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Abstract: Glioblastoma (GBM) is an aggressive brain cancer with a median survival time of 14.6 months
after diagnosis. GBM cells have altered metabolism and exhibit the Warburg effect, preferentially
producing lactate under aerobic conditions. After standard-of-care treatment for GBM, there is an
almost 100% recurrence rate. Hypoxia-adapted, treatment-resistant GBM stem-like cells are thought
to drive this high recurrence rate. We used human T98G GBM cells as a model to identify differential
gene expression induced by hypoxia and to search for potential therapeutic targets of hypoxia adapted
GBM cells. RNA sequencing (RNAseq) and bioinformatics were used to identify differentially
expressed genes (DEGs) and cellular pathways affected by hypoxia. We also examined expression
of lactate dehydrogenase (LDH) genes using qRT-PCR and zymography as LDH dysregulation
is a feature of many cancers. We found 2630 DEGs significantly altered by hypoxia (p < 0.05),
1241 upregulated in hypoxia and 1389 upregulated in normoxia. Hypoxia DEGs were highest
in pathways related to glycolysis, hypoxia response, cell adhesion and notably the endoplasmic
reticulum, including the inositol-requiring enzyme 1 (IRE1)-mediated unfolded protein response
(UPR). These results, paired with numerous published preclinical data, provide additional evidence
that inhibition of the IRE1-mediated UPR may have therapeutic potential in treating GBM. We
propose a possible drug repurposing strategy to simultaneously target IRE1 and the spleen tyrosine
kinase (SYK) in patients with GBM.
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1. Introduction

Glioblastoma multiforme (GBM) is the most common primary brain cancer, with an
incidence of 3.19 per 100,000 people in the US, corresponding to ~13,000 new cases per
year [1]. GBM has a very poor prognosis after diagnosis with a one-year survival rate of 42%,
a five-year survival rate of 5% and a mean survival of 14.6 months [2]. GBM tumor cells
exhibit an extensive variety of metabolic alterations that contribute to their proliferation and
invasiveness [3]. The GBM tumor microenvironment is also characterized by large regions
of hypoxia associated with increased expression of hypoxia-inducible factors (HIF) and
downstream metabolic re-programming [4]. Intra-tumoral hypoxia is thought to contribute
to the maintenance of a subpopulation of hypoxia-adapted stem cell-like GBM cells that
are particularly aggressive and resistant to multimodal treatment with surgical resection,
chemotherapy, and radiation [5]. Multiple mechanisms have been implicated in the hypoxia-
induced maintenance of this tumor subpopulation, including upregulation of pathways
involved in angiogenesis, immunosuppression, and glucose metabolism [5]. Single-cell
RNA sequencing (RNAseq) from primary tissue has demonstrated variations in patterns of
intra-tumoral gene expression, including signatures associated with hypoxia [6]. Hypoxic
signatures were shown to be more prominent in GBM tumor core regions, which are
thought to be more oxygen poor than the “migrating front” cells in surrounding tissue [7].
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While many studies are exploiting primary tissue samples and single-cell omics, these
high-throughput methods are costly and provide large datasets that require labor intensive
analyses. We have focused this study on a simpler model, namely the human GBM cell
line T98G. T98G is rare in that, as a transformed cell line, it has been shown to retain both
normal and neoplastic characteristics. This makes it a useful model for studying molecular
mechanisms related to cell cycle progression, anchorage independence and unlimited
proliferation. T98G cells are neoplastic in that they show anchorage independence and
immortal cell growth, but when in low density and at stationary phase, they arrest in G1 as
normal cells would [8]. This property is like that of hypoxia-adapted GBM stem-like cells
that can arrest during treatment but reactivate to cause recurrence. Thus, we used T98G
cells as a model for hypoxia-induced gene expression to search for potential therapeutic
targets for hypoxia-adapted GBM cells. Of note are recent studies that demonstrate that
newly derived human GBM cells have similar gene expression patterns to the T98G that was
developed over 50 years ago. These data suggest that the transformed cellular phenotype
is relatively stable from the time of initiation and that time in culture is less deleterious to
the original tumor gene expression phenotype than was once thought [9].

We performed global total RNAseq of T98G cells comparing culture in hypoxia to
normoxia to identify hypoxia-upregulated differentially expressed genes (DEGs) and used
informatics to identify pathways that may represent potential targets for therapeutic in-
tervention in human GBM. We report that DEGs related to the endoplasmic reticulum
are highly upregulated by hypoxia including the IRE1-mediated UPR, a stress pathway
induced by hypoxia and upregulated in many cancers. The IRE1 protein is encoded by
the ERN1 gene and knockdown of this gene in hypoxic U87 GBM cells shows complex
regulation of many downstream targets important for cancer cell survival and prolifer-
ation [10]. We suggest that targeting this pathway could have therapeutic potential in
treating human GBM.

