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Abstract: In the face of a growing global population, plant breeding is being used as a sustainable
tool for increasing food security. A wide range of high-throughput omics technologies have been
developed and used in plant breeding to accelerate crop improvement and develop new varieties
with higher yield performance and greater resilience to climate changes, pests, and diseases. With the
use of these new advanced technologies, large amounts of data have been generated on the genetic
architecture of plants, which can be exploited for manipulating the key characteristics of plants that
are important for crop improvement. Therefore, plant breeders have relied on high-performance
computing, bioinformatics tools, and artificial intelligence (AI), such as machine-learning (ML)
methods, to efficiently analyze this vast amount of complex data. The use of bigdata coupled with
ML in plant breeding has the potential to revolutionize the field and increase food security. In this
review, some of the challenges of this method along with some of the opportunities it can create
will be discussed. In particular, we provide information about the basis of bigdata, AI, ML, and
their related sub-groups. In addition, the bases and functions of some learning algorithms that are
commonly used in plant breeding, three common data integration strategies for the better integration
of different breeding datasets using appropriate learning algorithms, and future prospects for the
application of novel algorithms in plant breeding will be discussed. The use of ML algorithms in
plant breeding will equip breeders with efficient and effective tools to accelerate the development
of new plant varieties and improve the efficiency of the breeding process, which are important for
tackling some of the challenges facing agriculture in the era of climate change.

Keywords: artificial intelligence; bigdata; complex traits; data-integration strategies; deep learning;
ensemble learning; random forest

1. Introduction

The global population is growing exponentially, and this growth is placing increasing
pressure on the world’s resources [1]. The consequences of this exponential population
growth are severe, including the depletion of natural resources, the destruction of ecosys-
tems, and the exacerbation of poverty and inequality [2]. The current population of 8 billion
is already having detrimental effects on the planet, and, with the population expected to
reach 9.7 billion by 2050, these effects will only become more severe [1]. One of the most
concerning challenges that this population growth poses is ensuring that there is enough
food for everyone. The UN estimates that by 2050, global food demand will increase by
60% compared to what it was in 2010 [3]. Plant breeding, as one of the promising strategies
for improving food security in the near future, is known as a powerful tool for reducing
hunger worldwide. In recent years, plant breeding has been used to develop new varieties
of crops that are more resilient to environmental changes, pests, and diseases and can
produce higher yields [4,5], which in turn has resulted in increasing food production and
more productive farming systems.
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Plant breeding has come a long way from its earliest days. In recent decades, plant
breeding has undergone fundamental advancements, with many new technologies and
techniques, such as hybridization, genetic engineering, and molecular marker-based breed-
ing strategies, being developed to facilitate the development of superior varieties [6,7]. In
order to efficiently implement these techniques in plant breeding programs, plant breed-
ers need to collect and analyze a wide range of datasets, such as omics, for their target
traits. The application of omics in plant breeding has revolutionized the field of agricul-
tural biotechnology [8], which makes omics technologies the go-to tool for plant breeders
seeking to improve yield [9], increase stress tolerance [10], and develop new varieties of
crops [11]. Omics technologies refer to a group of interdisciplinary methods that involve
the analysis of large datasets generated from research in different omics fields such as
phenomics, genomics, transcriptomics, proteomics, and metabolomics [10]. By examining
the genetic makeup of plants, scientists try to identify traits that are beneficial for crop
production and then select for those traits in breeding programs [11]. For instance, genetic
sequencing of plants has allowed researchers to identify genes associated with important
traits, such as disease resistance. By selectively breeding plants with these desirable traits,
breeders can create new varieties of crops that are better suited to a particular environ-
ment [10]. Another promising application of omics technologies in plant breeding is the use
of gene-editing techniques such as CRISPR-Cas9 [12,13]. This technology allows scientists
to precisely “edit” the genes in plants, enabling them to introduce beneficial characteristics
into the genome without the need for expensive and time-consuming traditional breeding
approaches. Lastly, omics technologies can be used to identify and select gene combinations
that confer protective benefits [14]. For instance, scientists have used transcriptomics to
identify gene combinations that confer resistance to pests and diseases, allowing breeders
to develop plants better suited to particular stressed environments [15]. Overall, the appli-
cation of omics technologies in plant breeding has enabled breeders to develop improved
varieties of crops that are more productive, nutritious, and resilient. As this technology
continues to improve, it is likely to have an even greater impact on crop production in the
coming years.

With the increasing availability of omics and other high-throughput technologies,
plant breeding produces larger and more complex datasets requiring sophisticated compu-
tational methods and algorithms for better analysis and interpretation. High-performance
computing, bioinformatics tools, artificial intelligence (AI), and machine-learning (ML)
methods are being used to analyze complex data, allowing breeders to extract meaningful
insights from their data, develop more efficient breeding strategies, and better understand
the genetic bases of plant traits [16]. ML is a subset of AI that allows computers to learn
from data without being explicitly programmed. It is used in a variety of areas, from
medicine to finance, and is now being embraced by the agricultural industry to improve
plant breeding and cultivar development [17]. By leveraging ML algorithms, plant breeders
can precisely identify the key traits and characteristics of plants that are most beneficial for
their particular needs. As a result, breeders can more quickly develop new crop varieties
better suited to their environment and more resistant to potential threats. The integration
of ML in plant breeding programs is a growing trend in the agricultural industry, providing
more cost-effective and efficient strategies for breeding new varieties of crops [16].

