogenous miRNA Uptake Assay in Cultured Cells

Chicken myoblasts were collected from the 10th day of the chicken embryonic stage
and cultured in DMEM/F12 (Hyclone, Cat. No. SH30023.01), supplemented with 15%
FBS and 1% penicillin—streptomycin at 37 °C with 5% CO,. After the second passage, the
myoblasts were exposed to a medium with synthetic miR2018 (40 pmol/mL) for different
periods of time (i.e., 1 h, 2 h, 3 h, and 4 h). Before collecting the cells, the cells were incubated
with a medium that was FBS-free and contained 0.2 mg/mL RNase A for 1h to digest the
extracellularly attached miRNAs. Then the cells were collected and used for qPCR.

3. Results
3.1. Plant miRNAs Are Detected in Multiple Tissues and Organs of Free-Range Chickens

Through the investigation of the small RNA expression profiles in various tissues
and organs, we found that exogenous plant miRNAs were widely observed in free-range
chickens. The correlation of expression patterns among all samples in this study showed
samples from the same tissue or breed exhibited a similar expression map (Figure 1a).
A total of 3268 plant miRNAs with at least one read presented in the sample, including
2656 rice miRNAs, 278 soybean miRNAs, 251 maize miRNAs, and 83 wheat miRNAs, were
identified. Next, we investigated the distribution of plant miRNAs in each sample and
found that several plant miRNAs were ubiquitous within the selected samples. Illumina
sequencing revealed that 15 known plant miRNAs were detected with more than 100 reads
in more than 10% of the chicken samples (Figure 1b). Among them, 14 plant miRNAs were
identified from O. sativa (rice), and the remaining miRNAs were from T. aestivum (wheat).
These plant miRNAs were widely present in various tissues and organs.

For the Tibetan chickens and the Qingyuan chickens, there were six tissues and
organs from each chicken, and we found that the reads of the fifteen plant miRNAs
were much higher in the liver than in the other tissues and organs (Figure 1). In the
livers of the Qingyuan chickens, up to 5000 reads of rice-miRf10420-akr were found; this
miRNA exhibited the highest abundance among the detected plant miRNAs and was more
abundant than most of the chicken miRNAs detected within the samples. In addition to
rice-miRf10420-akr, we focused on the miRNA wheat miR2018 (tae-miR2018). It has been
reported that tae-miR2018 can be detected in human serum [30], and up to 1500 reads were
detected in liver samples of the Lushi chickens.

3.2. Plant miRNAs Are Present in Chickens of Different Ages

To explore the expression of plant miRNAs in chickens across different ages, we
collected 41 muscle samples of free-range Tibetan chickens, 21 embryo samples, and
20 post-hatch samples. The samples involved 14 chicken developmental stages. As ex-
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pected, exogenous plant miRNAs were widely distributed in the muscle of Tibetan chick-
ens. A total of 1033 plant miRNAs, including 760 rice miRNAs, 122 soybean miRNAs,
114 maize miRNAs, and 37 wheat miRNAs, with at least one read present in the sample
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Figure 1. Expression scheme of plant miRNAs in different chicken breeds and tissues. (a) Spearman’s
correlation heatmap of the plant miRNA expression among different chicken breeds and tissues.
(b) Mean expression levels (reads counts) of 15 plant miRNAs were detected in 7 tissues or organs
from 5 Chinese native free-range chicken breeds. Note: O. sativa (rice, osa), T. aestivum (wheat, tae).

To further identify the influential plant miRNAs, we screened out the miRNAs with
more than 40 reads present in the sample and, finally, obtained 33 plant miRNAs, mainly
including members of the miR159 and miR166 families, osa-miRf10267-akr, osa-miRf11138-akr,
o0sa-miRf11479-akr, and tae-miR2018. Among these, miR159 and miR166 have been found in
mammalian serum [14,15]. Meanwhile, miR159 has proven to have a function in regulating
mammalian gene expressions [15]. Furthermore, tae-miR2018 has also been found in human
serum and was ubiquitously observed in free-range chicken tissues.