Hypoxia-induced changes in lactate dehydrogenase (LDH) gene expression in cultured
T98G cells were examined using native gel zymography electrophoresis and quantitative
reverse transcription polymerase chain reaction (qRT-PCR). LDH is an enzyme critical for
the conversion of pyruvate to lactate in hypoxic environments, and the genes encoding
the protein subunits of LDH isoenzymes are dysregulated in many cancers, including
GBM [11]. Measuring LDH gene expression via qRT-PCR also allowed us to compare these
results to those for LHD gene expression obtained using RNAseq.

2. Materials and Methods
2.1. GBM Cell Line and Culture

The human glioblastoma cell line T98G was obtained from the American Type Culture
Collection (ATCC, Manassas, VA, USA). Cells were seeded in T150 flasks and grown
according to ATTC protocols. In brief, the seed vial from ATCC was placed into 10 mL
culture media consisting of Eagle’s Minimum Essential Medium (EMEM) +glutamine
supplemented with 10% fetal bovine serum +1% gentamicin (all reagents from Sigma-
Aldrich, St. Louis, MO, USA) at 37 ◦C in a humid tissue culture incubator at 5% CO2. Cells
were washed and fed 10 mL fresh culture media every 24 h. The wash protocol was to
remove the used media by gentle suction and replace it with 6 mL phosphate-buffered
saline (PBS) for 5 min with gentle rocking. This step was repeated, the wash solution
removed by suction and 10 mL fresh medium was applied.

Cells were cultured to ~90% confluence, after which they were washed twice in PBS
and passaged by treating with 1 mL trypsin solution (Sigma 0.01% trypsin EDTA) for
30 s. Trypsinization was halted by the addition of 5 mL culture medium, with serum
and cells mechanically dislodged using a cell scraper (Corning Inc., Corning, NY, USA).
Dislodged cells were suspended in culture medium and centrifuged at 3000 RPM for 3 min.
Supernatants were removed and pelleted cells were re-suspended in 10 mL culture medium
and 5 mL of suspended cells was added to each of two T150 flasks containing 5 mL culture
medium. After 3 rounds of passage, cells were divided into control and experimental
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groups. Control group cells were incubated in a humidified normal oxygen environment
(21% O2) with 5% CO2 for 72 h. Experimental group cells were incubated in a hypoxic
environment using a Phillips-Rothenberger hypoxia chamber (Embrient Inc., San Diego,
CA, USA). Cells were added to the chamber which was flushed for 3 min at 10 PSI with a
95% nitrogen and 5% CO2 gas mixture, then sealed. The chamber was placed in the tissue
culture incubator and cells removed at any time point for study. The chamber will hold its
environmental seal for 72 h or longer as per manufacturer data.

2.2. LDH Isoenzyme Analysis

Cytosolic protein fractions were extracted from the control and experimental cell cul-
tures following 72 h of incubation via mechanical homogenization of trypsinized cell pellets
in PBS, centrifugation at 3000 RPM for 3 min, and collection of supernatant. The protein
concentration was determined using the Qubit Protein Assay kit, according to the manu-
facturer’s instructions (Invitrogen, Eugene, OR, USA). We poured mini polyacrylamide
gels at 7.5% consisting of 3 mL 10X tris-glycine, 3 mL acrylamide, 175 µL ammonium
persulfate (APS), 8 µL tetramethylethylenediamine (TEMED), and 8.8 mL H2O using the
BioRad mini vertical gel apparatus (BioRad, Hercules CA, USA). Gels were loaded with
equal amounts of protein extract (12 µg) per well from control and experimental cultures
and run at 125 volts for one hour in 0.05 M tris-glycine running buffer at pH 8.5.

For LDH isoform controls and to mark their position by activity in the native gel, we
used purified lyophilized rabbit skeletal muscle LDH-M (aka LDH-5, encoded by the LDHA
gene, at 600 U/mg, Sigma-Aldrich) and purified lyophilized porcine heart LDH-H (aka
LDH-1, encoded by the LDHB gene, at 200 U/mg, Sigma-Aldrich). These standards were
diluted in PBS at 10 ng/µL and 5 µL of LDH-M (~0.03 U) and 5 µL of LDH-H (~0.02 U) were
added to the gel. Gel electrophoresis demonstrates the relative purity of these standards.
As an additional control, mouse cerebellum (c57BL6) harvested at necropsy was donated
to us and we homogenized 10 mg/mL in 1 mL of PBS in a 1.5 mL Eppendorf tube with
a micropestle on ice. This homogenate was triturated using a 1000 uL pipette tip with
20 repetitionsand then centrifuged at 3000 RPM for 10 min. The supernatant was collected,
and protein assay performed using Qbit following manufacture protocols. All five LDH
isoenzymes (LDH1-5) are expressed in brain tissue. An amount of 12 ug total protein from
this homogenate was loaded onto the gel. After electrophoresis, gels were incubated in an
enzyme staining solution of 100 mM phenazine methosulfate (PMS), 100 mM nicotinamide
adenine dinucleotide (NAD), 500 mM Na lactate, and 0.08 g nitroblue tetrazolium (NBT),
in a 0.05 M tris-glycine buffer at pH 8.5 (All reagents from Sigma-Aldrich).