While the potential benefits of using ML in plant breeding are enormous, some chal-
lenges need to be addressed before it can be widely integrated into breeding programs. ML
algorithms require large, high-quality datasets and, therefore, significant computing re-
sources [18]. ML algorithms, to some extent, are difficult to understand and interpret [18,19],
making it difficult for breeders, who are not necessarily experts in ML and large data anal-
ysis techniques, to trust the results and adjust their breeding strategies accordingly. In
addition, selecting the most appropriate ML algorithms for a given breeding program
and trait of interest is still controversial and challenging for many breeders who are re-
luctant to use and integrate ML algorithms into their breeding programs. Different ML
algorithms have different strengths and shortcomings, and often no single algorithm is
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suitable for all situations. In this review, we try to (1) define bigdata and review its bases,
(2) briefly explain the bases of AI, ML, and their related sub-groups, (3) elaborately explain
the bases and functions of some learning algorithms that have been frequently used in plant
breeding, (4) review recent advances in the integration of ML in plant breeding programs,
(5) briefly explain the three common data integration strategies suitable for combining
different breeding datasets using various learning algorithms, (6) review recent advances
in the integration of ML in plant breeding programs, and (7) provide future prospects for
using novel algorithms in plant breeding. The ultimate goal of the current review is to
provide a comprehensive overview of the use of bigdata and ML in plant breeding and to
discuss the potential challenges and opportunities associated with their use in this field.

2. What Is Bigdata in Plant Breeding?

Bigdata is a term used to describe massive volumes of structured and unstructured
data that are difficult to process using traditional statistical approaches [20]. Bigdata is
commonly defined by three main Vs: volume, velocity, and variety (Figure 1) [21].
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Volume refers to the sheer amount of data that should be processed in a research
project or program, usually expressed in terms of bytes, kilobytes, megabytes, gigabytes,
terabytes, etc. [22]. In the context of bigdata, velocity refers to the speed at which the data is
generated and should be processed to provide useful insights [23]. Velocity is a key factor
in determining the effectiveness of data analyses and the efficiency of data processing. As a
rule of thumb, the faster data are processed, the faster insights can be obtained from the
data. Data processing at a high velocity also allows for a more timely analysis of the data,
which can be used for decision making [23]. Variety refers to the diversity of data that
needs to be processed, which can come in a wide range of formats, including structured
(e.g., numerical data) and unstructured (e.g., texts and images) data [22].

Bigdata in plant breeding is the use of high-throughput technologies, such as omics,
to collect and analyze large volumes of data on plant characteristics and their interactions
with the environment [24]. This data is used to identify and improve desirable traits, such
as plant yield. Volume in plant breeding can include genetic analysis results, growth
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observations, and environmental data [25]. By tracking the volume of data produced,
breeders can identify the experiments that are the most productive and the areas of a
breeding process that require additional data [26]. Velocity in breeding datasets can help
researchers identify how quickly new data are being produced with different environmental
conditions, germplasms, and breeding materials, and if the rate of data generation is
fast enough to keep up with the pace of the breeding process [27]. By monitoring the
velocity of data generation, breeders can adjust their experiments or increase their data
collection efforts as needed [28]. Breeders often deal with a variety of datasets, ranging
from structured to unstructured datasets. Genomics datasets can be considered structured
datasets as the data are organized in columns and rows, and the information is stored
in a tabular format. On the other hand, unstructured datasets in plant breeding may
include field notes, images, photographs, and videos. These datasets are not necessarily
organized in columns and rows and are more difficult to analyze. However, they can reveal
valuable insights into a plant’s behavior and characteristics, which can help breeders select
promising genotypes. For example, a researcher may take notes and pictures to better
understand how a plant variety performs in different environmental conditions. Similarly,
photographs and videos can be used to observe a plant’s physical characteristics and their
responses to environmental stimuli.

In addition, bigdata in plant breeding can uncover new insights into the biology of
plants, such as genetic markers associated with specific traits, the yield of a particular crop
under different growing conditions, or the genes that can be used to develop new varieties
with specific characteristics [24]. The growth of bigdata has enabled plant breeders to study
interaction effects in more detail using online resources. For instance, DNA–DNA and
DNA–RNA interactions, which are very informative in plant breeding and cultivar devel-
opment, can be found in sources such as WheatExp [29], ZEAMAP [30], and RiceData [31].
Additionally, the exploration of transcription-factor (TF)–DNA interactions should be given
great attention in plant breeding in the near future. Different TF–DNA databases, such
as PlantPAN [32], JASPAR [33], and PlnTFDB [34], are available for detecting TF binding
sites in plants. Moreover, there are more than 100 databases that illustrate and integrate
protein–protein interaction (PPI) networks, such as the Predicted Rice Interactome Network
(PRIN) and the Protein–Protein Interaction Database for Maize (PPIM) [35,36]. Lastly,
metabolic interaction databases such as AraCyc [37], KEGG [38], and PlantCyc [39] provide
validated information on biological pathways in plants. As these databases are projected to
be improved in the upcoming years, they will play a key role in omics analysis [31].

One of the key steps in the use of bigdata in plant breeding is to efficiently analyze
the data using appropriate statistical and mathematical approaches, including statistical
techniques, AI, and ML algorithms [40]. By using appropriate data-driven approaches,
plant breeders can make better decisions about which “idiotype” varieties to breed and
which crops to cultivate. This will ultimately lead to more efficient and successful crop
production systems, which will affect food security and prevent global poverty. Some new
analysis approaches are explained in the following sections.

3. Artificial Intelligence at a Glance

Artificial Intelligence (AI) is the science of making machines and computer systems
“think and act like humans” [41]. AI has been gaining traction in recent years and is
being used in many different fields and industries, from human sciences and healthcare
to plant and animal sciences [41–43]. AI can be used to automate tasks, identify patterns
in large datasets, provide insights, and even make predictions [42]. In plant breeding,
AI technologies such as ML, robotics, and computer vision can be used to analyze large
amounts of data and identify patterns that can aid in selecting superior plant varieties with
desired characteristics [44]. Machine learning is a subfield of AI that focuses on developing
algorithms that can learn from data, identify hidden patterns, and make decisions [19].
Machine-learning algorithms can be used to build predictive models, recognize objects in
images, and control robotic systems [17,45]. Computer vision is another field of AI that
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focuses on developing algorithms that can recognize and identify objects in images and
videos [46]. Computer-vision algorithms can be used for tasks such as facial recognition,
object tracking, and image classification [47]. Robotics in AI focuses on the development
of autonomous robots [48]. Robotics is essential for AI applications that require physical
tasks, such as assembling parts, navigating spaces, or manipulating objects [49].