Most surprisingly, plant miRNAs such as tae-miR2018 and osa-miRf11479-akr were
detected in the embryos of Tibetan chickens and showed regular expression patterns
between embryo samples and post-hatch samples (Figure 2a). Among all the detected
plant miRNAs, tae-miR2018 and osa-miRf11479-akr had relatively high abundance and were
detected in all free-range chickens. Up to 40 copies of tae-miR2018 were found in 27 Tibetan
chicken samples. Moreover, up to 40 copies of osa-miRf11479-akr were found in 19 Tibetan
chicken samples, and osa-miRf11479-akr had higher read counts in the post-hatch samples
than in the embryo samples. In contrast to osa-miRf11479-akr, tae-miR2018 showed the
opposite distribution and had higher read counts in the embryo samples, and tae-miR2018
also showed not less than 50 reads in these post-hatch samples.

For comparison, we collected miRNA-seq data for 24 ROSS308 broiler embryos at
4 embryonic development stages that came from a parental line of ROSS308 broilers fed
with commercially manufactured feeds. The analysis showed that plant miRNAs were rare
or not observed in these samples. In addition, tae-miR2007 exhibited the highest expression
level (only 7 reads) among all the detected plant miRNAs, and osa-miRf11479-akr was not
detected in the ROSS308 embryo samples (Figure 2b). Only one read of tae-miR2018 was
found in the thirteen-day embryo samples (Figure 2c). The expression levels of these plant
miRNAs were too low to be reliable.
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Figure 2. Expression of plant miRNAs across different chicken developmental stages. (a) Heatmap
showing the expression of plant miRNAs with more than 40 reads. Expression levels (read counts)
of 0sa-miRf11479-akr (b) and tae-miR2018 (c) at 14 chicken developmental stages. Note: ‘E’, ‘D’, and
Y’ indicate the sampling times in ‘embryonic days’, ‘days after hatching’ and “years’, respectively.
Expression of plant miRNAs in Ross301 chicken feed without exogenous plant miRNA is also shown.

3.3. Wheat-miR2018 May Regulate the Development of Chicken Embryos

Previous studies [14,15,19] have reported that plant miRNAs present in animal or-
gans are able to perform cross-species RNAi through a similar AGO protein-correlated
mechanism. These results indicate that plant miRNAs can regulate animal genes via the
high degree of complementarity between miRNAs and target RNAs. Considering the high
expression levels of tae-miR2018 in the free-range Tibetan chicken embryo samples, we
next investigated the function of tae-miR2018. We first performed bioinformatic analysis to
identify any chicken genes matched to tae-miR2018. RN Ahybrid was employed to predict
the target genes of tae-miR2018. Metascape was then employed to perform GO and KEGG
enrichment analyses of the targeted genes of tae-miR2018.

The top 20 enrichment clusters of wheat-miR2018 are shown (Figure 3). These clusters
contained 100 GO terms and 3 KEGG pathways. The enrichment clusters were ranked
according to significance (significance, p value), and the top three clusters were motor
learning, skeletal muscle organ development, and regulation of mesodermal cell fate
specification. These biological processes are closely related to embryonic development.
Forty-two target genes were associated with multiple biological processes, such as bone
morphogenetic protein receptor type 1A (BMPR1A). BMPR1A was involved in skeletal
muscle organ development, regulation of mesodermal cell fate specification, sex differentia-
tion, positive regulation of epithelial cell proliferation, regulation of membrane potential,
and regulation of growth. This result indicates that fae-miR2018 may affect the development
of chicken embryos.

3.4. Synthetic Tne-miR2018 Can Be Absorbed by Chicken Myoblasts and by Chickens In Vivo

To verify whether the exogenous plant miRNAs could be absorbed by chicken tissue
in vivo and in vitro, we isolated and cultured myoblasts from the offspring of commercial
broiler chickens. After incubation with synthetic tae-miR2018, the expression of tae-miR2018
in the myoblasts rapidly increased and then gradually decreased in a short period of time.
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Figure 3. Enrichment analysis of target genes of tae-miR2018. The top 20 enrichment clusters are
shown. The genes in each cluster are marked in the second circle. The third circle shows the
correlation degrees of the target genes and the pathways arranged by p value. The connections in
the chord diagram indicate that the corresponding gene is associated with multiple pathways and
GO terms.