The heart LDH-H/LDH1 isoenzyme migrates the fastest in the gel, whereas the
skeletal muscle LDH-M/LDH5 migrates the slowest and stays near the loading well.
Densitometry was performed to quantify the activity of each LDH isoform in the T98G
control and experimental cells. Plots of LDH signal intensity were generated using open-
source image processing software ImageJ (version 1.53) [12]. Areas under the curve (AUC)
were calculated for each peak corresponding to an LDH isoform and expressed as a
percentage of the total signal of LDH activity from each sample. A calibration curve
representing background signal was subtracted from each of the control and experimental
lane signals. The Mann–Whitney U test was used to compare relative signals of each LDH
isoform between normoxic and hypoxic samples.

2.3. RNA Extraction and Quantitative PCR Analysis of LDHA/B Expression

Total RNA was extracted from control and experimental T98G cell cultures using a kit
from FivePrime ThreePrime (Boulder, CO, USA) following the manufacturer’s instructions.
Reverse transcription polymerase chain reaction (RT-PCR) was performed using a two-step
protocol. Extracted RNA was incubated with 60 µM Random Primer Mix, 10X M-MuLV
buffer, 200 U/µL M-MuLV RT enzyme, 10 mM dNTP, 40 U/µL RNAse inhibitor, and
nuclease-free H2O for 5 min at 25 ◦C and then for 1 h at 42 ◦C for cDNA synthesis. cDNA
was then quantified using 260/280 NanoQuant and diluted in preparation for qPCR using
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TaqMan Assay (ThermoFischer Scientific, Waltham, MA, USA), with forward and reverse
primers targeting LDHA and LDHB. Two technical replicate reactions were run with each
biological replicate for a total of six replicate reactions per target. All reactions were
performed for 40 cycles with the following sequence: reactions were held at 95 ◦C for
20 s and then cycled at 95 ◦C for 1 s and 60 ◦C for 20 s. Reaction signals were detected
with FAM reporter and NFQ-MGB quencher. Relative quantification of LDHA and LDHB
gene expression was analyzed using the delta-delta CT method with β actin as a reference
gene. The Mann–Whitney U test was used to compare the ratio of LDHA:LDHB expression,
normalized to β actin, as well as differences in normalized expression of each gene when
exposed to normoxia vs. hypoxia.

2.4. Total RNA Sequencing and Bioinformatics Analysis

Total RNA was extracted from control (n = 3) and experimental (n = 3) T98G cells as
described above. RNAseq Alignment files were generated using the Illumina DRAGEN
Bio-IT Platform (version 3.3.7), and the FASTQ alignment files were processed through
Rsubread in Bioconductor package (version 2.0.0) to generate feature counts per sample [13].
These counts were then processed through both DESeq2 (version 1.26.0) for differential
expression analysis [14]. All R scripts were processed with R version 3.6.0. Multiple
enrichment and representation analyses and database analyses were applied, including
Gene Ontology (GO), KEGG, DrugBank, and The Cancer Genome Atlas (TCGA) [15–17].
GO using Panther version 17.0 was employed with settings to include Fisher’s exact test
and Bonferroni correction. GO was also used to query reactome pathways. The quality
control measures related to number of reads and mapped genes for the six samples used
are shown in Supplementary Table S1.

3. Results
3.1. RNAseq Analysis

A total of 2630 DEGs were identified (p < 0.05, Bonferroni corrected)), with 1241 upregulated
in hypoxia and 1389 upregulated in normoxia. Figure 1 shows a volcano plot with the
distribution of DEGs separated by fold change and p-value.

Supplementary Table S2 shows all 2630 DEGs that include some loci of unknown func-
tion and non-coding RNA. Supplementary Table S3 shows all 1241 hypoxia-upregulated
DEGs sorted by p-value; Supplementary Table S4 shows all 1389 normoxia upregulated
DEGs sorted by p-value.

We focused on the 1241 DEGs upregulated in hypoxia searching for pathways that
might be critical to survival of hypoxia adapted GBM cells. We anticipated that genes
related to metabolism, glycolysis and response to hypoxia would be highly represented
among this group. Table 1 shows the top ten genes sorted by p-value upregulated in T98G
cells after 72 h of hypoxia.