Robotics and computer vision have large applications in plant breeding, enabling
plant breeders to accurately monitor crop growth and progress in development as well as
identify and select plants with desirable characteristics [44,50]. So many sensors, robots,
and pipelines have been recently developed that the explanation of their capabilities is
beyond the scope of this review paper; however, to give an example, the BoniRob V2
robot was designed and developed from its early version (BoniRob) as a crop scout robot,
capable of measuring soil properties, characterizing plants based on their morphological
and spectral characteristics using multi-sensor applications, and providing a camera-based
solution for controlling weeds using local chemicals [51]. Thorvald II is another successful
robot designed to enable high-quality customization for a variety of environments, such
as open fields, greenhouses, and polytunnels. This allows for the quick application of the
robot for the given environment [52]. The successful use of computer vision and robotics
in soybean-root phenotyping was reported by Falk et al. [53]. ARIA 2.0 was developed
in their study to allow post-image-capture automation from soybean roots and eliminate
image-preprocessing steps, such as image cropping [53].

4. Machine Learning: Basis and Function

Machine learning, as an important subfield of AI, has been widely used in different
aspects of our lives, such as communication and agriculture, among many others [53,54]. In
agriculture, ML algorithms can be used for crop-yield prediction, crop-growth monitoring,
precision agriculture, and automated irrigation [8]. ML algorithms are typically divided
into three subgroups: supervised learning, unsupervised learning, and reinforcement
learning, which are extensively reviewed in Hesami et al. [14]; therefore, we provide only a
brief explanation of these subgroups in this review. In supervised learning, the algorithm is
trained on a labeled dataset to make predictions based on the data [55]. The model learns by
being given a set of inputs and associated outputs and then adjusting its internal parameters
to produce the desired output. Supervised learning is the most common subgroup of ML
algorithms that are frequently used in plant breeding to predict complex traits in an early
growth stage [56], detect genomic regions associated with a specific trait [40], and select
superior genotypes via genomic selection [4].

Unsupervised learning is used when data is not labeled, and the algorithm uses the
data to find patterns and similarities in the dataset on its own [57]. The model learns by
identifying patterns in the data, such as clusters or groups. In plant breeding, unsupervised
learning is usually implemented to find possible associations among genotypes within a
breeding population, design kinship matrices, and categorize unstructured datasets [57].
Reinforcement learning is another ML algorithm, in which the model is exposed to an envi-
ronment and receives feedback in the form of rewards or penalties based on its actions [58].
The model learns by taking actions and adjusting its parameters to maximize the total
rewards received. Reinforcement learning is quite a new area in plant breeding, and its
applications need to be explored more.

Several important factors need to be taken into account for the successful use of ML
algorithms in predicting a given complex trait. Factors include, but are not limited to, data
collection, pre-processing, feature extraction, model training, model evaluation, hyper-
parameter tuning, model deployment, and model monitoring [59,60]. These factors are
intensively reviewed in several studies and review papers [59–61]. In brief, (1) data collec-
tion is the process of gathering data from different sources (environments, genotypes, etc.)
in different formats, such as images, text, numerical/categorial datasets, or video, for use in
model training [28]; (2) the pre-processing step is defined as the cleaning, transforming, and
organizing of data to make it more suitable for ML algorithms [59]; (3) feature extraction is
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the process in which features/variables are extracted from the data to be represented in
a form that is more suitable for ML algorithms [18]; (4) model training uses different ML
algorithms to fit models to the data [40]; (5) model evaluation is the process of assessing
the accuracy and errors of the algorithm against unseen data [27]; (6) the hyperparameter
tuning step contains a second round of adjusting the parameters of tested ML algorithms to
achieve the best performance [14,45]; (7) model deployment is summarized as the process
of deploying a developed model in production, usually in the form of an application [61];
and (8) model monitoring is the process of tracking model performance over time to ensure
it remains accurate [40].

In plant breeding, data collection is an essential step involving the collection of data
for target traits from a wide range of environments, trials, and plant populations. Plant
breeders often work in different environmental settings in order to gain an accurate un-
derstanding of the genotype-by-environment interaction in different trials within each
environment. Additionally, they measure different traits in order to establish accurate
multi-trait breeding strategies, such as tandem selection, independent culling levels, and
selection index. As such, any collected data must be precise, accurate, and pre-processed
using various packages and software in order to be suitable for plant breeding programs.
Recently, the AllInOne R-shiny package was introduced as an open-source, breeder-friendly,
analytical R package for pre-processing phenotypic data [62]. The basis of AllInOne is
to utilize various R packages and develop a pipeline for pre-processing the phenotypic
datasets in an accurate, easy, and timely manner without any coding skills required. A brief
introduction to AllInOne is available at https://github.com/MohsenYN/AllInOne/wiki
(accessed on 15 February 2023). Feature extraction is another critical step in determining the
most relevant variables for further analysis. The recursive feature elimination of 250 spec-
tral properties of a soybean population revealed a significance of 395 nm, in addition to
four other bands in the blue, green, red, and near-infrared regions, in predicting soybean
yield [63]. This spectral band can be used to complement other important bands to enhance
the accuracy of soybean-yield prediction at an early stage. Furthermore, another study
investigated the potential of 34 commonly used spectral indices in anticipating the soybean
yield and biomass of a Canadian soybean panel, in which the Normalized Difference Vege-
tation Index (NDVI) was identified as the most pivotal index in predicting soybean yield
and biomass concurrently [56].