Similar results were obtained from an in vivo experiment: After 12 h of fasting, we
assessed the levels of tae-miR2018 in the livers and pectoralis of chickens fed with synthetic
miRNA. The tae-miR2018 was undetectable in chickens fed normally. We normalized the
expression based on the expression level of U6. As shown in Figure 4, in the liver, an
increased expression level of tae-miR2018 was detected at 1 h post-gavage feeding. Then,
the expression level gradually decreased. In the pectoralis, the expression level showed a
trend of first increasing and then decreasing and reached its highest level 2 h after feeding.
The highest expression level of tae-miR2018 in the liver was 5 times higher than that in
the pectoralis.
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Figure 4. Expression levels of tae-miR2018. Relative expression levels of tae-miR2018 in myoblasts
(a) after incubation with synthetic tae-miR2018 and in the liver (b) or pectoralis (c) of chickens at the
indicated time points after gavage feeding of synthetic dietary miRNAs. One-way ANOVA with
the Tukey method was used to evaluate significance (p < 0.001); ‘h” means hour. Expression levels
of tae-miR2018 (d) and BMPR1A (e) in chicken myoblasts transfected with wild type, tae-miR2018
mimic, tae-miR2018 mimic, and inhibitor ncRNA constructs.

4. Discussion

MicroRNAs (miRNAs) comprise a class of 18-25 nucleotide single-stranded, non-
coding RNAs that are the smallest known carriers of gene-encoded, post-transcriptional
regulatory information in both plants and animals [31]. In the past few years, the debate
about whether plant miRNAs can be passively absorbed by mammals has continued. Previ-
ous studies have focused on plant miRNAs in mammals and many studies have shown that
plant miRNAs can be detected in mammals; these miRNAs have real potential to modulate
host gene expression [32-34]. In chickens, these local Chinese native breeds are mainly
free-range. They consume food freely from their environment and receive supplementary
feed in the form of grains, such as rice, corn, and soybeans, given the assumption that
some dietary plant miRNAs can be absorbed after ingestion and accumulate within chicken
tissues and organs. However, there is no study on the expression of plant miRNAs in
chickens. As shown in this study, we found that the plant miRNAs are widely expressed
across different developmental stages, tissues, and local Chinese chicken breeds.

The latest research shows that food-derived miRNA absorption occurs in the mam-
malian digestive tract, especially the stomach, and that low pH inhibits the activity of
RNases to protect food-derived miRNAs [35]. Compared to mammals, chickens have a
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shorter digestive tract. The digestive tract of chickens is also an acidic or weakly acidic
environment, and the pH of the crop, proventriculus, and gizzard are approximately 4 [36].
Therefore, plant miRNAs can easily enter the upper part of the digestive tract of chickens
and maintain their integrity. In classical physiology, the major functions of the proventricu-
lus and gizzard are believed to be to break down food through mechanical churning and
to secrete hydrochloric acid and pepsin rather than absorbing substances. However, we
found that exogenous miRNA can normally pass through the digestive tract of chickens
and be detected in the liver and pectoralis. O’Neill et al. indicated that following oral ad-
ministration of plant miRNA, the hostile environment of the gut posed significant barriers
to stability [37]. Zhang et al. reported that orally administered plant miRNAs were present
in the sera and tissues of animals, suggesting that they may also be resistant to enzymatic
digestion in the gastrointestinal tract (GI), and the packaging into microvesicles (MV) and
the methylation of plant miRNA may have a protective effect [14]. Recently, the group
identified the stomach as the primary site for dietary microRNA absorption and SIDT1 as
an RNA transporter that mediates dietary miRINA absorption in the mammalian stomach,
and the stomach’s highly acidic environment is crucial for the SIDT1-dependent absorption
of miRNAs [35]. We believe that the pattern of absorption of plant miRNAs in chickens
may not be the same as that in mammals and that the intestine could be the main organ for
the absorption of plant miRNAs in chickens. However, more in-depth research is needed
to prove this hypothesis.