All of the top ten genes are related to glycolysis, response to hypoxia and/or cancer
phenotypes. Over 400 hypoxia-upregulated DEGs are reported at p < 9.75 × 10−5 (see
Table S2) and, as such, pathway enrichment programs were used to identify cellular systems
upregulated by hypoxia in T98G cells.

Gene Ontology (GO) analyses for cellular components (CC) were used to localize
upregulated pathways to cellular location. Figure 2 shows a scatter plot of the results from
all DEGs upregulated in hypoxia and GO CC analyses.
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Table 1. Top ten genes upregulated by hypoxia in T98G cells by lowest Bonferroni corrected p-value.

Gene ID log2 Fold Change p-Value Function/Expression

CA9 4.11 4.35 × 10−90 Cancer-specific carbonic anhydrase

ENO2 2.09 3.14 × 10−71 Enolase; glycolysis/gluconeogenesis

NDRG1 2.39 1.05 × 10−55 N-Myc downstream-regulated gene, cancer

PPFIA4 2.59 3.56 × 10−46 Tyrosine phosphatase, cell adhesion

TGFBI 1.63 7.14 × 10−46 Induced by TGFB, inhibits cell adhesion

HILPDA 1.77 1.77 × 10−43 Hypoxia induced, lipid metabolism

FER1L4 1.98 1.06 × 10−41 Plasma membrane, cancer

EGLN3 1.78 1.88 × 10−40 Hypoxia induced, protease, apoptosis

PGK1 1.37 7.39 × 10−37 Glycolysis, angiogenesis, polymerase

PFKFB4 2.31 1.10 × 10−36 Glycolysis, hypoxia induced, cancer
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Figure 2. Scatter plots of Gene Ontology (GO) cellular component (CC) for genes upregulated in
hypoxia. X-axis is the fold enrichment and Y-axis is the −log10 scale of adjusted p-values of the GO
CC term. Both by fold enrichment and low p-values the components of the endoplasmic reticulum
are significantly upregulated in hypoxia.

Table 2 shows the top five upregulated GO cellular components by lowest p-value in
hypoxia-adapted T98G GBM cells.

Table 2. GO cellular component analyses showing the top five systems by lowest p-value using all
loci upregulated in hypoxia (n = 1261, p < 0.05) with Fisher’s exact test and Bonferroni correction.

GO Cellular
Component Reference Loci Loci Identified Expected Loci Fold Enrichment p-Value

endomembrane system
(GO:0012505) 4749 470 266.64 1.76 8.30 × 10−35

endoplasmic reticulum
(GO:0005783) 2045 256 114.82 2.23 8.70 × 10−29

vesicle (GO:0031982) 3975 393 223.18 1.76 7.47 × 10−27

endoplasmic reticulum
lumen (GO:0005788) 314 81 17.63 4.59 4.22 × 10−23

cytoplasm (GO:0005737) 12097 853 679.20 1.26 4.47 × 10−22

These data show that endomembrane (Golgi and endoplasmic reticulum (ER)), ER,
and ER lumen are three of the top five upregulated systems in hypoxia adapted GBM cells.
The entire list sorted by p-value is found in Supplementary Table S5.
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Table 3 shows the GO cellular component analysis with findings sorted by fold en-
richment; that is the fold change in the number of observed pathway specific DEGs (loci)
from a reference set over the number of DEGs expected by chance. The top seven hypoxia-
upregulated GO cellular components based on fold enrichment are seen in Table 3 with the
entire list in Supplementary Table S6.

Table 3. GO cellular component analysis with Fisher’s exact test and Bonferroni correction showing
the top seven systems by highest fold enrichment using all loci upregulated in hypoxia (n = 1261,
p < 0.05).

GO Cellular Component Reference Loci Loci
Identified Expected Loci Fold

Enrichment p-Value

complex of collagen trimers
(GO:0098644) 22 9 1.24 7.29 3.62 × 10−2

endoplasmic reticulum lumen
(GO:0005788) 314 81 17.63 4.59 4.22 × 10−23

basement/membrane (GO:0005604) 101 26 5.57 4.58 3.95 × 10−6

COPII-coated ER to Golgi transport
vesicle (GO:0030134) 94 22 5.28 4.17 2.75 × 10−4

melanosome (GO:0042470) 111 24 6.23 3.85 2.75 × 10−4

endoplasmic/reticulum
protein-containing complex

(GO:0140534)
128 27 7.19 3.76 7.40 × 10−5

endoplasmic–reticulum–Golgi
intermediate-compartment
membrane (GO:0033116)

81 17 4.55 3.74 2.34 × 10−2

Four of the top seven systems highly enriched in hypoxia-adapted T98G GBM cells
are related to the ER and ER-Golgi interactions. Cell adhesion and remodeling of the
extracellular matrix interaction with cell membranes were highly upregulated systems as
were molecules related to vesicle formation using GO biological process module.