Plant breeding involves a series of tasks and data analyses that are carried out over
multiple years, and, therefore, repeatability and reproducibility are two important factors
to consider when establishing a plant breeding program. Plant breeders may be reluctant
to use sophisticated algorithms, such as ML algorithms, for analyzing their trials because
of the ambiguity regarding whether or not the results will be reproducible and repeatable.
Therefore, it is of the utmost importance to ensure proper model training and evaluation and
hyperparameter tuning, deployment, and monitoring when we develop an algorithm. To
further improve model training in plant breeding, larger datasets from different locations
and years, as well as plant populations with different genetic backgrounds, should be
collected [64]. Automated tuning methods can be used to optimize hyperparameters
in plant breeding datasets. As an example, grid search is a popular automated tuning
method, which is based on an exhaustive search for optimal parameter values [65]. Grid
search works by training and evaluating a model for each combination of parameter values
specified in a grid. It then selects the combination with the best results [65]. Bayesian
optimization is another automated tuning method that uses Bayesian probability theory
to determine the best set of parameters for a given problem [66]. Bayesian optimization
works by constructing a probabilistic model of an objective function based on previously
evaluated values. This model is then used to predict the optimal set of parameters for the
given problem [66]. It then evaluates the performance of the system with the predicted
parameters and updates the model with new information. This process is repeated to
maximally optimize the model’s performance for the given dataset. Bayesian optimization
is useful for optimizing complex problems with many variables or where the cost of
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evaluating the objective function is high [66]. As plant breeders work with different omics
datasets, all of which are categorized as bigdata context, the developed algorithm can be
exploited in cloud-based services such as the Google Cloud Platform to deploy models
at scale [67]. To ensure optimal performance, model performance should be monitored
over time and analyzed with metrics such as accuracy and precision, along with anomaly
detection, to identify areas of improvement [68].

There are other components/methods that are important in reducing possible errors
and increasing the ultimate accuracy of ML algorithms, including transfer learning, feature
engineering, dimensionality reduction, and ensemble learning. Transfer learning is an
ML technique in which a pre-trained model for a task is reused as the starting point for
a model on a second task [69]. Transfer learning reduces the amount of data and compu-
tation needed to train a model, and it is particularly helpful for improving the model’s
performance when the amount of training data for the second task is small [69]. Feature en-
gineering is the process of using domain knowledge of the data to create features (variables)
for the ML pipeline. Feature engineering is an informal topic, but it is considered essential
in applied machine learning [70]. Feature engineering can help increase the accuracy of
machine-learning models by creating features from raw data that help the model learn more
effectively and accurately. Dimensionality reduction is the process of reducing the number
of random variables under consideration by obtaining a set of principal variables [71]. It
can be divided into feature selection and feature extraction. Feature selection is the process
of selecting a subset of relevant features for use in model construction [9]. Feature extrac-
tion is the process of combining or transforming existing features into more informative
representations that are more useful for a given task [72]. Ensemble learning is an ML
technique that combines multiple models to create more powerful and accurate models.
Ensemble learning is used to improve the accuracy and robustness of ML models [9]. It
combines multiple weak learners to form a strong learner that can make more accurate
predictions than the single model. The most common ensemble-learning techniques are the
bagging, boosting, and stacking algorithms [9].

5. Machine Learning: Model Evaluation

One of the most important steps in exploiting ML algorithms for analyzing datasets
is to assess how well an ML algorithm performs on a given dataset [19]. The evaluation
process starts with the choice of splitting datasets into training, validation, and testing
datasets using the following methods: (1) train/test splitting, which involves splitting the
dataset into two parts, one for training and one for testing [19], in which models are trained
on the training set and then evaluated on the test set; (2) cross-validation, which involves
splitting the dataset into k subsets and then training and evaluating the model k times [73],
and, each time, using one of the k subsets as the test set and the other k-1 subsets as training
sets [73]; (3) the bootstrap method, which includes randomly sampling with replacement
from the original dataset, and then training and evaluating the model on the generated
samples [74]; and (4) leave-one-out cross-validation (LOOCV), which includes splitting the
dataset into n folds and then training and evaluating the model n times [75], and, each time,
using one data point as the test set and the other n-1 data points as training sets [75].

The choice of splitting datasets in plant breeding completely depends on the nature
of the datasets. Train/test splitting is useful when you have a large amount of data and
computational resources are not a concern [57]. This method is particularly useful for data
such as genetic markers and RNA sequences, which often possess a large number of data
points. By dividing the original dataset into separate training and testing sets, the potential
for bias is minimized, and each set will certainly have a wide range of samples [57,71].
Cross-validation, especially k-fold cross-validation, is a more robust method for evaluating
model performance as it provides an estimate of performance that is less dependent on the
specific random train-test split [27]. It is useful when we deal with datasets containing a
smaller amount of data (e.g., the development of phenotypic algorithms) or want to ensure
that the model is not overfitted towards a specific train/test split. LOOCV is a specific form
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of cross-validation where the size of the validation set is set to one, and the model is trained
on the remaining observations [76]. This method is useful when the dataset is small and
has limited data points. LOOCV can be used in plant tissue culture, one-location trials, or
greenhouse experiment datasets with a small number of genotypes [76,77].

In terms of measuring the performance of ML methods, there are several error eval-
uation methods that can be used to measure the overall performance of ML algorithms
for their prediction accuracies. Selecting an appropriate error evaluation method depends
on the type of outputs: regression or classification. In regression, the mean squared error
(MSE), the root mean squared error (RMSE), the mean absolute error (MAE), the coefficient
of determination (R2), and the Akaike information criterion (AIC) are the most common
error evaluation methods. MSE is a measure of the difference between predicted values
and true values [78]. It is commonly used as a loss function in regression ML algorithms
to measure the accuracy of a model’s predictions [78]. The MSE is calculated by taking
the average of the squared differences between the predicted estimates and true values.
A lower MSE indicates a better fit between the model and the data. Equation (1), for
calculating MSE, is shown below:

MSE =
∑n

i=1
(
Y′ −Y

)2

n
(1)

where Y′ represents the predicted value, Y stands for the observed value, and n stands for
the total number of observations.

RMSE measures how well a regression model fits the data [79]. It is calculated by
taking the average of the squared errors between the predicted values and the actual
values [79]. It is used as a measure of the accuracy of a regression model, and is calculated
using Equation (2):

RMSE =

√
∑
(
Y′ −Y

)2

n
(2)

R2-squared measures how much of the variance in the data is explained by the
model [80]. It ranges from zero to one, with higher values indicating a better fit, and
is calculated using Equation (3):

R2 =
SST − SSE

SST
(3)

where SST represents the sum of squares for the total, and SSE is the sum of squares for
the error.