Surprisingly, plant miRNAs were also detected in the pectoralis of Tibetan chicken
embryos. The expression level of tae-miR2018 was increased during the embryonic stage
(E1-E15) and was higher than the expression levels in the pectoralis of the chickens after
hatching. We believe that plant miRNAs could exist in the egg yolk and be protected in a
certain way. As the embryo absorbs nutrients from the egg yolk, the plant miRNAs could
be ingested by the embryo. Egg yolk is rich in a variety of lipids [38,39] and provides
a steady stream of nutrients for fertilized eggs. Some kinds of nutrients in the egg yolk
are synthesized endogenously and transported around the oocyte, such as some fatty
acids and lipoproteins. Approximately 60% of the lipids are synthesized by the liver in
poultry [40]. Approximately seven days before ovulation, oocytes grow rapidly. A wave of
lipid synthesis occurs in the poultry liver under the influence of estrogen. Some lipids are
synthesized and transferred to the ovaries [41]. We propose a potential explanation. In the
process of egg yolk formation, some plant miRNAs are transported to the ovaries along
with fatty acids synthesized by the liver. As the embryo develops, the plant miRNAs in
the egg yolk are absorbed and deposited in the chicken embryo. In the middle and late
stages of embryonic development, various organs gradually form. The exogenous miRNAs
are dispersed among the various organs. A study has shown that exogenous miRNAs in
humans and mice can be transferred through the placenta to the fetus [13]. We believe
that the embryonic development of free-range chickens may also be affected by similar
mechanisms. However, there are still problems related to the half-lives and stability of
exogenous miRNAs. Our results showed that the levels of exogenous miRNAs in the liver
and pectoralis decreased in a short time. Considering that free-range chickens can easily
intake plant miRNAs, the expression patterns of exogenous miRNAs may be different
between chickens and mammals.

The predicted function of targeted genes of tae-miR2018 showed that it might be
involved in the developmental regulation of chicken embryos. We further performed
tae-miR2018 transfection experiments in myoblasts and found that the expression level of
its target gene, BMPR1A, was significantly downregulated when tae-miR2018 was over-
expressed. After the addition of a tae-miR2018 inhibitor, the expression level of BMMPR1A
rebounded. BMPR1A is a member of the BMP family, which usually plays key roles in the
development of bone and cartilage [42], and some studies have shown that they can act
as cytokines in various biological processes, such as sex differentiation [43], embryonic
development [44,45], and angiogenesis [46,47]. As a receptor of BMP signals, BMPR1A
binds ligands to form a complex that regulates the expression of downstream genes. Studies
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have shown that BMPRIA is involved in adipogenesis [48], osteogenesis [49], and hair
follicle development [50]. In chickens, studies have found that BMP signals affect the inner
ear [51] and early eye development [52]. In any case, BMP signals and their receptors have
important influences on embryonic development. Further studies should be conducted and
explore the effects of exogenous plant miRNAs on the development of chicken embryos.
In total, here we found that plant miRNAs can be ingested by chickens and deposited
into various tissues and organs. More importantly, they can be transferred to chicken
embryos and may affect the development of chicken embryos. These findings will pro-
vide insights into the regulatory role of plant miRNAs in the growth and development of
domesticated animals.

5. Conclusions

In this study, using chicken as an animal model, we investigated whether there are
plant miRNAs in birds. Through bioinformatic analysis, we found that plant miRNAs can
be detected in multiple tissues and organs of multiple types in different chicken breeds,
such as Tibetan chickens, Qingyuan chickens, Gushi chickens, Lushi chickens, and Xinhua
chickens. Some plant miRNAs were detected with thousands of reads. In addition, plant
miRNAs were also found in the embryos of Tibetan chickens. The deposition levels of
wheat tae-miR2018 in the embryonic tissues were even higher than those in the pectoralis of
free-range chickens. In vitro cell culture experiments also showed that tae-miR2018 could
be absorbed by myoblasts. In summary, our research expanded the existing information
on cross-kingdom regulation by exogenous plant miRNAs, and further studies need to be
conducted to explore the regulatory function of these plant miRNAs in animals.
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