GO reactome pathway analysis is shown in Table 4 with hypoxia upregulated terms
sorted by enrichment. Collagen processing, endoplasmic reticulum processing and specifi-
cally the IRE1-mediated UPR pathways are highly enriched (IRE1 α and Xbp1 chaperone
genes). The entire output from this analysis can be found in Supplementary Table S7.

Table 4. GO reactome pathway analysis with Fisher’s exact test and Bonferroni correction showing the
top eight hypoxia-upregulated pathways sorted by highest fold enrichment using all loci upregulated
in hypoxia (n = 1261, p < 0.05).

GO Reactome
Pathway Reference Loci Loci

Observed
Loci

Expected
Fold

Enrichment p-Value

Antigen Preset:class I MHC (R-HSA-983170) 26 11 1.46 7.54 4.85 × 10−3

Collagen biosynth- modifying enzymes
(R-HSA-1650814) 67 25 3.76 6.65 1.70 × 10−8

Collagen formation (R-HSA-1474290) 89 33 5.00 6.60 8.93 × 10−12

Assembly collagen fibrils/multimer struct
(R-HSA-2022090) 60 20 3.37 5.94 1.03 × 10−5

N-glycan trim in ER -Calnexin/Calreticulin
(R-HSA-532668) 35 11 1.97 5.60 4.87 × 10−2

IRE1alpha activates chaperones
(R-HSA-381070) 49 15 2.75 5.45 2.13 × 10−3

XBP1(S) activates chaperone genes
(R-HSA-381038) 47 14 2.64 5.31 6.38 × 10−3

Collagen chain trimerization (R-HSA-8948216) 44 13 2.47 5.26 1.55 × 10−2
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IRE1alpha and downstream XBP1(S) are part of the ER UPR pathways whose gene
partners (chaperones) are upregulated by hypoxia in T98G cells.

Table 5 shows the KEGG pathway analysis listing the top six cellular processes sorted
by highest number of “hits” of loci identified compared to the KEGG reference set.

Table 5. KEGG pathway analysis using all 1241 DEGs upregulated by hypoxia.

KEGG Pathway Number of Hits

hsa01100 Metabolic pathways—Homo sapiens 98

hsa04151 PI3K-Akt signaling pathway—Homo sapiens 45

hsa05165 Human papillomavirus infection—Homo sapiens 37

hsa05200 Pathways in cancer—Homo sapiens 35

hsa04510 Focal adhesion—Homo sapiens 35

hsa04141 Protein processing in endoplasmic reticulum—Homo sapiens 34
The top pathways include protein processing in the endoplasmic reticulum.

The DEGs downregulated in hypoxia (upregulated in normoxia) are shown in Supple-
mentary Table S4 and these were also analyzed by GO using the biological processes, cell
components and reactome pathways modules. The top five genes upregulated in normoxia
in the T98G cells are: PI15 (trypsin inhibitor expressed by GBM) EGR (a transcription
factor and tumor suppressor) CNN2 and CNN1 (growth factors related to proliferation
and angiogenesis) and FOS (transcription factor and oncogene). These genes are included
in the GO pathways identified that are mostly related to mitotic cycle, DNA replication
and repair and cell proliferation. The complete output analyses for DEGs downregulated
in hypoxia using GO biological processes, cellular components and Reactome pathways
sorted by lowest p-value are shown in Supplementary Tables S8–S10), respectively.

3.2. LDH Isoenzyme Analysis

The five LDH isoenzymes are tetramers made up from monomers derived from the two
different genes LDHA and LDHB. Combinations of monomers can produce an isoenzyme
that strongly favors the aerobic conversion of lactate to pyruvate (LDHB gene, all four
monomers heart type (H4/LDH1)) or anerobic conversion of pyruvate to lactate (LDHA
gene, all four monomers muscle type (M4/LDH5)). Three isoenzymes of intermediate
activity exist H3M1, H2M2 M3H1 and all five are found in brain tissue.

Results of LDH isoenzyme analysis via native gel zymography electrophoresis and
densitometry are shown in Figure 3. One band was observed in the rabbit skeletal muscle
sample lane (RM) corresponding to the LDHA gene product isoenzyme LDH5 (M4). One
dominant band was observed in the pig heart muscle sample lane (PH), representing the
LDHB gene product isoenzyme LDH1 (H4). Two smaller bands corresponding to LDH2
(H3M1) and LDH3 (H2M2) were also visible. Five distinct bands were observed in the
mouse cerebellum (MCB) corresponding to LDH 1-5.