MAE is a measure of the average magnitude of the errors in a set of predictions
without considering their direction [79]. It is the average of the absolute differences between
prediction and actual observation over the test sample, where all individual differences
have equal weight. MAE is the most common metric for regression models and is a good
general-purpose error metric, and is calculated using Equation (4):

MAE =
∑n

i=1
∣∣Y′ i −YI

∣∣
n

(4)

AIC is used to compare models and evaluate the performance of a regression model [81].
It is calculated by taking into account the number of parameters used in the model, the
quality of the fit, and the number of observations [81]. The lower the AIC, the better the
model. It is calculated by using Equation (5):

AIC = 2x− 2ln(L) (5)

where x stands for the total number of factors, and L represents the maximum number of
the likelihood function in the algorithm.
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In classification models, several methods, such as accuracy, precision, recall, and F1
score, are regularly used to determine how well a model is able to make predictions based
on different classes. The accuracy of an ML algorithm is a measure of how well it can
predict the classes for a given set of data [82]. This is usually expressed as a percentage and
is determined by dividing the number of correct predictions made by the total number of
predictions. Using precision, we measure the proportion of true positive predictions divided
by the total number of positive predictions. Precision is calculated using Equation (6) [83].
Precision measures how well a model is able to identify instances of a certain class, without
mistakenly identifying instances of other classes [82]. Recall in ML algorithms measures
a model’s ability to return relevant results for a given query [83]. To calculate recall,
the number of relevant results returned by the model is divided by the total number of
relevant results, as in Equation (7). Higher values of recall indicate that the model is able
to find more of the relevant results than lower values of recall. The F1 score is a measure
of the accuracy of a model, which is calculated as the harmonic mean of precision and
recall [63,83]. The range of F1 scores is between zero and one, where one is the best possible
score. F1 is calculated using Equation (8). F1 scores are often used as a metric to compare
the performance of different algorithms or configurations of the same algorithm [83].
Equations (6) through (7) are shown below:

Precision =
TP + TN

TP + FP + TN + FN
(6)

Recall =
TP

TP + FN
(7)

F1 score =
2× Precision× Recall

Precision + Recall
(8)

where TP stands for true positive samples, TN represents true negative samples, FP is false
positive samples, and FN stands for false negative samples in the confusion matrix.

6. Common ML Algorithms in Plant Breeding

During the past decade, different ML algorithms have been frequently used in plant
breeding research and programs. When it comes to using ML in plant breeding, each
algorithm has its own set of advantages and disadvantages, which are listed in Table 1.
As an example, multivariate adaptive regression splines (MARS) was used to attribute
the shoot quality, multiplication and leaf color responses of the three strawberry species
to their major tissue culture nutrients [84]. The MARS algorithm captured the significant
factors and their interactions needed to predict the optimal nutrient levels suitable for the
three strawberry species, which can be used as an alternative approach for tissue-culture
data analyses [84]. Therefore, it would be the breeders’ choice to select appropriate ML
algorithms for their breeding datasets. In this section, the bases of four commonly used ML
algorithms in plant breeding (support vector machines, random forests, artificial neural
networks, and ensemble learning) are briefly explained, and their overall advantages and
disadvantages are highlighted at the end.
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Table 1. The important attributes of different ML methods in plant breeding based on ranking (low,
medium, high, and very high).

ML Method Hyperparameter
Tuning

Overfitting
Risk Explainability Comparative

Accuracy Complexity Samples
Needed

Computation
Cost

Implementation
Time

Deep Neural Network Very high Low Low Very high Very high Very high Very high Very high
Artificial Neural

Network High High Low High High Medium High High
Random Forest High Medium High High Medium Low Medium Low

Non-linear (Kernel)
SVM High High Low High High High High High

Linear SVM High High Low High Medium High Medium Medium
Decision Tree Medium High High Medium Medium Medium Medium Low

Self-Organizing Maps High High Medium Medium High Medium Low Low
K nearest neighbor Medium High Medium Medium High Medium Low Low
Gradient Boosting Very high High Low High Very high Medium High Medium

Naive Bayes Medium Medium Medium Medium High Medium High Medium
Bayesian Network High Medium Medium Medium High Medium High Medium

Partial Linear
Regression Medium Low High Medium Medium High Medium Low

Logistic Regression Low High High Low Medium Medium Medium Low

6.1. Support Vector Machine

Support vector machines (SVMs) belong to supervised machine learning models that
are used for classification and regression (support vector regression) problems [85]. SVMs
are based on the concept of decision planes that define decision boundaries. A decision
plane is one that separates a set of objects that have different class instances (Figure 2). In
SVMs, a set of points in a given space are mapped so that the points of different classes are
divided by a clear gap that is as wide as possible [85]. The line that separates the classes is
the decision boundary. The distance between the decision boundary and the closest point
in each class is known as the margin (Figure 2). The points that lie on the margin are called
support vectors [86]. The aim of the SVM algorithm is to find the best possible decision
boundary or hyperplane that maximizes the margin between the two classes (Figure 2).
Support vectors are the crucial elements that help to determine the position and orientation
of the hyperplane [85,86].
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Zhao et al. [87] investigated the predictive performance of the SVM model using kernel
functions and hyperparameters in eight published genomic datasets on pigs and maize.
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Their results showed that SVM had a higher performance in comparison with the other
tested methods in terms of time and memory usage [87]. In another study, Griffel et al. [86]
showed that SVM algorithms utilizing near-infrared and shortwave infrared wavelengths
can be used to detect potato virus Y (PVY) with an accuracy of 89.8%, outperforming
current industry standards based on red, green, and blue wavelengths and traditional
computational methods, which yielded an accuracy of only 46.9%. Shafiee et al. [88]
investigated the potential use of support vector regression (SVR) with sequential forward
selection (SFS) for predicting grain yield in comparison with a LASSO regressor with an
internal feature selector using a hyperspectral reflectance dataset. The results showed
that SVR had the same performance in comparison with the other tested algorithms but a
higher computational burden. Therefore, the LASSO regressor was suggested to analyze
hyperspectral reflectance indices [88].

Despite the widespread use of the SVM algorithm in various studies, there is still some
controversy surrounding the successful application of SVM in the field of plant breeding,
which is rooted in its nature. SVM is effective in high-dimensional spaces, especially in
cases where the number of dimensions is greater than the number of samples [59]. It uses a
subset of training points in the decision function, so it is also memory efficient. SVM is also
versatile, in that different kernel functions can be specified for the decision function [85].
However, SVM does not perform well when the data set has more noise (i.e., target classes
are overlapping) [4,59,85]. SVM also cannot directly provide probability estimates, but
these can be calculated using an expensive five-fold cross-validation. In the case of having a
large, noisy dataset, it is recommended to use other ML algorithms, such as random forests
or neural networks [85].

6.2. Random Forest

Random forest (RF) is another common supervised ML algorithm used for both
classification and regression. RF combines multiple decision trees to produce a more
accurate and stable prediction. The algorithm randomly selects a subset of features from
the dataset and then builds multiple decision trees using the features [89]. The predictions
from each tree are then combined to form a more accurate prediction than any of the
individual trees (Figure 3). RF has the advantage of being able to handle complex datasets
with many features, making it a powerful tool for predictive analytics [90].
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Parmley et al. [91] reported the successful use of the RF algorithm in predicting soybean
seed yield using hyperspectral reflectance bands as the input. A panel of 292 unrelated
soybean accessions was studied across six environments to collect data on their phenomic
traits and seed yield, and RF was used to analyze the complex relationships among these
traits and yields. The results showed the benefit of using RF to identify a set of in-season
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phenomic traits that allow breeders to reduce their reliance on resource-intensive end-
of-season phenotyping, such as seed-yield harvesting. Similar results were confirmed
in a study conducted by Yoosefzadeh-Najafabadi et al. [63], in which they examined the
effectiveness of three popular ML algorithms (multi-layer perceptrons, SVMs, and RFs)
in predicting soybean seed yields using hyperspectral reflectance. The RF algorithm was
found to produce the highest yield classification accuracy with a value of 84% and was
subsequently used as the best classifier for the ensemble method. The results of this study
showed how soybean breeders can employ RF in an ensemble algorithm to efficiently
identify high-yielding genotypes from a large number of candidates using either full or
selected spectral reflectance at early growth stages. In another study, three decision tree
algorithms—chi-squared automatic interaction detector (CHAID), exhaustive CHAID,
and classification and regression tree (CART)—were used to predict the effects of minor
mineral nutrients on Corylus avellana L. cultivars [92]. Of the three algorithms, CART
was found to be the most accurate in terms of predicting minor nutrient levels [92]. In
an experiment, the effects on plant shoot quality of different levels of mineral nutrients
(calcium nitrate, ammonium nitrate, meso compounds, potassium sulfate, and minor
nutrients) were tested using a response surface methodology [93]. The data were analyzed
using CART, which determined cut-off values for the data and created interpretable data
trees [93]. The analysis revealed the efficiency of using CART to select the best shoot
quality and growth characteristics of a wild apricot [93]. Aside from the use of RF as a
supervised ML algorithm, the possible use of RF in unsupervised learning methods was
investigated by Shi and Horvath [94] in a human study. This research has demonstrated
that RF dissimilarity is an effective tool for clustering samples (tumors) based on input
marker expressions.

The key advantages of RF algorithms are their accuracy, stability, and ability to work
well with large datasets [89]. RF can handle a large number of input variables without much
tweaking and can identify important variables within a dataset. However, RF algorithms
are slow to create predictions once they are fully trained [90]. They are difficult to interpret,
meaning they are usually a black-box approach. Additionally, the random selection of
features means that its accuracy can vary greatly depending on the data, which makes RF
algorithms not well-suited for real-time predictions [89,90].

6.3. Artificial Neural Network

An artificial neural network (ANN) is a type of ML algorithm that is modeled after
the function of the human brain and can be used to solve complex problems [95]. ANNs
are built upon a set of interconnected nodes that mimic the behavior of neurons in the
brain [96]. Each node represents a mathematical function that takes a set of inputs and
produces an output (Figure 4). The output of one node is sent to other nodes in the network,
and the weights of the connections between nodes are adjusted based on the output of the
previous node (Figure 4) [95]. ANNs are widely used in ML algorithms because of their
ability to learn from the data [96].

Silva et al. [97] proposed a procedure for training networks with expanded data
sets and the use of statistical parameters to estimate the breeding values of genotypes in
simulated scenarios. In evaluating different artificial neural network configurations, the
results showed that the neural network model was superior to linear models for predicting
genetic values and had a high generalization performance in validation experiments [97].
The effectiveness of ANN in selection procedures was assessed with data from sugarcane
families [98]. The best ANN model tested in this study was proven to be accurate and
able to classify all genotypes correctly with no mistakes, thus replicating the selective
choice made by the breeder during the simulation of the individual best linear unbiased
predictor (BLUP). This highlights the ANN’s capability to successfully learn from training
and validation inputs and outputs [98]. The successful use of ANN for evaluating genetic
diversity in plants was assessed by Sant’Anna et al. [99], comparing ANN’s accuracy
with traditional methods. The results showed that ANN proved effective in classifying
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populations with both low and high levels of differentiation, even when the datasets had
low differentiation [99].
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was created using Excel, Microsoft Office 2021.

The major advantages of ANNs are their abilities to learn non-linear relationships
within a dataset, learn without prior knowledge, handle large amounts of data, and identify
patterns and trends in data [95,100]. However, ANNs are usually computationally intensive,
and it would be difficult to determine the right architecture. As a result, they are prone to
overfitting and local minima [96].

6.4. Ensemble Learning

Ensemble learning is an ML technique that combines multiple algorithms to create
more powerful models [101,102]. It combines individual predictions of multiple ML al-
gorithms to produce more accurate and robust predictions [103]. Ensemble learning can
be used in a variety of ML tasks, such as classification, regression, and clustering. It
is particularly useful in cases where individual algorithms may not be as accurate as a
combined model [103,104]. The main functions of ensemble learning in ML algorithms
include: (1) improving prediction accuracy—by combining multiple models, the perfor-
mance of the models are improved as they are able to capture different aspects of the
data [103]; (2) reducing variance—ensemble learning helps reduce the variance of predic-
tions by averaging out individual models and thus minimizing noise [105]; (3) handling
bias–variance trade-off—by combining different models, the bias-variance trade-off is mit-
igated as the models can capture different aspects of the data [104]; and (4) enhancing
interpretability—ensemble learning makes it easier to interpret the results of the individ-
ual models as they can be inspected to understand different aspects of the data [103,104].
Ensemble learning is also computationally efficient and fast, as it requires less training data
and can be used to train models quickly [105].