The relative activity of the LDH isoenzymes in GBM control and experimental cells is
shown in Table 6. LDH-H1M3/LDH4 and LDH-M4/LDH5 accounted for similar propor-
tions of total LDH enzyme signal among T98G cells subjected to normoxia and hypoxia
(41% vs. 41% and 53% vs. 57%, respectively). LDH-H4/LDH1 and LDH-H3M1/LDH2
were not detected in samples from T98G cells subjected to normoxic or hypoxic conditions.
LDH-H2M2/LDH3 accounted for a numerically lower proportion of total LDH enzyme
signal in T98G cells subjected to the hypoxic condition compared to normoxia (1.6% vs.
5.8%), but this did not reach significance (p = 0.05).
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Figure 3. Native gel electrophoresis and densitometry. (a) From left to right, lanes were loaded
with 5 µL (0.03 U) purified lyophilized rabbit skeletal muscle LDH-M (RM), 5 µL (0.02 U) purified
lyophilized porcine heart LDH-H (PH), and 12 µg total protein mouse cerebellum extract (MCB), and
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Table 6. LDH isoenzyme activity, expressed as % of total LDH signal.

Isoenzyme T98G Normoxia T98G Hypoxia p-Value

LDH-M4/LDH5 53.2 (43.7–62.8) 57.0 (46.3–67.8) 0.35
LDH-H1M3/LDH4 41.0 (31.6–50.3) 41.3 (31.3–51.3) 0.50
LDH-H2M2/LDH3 5.78 (5.61–5.96) 1.65 (0.80–2.49) 0.05

Results are expressed as the % of total LDH signal per isoenzyme sample, with 95% CI. Analysis was performed
using the one-tailed Mann–Whitney U test.

3.3. Quantitative PCR Analysis of LDHA/B Expression

Fold differences in normalized LDHA and LDHB expression in hypoxia compared
to normoxia using the delta-delta CT method are shown in Figure 4. LDHA expression
increased three-fold in hypoxia compared to normoxia (p = 0.0026 by the one-tailed Mann–
Whitney U test), while LDHB expression decreased 0.3-fold in hypoxia compared to nor-
moxia (p = 0.033 by the one-tailed Mann–Whitney U test).

LDHA and LDHB are DEGs with significant gene expression changes found in the
RNAseq work. However, differences between the RNAseq and qRT-PCR results were found.

LDHA increased ~1.5 fold in hypoxia as measured by RNAseq (Log2FoldChange 0.06,
p < 0.0002, see Table S2) but increased 3 fold as measured by qRT-PCR. LDHB decreased
~1.5 fold in hypoxia as measured by RNAseq (Log2FoldChange 0.56, p < 5.61 × 10−8 see
Table S3) but only 0.3 fold as measured by qRT-PCR. We note the high SD in the q-RT-PCR
experiments for LDHA in hypoxia suggesting the RNAseq data may be more reliable with
respect to the actual changes in gene expression. For LDHB the normalization to 1 in
normoxia may have limited the lower threshold achievable by RT-PCR.



Genes 2023, 14, 841 10 of 16

Genes 2022, 13, x FOR PEER REVIEW 10 of 16 
 

 

LDH-H2M2/LDH3 accounted for a numerically lower proportion of total LDH enzyme 
signal in T98G cells subjected to the hypoxic condition compared to normoxia (1.6% vs. 
5.8%), but this did not reach significance (p = 0.05).  

Table 6. LDH isoenzyme activity, expressed as % of total LDH signal. 

Isoenzyme T98G Normoxia T98G Hypoxia p-Value 
LDH-M4/LDH5 53.2 (43.7–62.8) 57.0 (46.3–67.8) 0.35 

LDH-H1M3/LDH4 41.0 (31.6–50.3) 41.3 (31.3–51.3) 0.50 
LDH-H2M2/LDH3 5.78 (5.61–5.96) 1.65 (0.80–2.49) 0.05 

Results are expressed as the % of total LDH signal per isoenzyme sample, with 95% CI. Analysis 
was performed using the one-tailed Mann–Whitney U test. 

3.3. Quantitative PCR Analysis of LDHA/B Expression 
Fold differences in normalized LDHA and LDHB expression in hypoxia compared to 

normoxia using the delta-delta CT method are shown in Figure 4. LDHA expression in-
creased three-fold in hypoxia compared to normoxia (p = 0.0026 by the one-tailed Mann–
Whitney U test), while LDHB expression decreased 0.3-fold in hypoxia compared to 
normoxia (p = 0.033 by the one-tailed Mann–Whitney U test). 

 
Figure 4. LDHA and LDHB expression in normoxia and hypoxia by q-RT-PCR. LDH expression was 
calculated for each gene using the ΔΔCT method with ΔΔCT representing the difference in normal-
ized gene expression (ΔCT = CT:LDH-CT:β actin) using mean ΔCT for the normoxic condition as 
the calibrator value. Fold change in gene expression was calculated via log transformation 
(2−ΔΔCT). Mean 2−ΔΔCT values are presented with +/− 1 SD for the normoxic (N) and hypoxic (H) 
conditions. LDHA expression was significantly increased in hypoxia compared to normoxia (p = 
0.0026 by the one-tailed Mann–Whitney U test). LDHB expression was significantly decreased in 
hypoxia compared to normoxia (p = 0.033 by the one-tailed Mann–Whitney U test). 