Different types of ensemble learning, such as bagging, boosting, stacking, and blend-
ing, are preferred based on different functions and sampling methods. Bagging combines
multiple weak learners to create a single strong learner (Figure 5). It uses bootstrap sam-
pling to create multiple datasets from the original dataset and then fits different models to
each of the datasets [104]. The final prediction is the average of all the predictions made
using the individual models. Boosting ensemble methods work by sequentially adding
predictors to an ensemble, each one correcting its predecessor (Figure 5) [105]. In the boost-
ing method, the first predictor is trained on the whole data set, and then each additional
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predictor is trained on a dataset that contains the mistakes of its predecessors [105]. The
predictors are then weighted in order to favor those that are more accurate. The goal is to
find the combination of predictors that will yield the best performance. Stacking combines
multiple models to generate a single stronger predictive model (Figure 5). The stacking
method involves training a base set of models on a training set, predicting the test set
with the base models, and then training a higher-level model on the predictions from the
base models as inputs [106]. The higher-level model is then used to make final predictions.
The main advantage of stacking is that it can combine the strengths of multiple models
to generate a more accurate prediction than any of the single models [106]. Stacking can
also be used to reduce overfitting, as the higher-level model can act as a regularizer. The
blending method is one of the most popular ensemble methods and involves training a
second model to learn how to combine the outputs of its constituent models (Figure 5) [107].
The blending model is typically trained using a supervised learning algorithm, such as
a decision tree. By combining multiple models in this way, the accuracy of the resulting
predictions can be improved [107]; however, it strongly depends on the nature of dataset
and applied individual models.
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The application of ensemble learning in plant breeding is less studied than the indi-
vidual ML algorithms. In a cattle-breeding study, an ensemble learning-based genomic
prediction model (ELGP) was developed by incorporating eight ML methods for pre-
dicting phenotypes from genotypes. The results showed that ELGP outperformed the
eight base learners for predicting milk yield, milk fat percentage, and somatic cell score
traits [108]. In the plant-breeding field, the use of ensemble algorithms in accelerating the
efficiency of genomic-related tools, such as a genome-wide associations study (GWAS)
and genomic selection, has been reported previously [109]. One study focused on five key
traits contributing to soybean yield, which were measured in a panel of 250 genotypes
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across 4 environments [110]; multi-layer perceptron, radial basis function (RBF), and RF
algorithms were used to predict the yield. RBF was found to be the most accurate algo-
rithm and was selected as the best classifier for an ensemble method based on the bagging
strategy (E-B), which improved prediction accuracy up to 10% in comparison with the
individual tested algorithms. In addition, by aliening E-B with a genetic algorithm (GA),
the researchers modeled the optimal values of yield components in an ideotype soybean
with improved yield [110]. In another study, Yoosefzadeh-Najafabadi et al. [4] indicated
that the E-B strategy could be used to enhance the accuracy of genome selection for soy-
beans. Using the E-B strategy and haplotype block datasets rather than full SNP datasets
for complex yield component traits can also improve the prediction accuracy of GS by up to
7% [4]. Overall, further research is necessary to assess the efficacy of ensemble algorithms
in predicting traits of interest using high throughput phenotyping and genotyping datasets
in plant breeding.

7. Data Integration Strategy

Data integration strategies in plant breeding are methods that are used to combine
data from multiple sources to gain a better understanding of the genetic and environmental
factors affecting the success of a breeding program [16]. These strategies can include the
integration of data from multiple trials, genotypic and phenotypic data, or data collected
using different omics approaches. By successfully integrating different datasets, breeders
can gain insights into the interactions among different molecules, pathways, and networks
and can have a better understanding of the underlying biological processes of a given char-
acteristic [28]. Additionally, data integration strategies can help identify novel biomarkers
and sources of data bias and improve the accuracy of findings [16,28].

A considerable amount of data has been gathered from various plant omics, but the
integration of these bigdata in plant breeding has not yet been thoroughly investigated,
which necessitates the development and use of multiple data integration approaches.
Conceptual, statistical, and model-based strategies are the most common data integration
strategies that can be used in plant breeding areas [111]. The conceptual integration strategy
is based on the principle of integration, which states that the whole is greater than the sum
of its parts [14,112]. It combines data from different sources to gain a more comprehensive
understanding of the biological concepts of a trait of interest [111]. The data is then
analyzed to identify patterns, relationships, and correlations that can be used to make
meaningful biological inferences. To use the conceptual integration strategy, breeders must
first identify the datasets relevant to their breeding goals and objectives. They must also
consider the quality of the data and the type of analysis that is needed. In the next step, the
data must be integrated and analyzed separately, and the breeder must counterpart their
results to identify meaningful biological insights. Finally, the results must be validated and
interpreted to draw meaningful conclusions.

Statistical integration is a data integration strategy that uses statistical methods to
combine multiple data sources into a single, integrated view [113]. It involves applying
statistical techniques to identify patterns and correlations among data from different sources
and to measure their impact on the overall dataset [111,113]. Statistical approaches include
the use of clustering algorithms, which can be used to group similar datasets together
and identify patterns in the data, or regression models, which can be used to identify
relationships between variables in different datasets [113].

Model-based integration is known as another data integration strategy that uses data-
driven models, such as ML algorithms, to represent the relationships between multiple
data sources [114]. This strategy is most useful when dealing with highly structured data,
as the model can be used to identify complex relationships among data elements [115]. This
approach can also be used to help identify data sources that are not linked by any common
attributes, allowing for a more comprehensive integration process [114].