LDHA and LDHB are DEGs with significant gene expression changes found in the 
RNAseq work. However, differences between the RNAseq and qRT-PCR results were 
found. 

LDHA increased ~1.5 fold in hypoxia as measured by RNAseq (Log2FoldChange 0.06, 
p < 0.0002, see Table S2) but increased 3 fold as measured by qRT-PCR. LDHB decreased 
~1.5 fold in hypoxia as measured by RNAseq (Log2FoldChange 0.56, p < 5.61 × 10−8 see 
Table S3) but only 0.3 fold as measured by qRT-PCR. We note the high SD in the q-RT-
PCR experiments for LDHA in hypoxia suggesting the RNAseq data may be more reliable 

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

LDHA N LDHA H LDHB N LDHB H

2^
(-Δ

ΔC
т)

  

LDHA/B Expression

Figure 4. LDHA and LDHB expression in normoxia and hypoxia by q-RT-PCR. LDH expression
was calculated for each gene using the ∆∆CT method with ∆∆CT representing the difference in
normalized gene expression (∆CT = CT:LDH-CT:β actin) using mean ∆CT for the normoxic condition
as the calibrator value. Fold change in gene expression was calculated via log transformation
(2−∆∆CT). Mean 2−∆∆CT values are presented with +/− 1 SD for the normoxic (N) and hypoxic
(H) conditions. LDHA expression was significantly increased in hypoxia compared to normoxia
(p = 0.0026 by the one-tailed Mann–Whitney U test). LDHB expression was significantly decreased in
hypoxia compared to normoxia (p = 0.033 by the one-tailed Mann–Whitney U test).

DrugBank analysis searched a subset of the hypoxia-upregulated DEGs (601 with
p < 0.01) with its target database and identified four molecules targeting genes upregulated
in hypoxic T98G cells: tenecteplase (adjusted p = 0.013, 5 gene targets), succinic acid
(p = 0.02, 7 gene targets), artenimol (p = 0.013, 13 gene targets), and copper (p = 0.0015,
22 gene targets). The specific genes are listed in Supplementary Table S11.

DrugBank database pharmoc-omics section was searched for the “target” IRE1 and
resulted in identifying fostamatinib (FOS) as an inhibitor of IRE1. In addition, the Genecards
database was queried for drugs that interact with ERN1 and results were linked back to the
DrugBank database and FOS as a molecule with potential to inhibit IRE1 function.

4. Discussion

GBM is characterized by a vast array of metabolic alterations mediated by changes in
gene expression compared to non-neoplastic tissue. Chief among these is upregulation of
glycolysis and production of lactic acid, even in the presence of oxygen, a phenomenon
known as the “Warburg effect” [3,18]. The enzyme lactate dehydrogenase (LDH), which
catalyzes the reversible conversion of pyruvate to lactate, is instrumental to this process of
aerobic glycolysis. LDH enzyme is a tetramer composed of varying ratios of LDH-M and
LDH-H subunits, which are encoded by the LDHA and LDHB genes, respectively. Five iso-
forms of the LDH tetramer predominate in humans: LDH-H4/LDH1, LDH-H3M1/LDH2,
LDH-H2M2/LDH3, LDH-H1M3/LDH4, and LDH-M4/LDH5. LDHB is thought to promote
an aerobic phenotype via preferential conversion of lactate to pyruvate that can be used for
oxidative phosphorylation while LDHA promotes an anaerobic phenotype via formation of
lactate [19].

LDHA is upregulated in many cancers, including GBM, and inhibition of LDHA can
halt growth and induce differentiation and apoptosis among A172, U87, and U251 GBM
cells and GBM stem cells [20–23]. LDHA over-expression and subsequent lactate production
are thought to promote tumor growth and metastasis by multiple mechanisms, includ-
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ing protection from reactive oxygen species, enhanced biomass synthesis, and increased
cell motility [18,23]. High amounts of lactate generated by tumor cells are believed to
mediate metabolic and immunologic interactions with surrounding stromal cells in the
tumor microenvironment that promote cancer progression and survival [18]. Conflicting
evidence implicates both increased and decreased LDHB expression in different cancers,
and comparatively less is known about the regulation of LDHB in GBM [18,23].