Overall, the scale and complexity of breeding datasets pose significant challenges in
handling and developing high-performance computational strategies for their applications.
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To address these challenges, it is important to explore and evaluate different data integration
layers to determine which approach is best suited for a particular dataset.

Recent Advances in Integration Strategies

In the past decade, the use of ML algorithms has been increasingly integrated into
various aspects of plant breeding. These algorithms have been used in a variety of ways to
improve the efficiency and accuracy of plant breeding practices. One common application
of ML algorithms in plant breeding is using predictive analytics for processing images,
which involves using aerial or ground-based images to quickly and accurately identify
the presence or absence of specific characteristics in plants. This can be performed re-
motely, using images taken from a distance, or proximally, using images taken up close.
Fei et al. [116] explored the possible use of a low-cost, multi-sensor, unmanned aerial
vehicle (UAV) data fusion and ensemble learning for grain yield prediction in wheat using
five ML algorithms as follows: cubist, SVM, deep neural network, ridge regression, and
RF. Based on the results, the multi-sensor data fusion-based yield prediction showed a
higher accuracy compared to the individual-sensor data in each ML algorithm [116]. The
use of ensemble learning illustrates a further increase in accuracy with R2 values up to
0.692. Overall, the results proved that low-altitude UAV-based multi-sensor data could be
used for early-growth-stage grain yield prediction with high accuracy, using data fusion
and an ensemble learning framework. This can improve the efficiency of selection in large
breeding activities [116]. In another study, a robust and automatic approach was developed
for estimating the relative maturity of soybeans using a time series of UAV images [117].
An end-to-end hybrid model combining convolutional neural networks (CNN) and long
short-term memory (LSTM) was proposed to extract features and capture the sequential
behavior of time series data [117]. The results suggested that the proposed CNN–LSTM
model was more effective than the local regression method. Additionally, the study demon-
strated how this newfound information could be used to aid in the advancement of plant
breeding. Automated phenotyping is another application of ML in plant breeding, which
involves using sensors and other equipment to assess plant traits, such as yield, in an
efficient and cost-effective manner [118]. This can be used to identify the most promising
lines for further evaluation and to make informed decisions about which traits to breed
for [27].

ML algorithms are frequently used in genomic selection to identify the most promising
lines for further evaluation. Sandhu et al. [119] investigated the performance of two deep
learning algorithms, multi-layer perceptron and the convolutional neural network, in
comparison to the widely-used ridge regression best linear unbiased predictor (rrBLUP)
model. CV and independent validation, alongside different sets of SNP markers, were
employed to optimize the hyperparameters of the DL models, minimizing the root mean
square (RMS) in the training set and avoiding overfitting via dropout and regularization.
Results showed that the DL models achieved 0 to 5% higher prediction accuracy than
rrBLUP for all five traits, with multi-layer perceptron having a further 5% higher accuracy
than the convolutional neural network for grain yield and grain protein content. The
authors concluded that DL approaches provide better prediction accuracy for each trait,
and should be considered for use in large-scale breeding programs [119].

Another area in which the application of ML algorithms is expanding fast is in GWAS
and QTL analyses, which involve using genomic data to efficiently detect the genomic
regions associated with a trait of interest. This can be used to develop reliable genetic
markers for a marker-assisted selection strategy, which can be used to identify the most
promising lines for further evaluation in a breeding program. ML-mediated GWAS utilizes
advanced algorithms to analyze genetic data and identify single nucleotide polymorphisms
(SNPs) associated with a particular trait [120]. These algorithms provide variable impor-
tance measurements, which consider the interactions between SNPs and the main effects
of individual markers, and are more powerful than conventional GWAS for detecting
SNPs with small effects [120,121]. Variable importance methods such as linear and logistic
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regressions, SVM, and RF are well established in the literature and have been used to fur-
ther improve ML-mediated GWAS [16,120,122–125]. Tang et al. [126] have also introduced
a new genetic-level importance measure based on scaled variable importance for SNPs,
which defines the importance of each SNP as the mean or maximum importance of all
SNPs. They recommend using a percentage scale for estimating variable importance and
suggest using a global empirical threshold to provide the empirical distribution of a null
hypothesis. The number of repetitions and the level of significance (α) should be optimized
based on the genetic background, number of markers, distribution of the phenotypic data,
and number of data points.

Now, in the era of “Breeding 4.0”, the use of data analytics and technological ad-
vancements has allowed researchers to develop sustainable systems globally [127]. This
evolution has seen the utilization of prescriptive analytics to make informed decisions. For
the success of these initiatives, intentional and standardized data management is necessary
to harmonize multidimensional data from an organization and also facilitate community
integration for resource sharing [127]. In this era, ML algorithms will remain a key factor in
research and product development in agricultural industries [128]. In the upcoming phase,
Breeding 5.0, integrated technologies and bigdata will enable crop production systems to
determine the best genotype for any given environment [127]. Overall, ML algorithms have
been successfully integrated into different aspects of plant breeding and are expected to
continue to play an important role in the future of plant breeding.

8. Conclusions

ML provides a great opportunity to make plant breeding more efficient and predictable.
In this review, we tried to discuss and highlight the main concepts of ML in terms that are
relatable to plant breeding and discuss illustrative examples from conventional practices
in plant breeding. ML can be employed in almost every step of plant breeding, from
selecting appropriate parental lines for crosses to evaluating the performance of advanced
breeding lines across several environments. Although this review paper was limited to
a discussion on the applications of machine learning in conventional-based plant breed-
ing, high-throughput phenotyping, and genotyping, other breeding-based methods (e.g.,
in vitro breeding, Agrobacterium-mediated genetic transformation, and genome editing)
can also benefit from using ML methods. In general, the generation of large, high-quality
datasets is a key factor in the continuation of the successful implementation of ML in plant
breeding programs. To plan and generate large datasets that can be used for meta-analysis,
it is important for the scientific plant breeding community to agree on some fundamental
principles, such as data type, content, and data format, to ensure that data generated
by different breeders and institutions are compatible and made available, ideally in an
ML-readable format. The availability of such datasets can provide a forward-thinking aid
to ML-mediated plant breeding and can hopefully overcome many of the challenges faced
by plant breeding programs.
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