LDH-H4/LDH1 and LDH-H3M1/LDH2 tetramers were not detected via native gel
electrophoresis zymography in samples from T98G cells subjected to either normoxia
or hypoxia in our study, and LDH-H1M3/LDH4 and LDH-M4/LDH5 accounted for the
majority of total LDH activity (>94%) in each of the two conditions. These findings are
consistent with the largely oxygen-independent suppression of LDHB expression observed
with RT-PCR; however, they may also represent similarly oxygen-independent shunting of
LDH-H subunits towards formation of LDH-H2M2/LDH3 and LDH-H1M3/LDH4. The
LDH-H2M2/LDH3 tetramer was relatively decreased in hypoxia compared to normoxia,
which may reflect some degree of oxygen responsiveness in LDHB or hypoxia-mediated
shunting of LDH-H subunits towards LDH-H1M3/LDH4.

RT-PCR (and RNA seq data) show hypoxia increased LDHA expression and decreased
LDHB expression as would be expected in normal cells. However, in normoxia, LDHB
expression in blunted and not highly expressed in the T98G GBM cells. These results
suggest that LDHA and LDHB expression in T98G cells are regulated by both hypoxia-
independent and hypoxia-dependent mechanisms. Our data are consistent with studies in
cervical and pharyngeal squamous cell carcinomas demonstrating increased LDHA expres-
sion in response to hypoxia, likely mediated by hypoxia-inducible factor 1 (HIF-1) [24,25].
Reduced LDHB expression via promoter hypermethylation has been observed in prostate,
breast, and pancreatic cancers, and greater LDHB suppression is associated with metastatic
progression, particularly in hypoxia [18,26]. Our findings suggest that GBM is similarly
characterized by reduced LDHB expression, which is driven only in part by the hypoxic
tumor micro-environment. Interestingly, data from a recent study suggest that LDHB
expression is required for energy metabolism in hypoxia, as knockout of both LDHA and
LDHB were required to restrict growth of human colon cancer and mouse melanoma cell
lines [27]. Further studies should evaluate the deregulation of LDHB in GBM and explore
its candidacy as a therapeutic target.

Total RNA sequencing showed hypoxic upregulation of genes involved in multiple
pathways associated with neoplastic behavior, including glycolysis, extracellular matrix
reorganization, and cell migration and adhesion. Our data add to the growing body of
evidence describing hypoxia-induced changes in gene expression that correlate with GBM
proliferation and invasiveness [3–5].

Pathway analysis of DEGs upregulated by hypoxia show significant enrichment in
genes related to endoplasmic reticulum function. Notably, increased expression in DEGs
in pathways related to the inositol-requiring enzyme 1 (IRE1)-mediated unfolded protein
response (UPR) was observed in hypoxic T98G cells. Although the gene encoding IRE1
(ERN1) is not a differentially expressed gene in this study, a large enrichment of genes within
the IRE1-mediated UPR response pathway are DEGs. In cancer cells, there is increased
demand for nucleic acid and protein synthesis and increasing amounts of improperly
folded proteins accumulate in the endoplasmic reticulum (ER), leading to activation of the
UPR. ER stress is detected by several proteins that activate transcription factors and alter
gene expression to initiate the UPR. Cells in which the UPR cannot compensate are directed
toward apoptosis via p53 and PIK3/Akt pathways. The role of the UPR in oncogenesis
progression and treatment resistance was recently reviewed and is shown to play a role
in various cancers including gastric, breast and GBM [28,29]. Primary GBM samples have
increased UPR activity, and it is postulated that radiation and chemotherapy are partially
acting by increasing ER stress to a critical point, driving the cell toward apoptosis [28,29].
Prior studies provide evidence that IRE1 activity is involved in angiogenesis, invasiveness,
and migration of GBM cells [30–32]. Specifically, IRE1 loss of function mutant U87 GBM



Genes 2023, 14, 841 12 of 16

cells show reduced angiogenesis and tumor size in an orthotopic mouse model of GBM [30].
Minchenko and colleagues demonstrated hypoxic activation of the UPR and upregulation
of IRE1 in GBM. Using U87 cell lines with constitutive inhibition of IRE1, they document
a complex pattern of downstream gene regulation induced by hypoxia and controlled by
IRE1 function [11,33–35].

The IRE1 molecule has two separate catalytic domains, a kinase domain and an
RNAase domain [36]. When ER stress is sensed, the IRE1 proteins homo-oligomerize into
dimers that auto-phosphorylate to activate the RNAase domain. The RNAase activity leads
to cleavage of a pro-mRNA into an active mRNA that is transcribed into a transcription
factor, X-Box protein 1 (XBP1). XBP1 activates numerous genes related to the UPR, and
XBP1 activity is linked to GBM growth and survival and promotes growth of triple negative
breast cancer in part by reprogramming the cells to an anaerobic metabolism via HIF
activated pathways [37,38].

Additional evidence is documented suggesting that IRE1 RNAase activity may lead
to activation of spleen tyrosine kinase (SYK) as inhibition of the RNAase domain reduced
both XBP1 and SYK activation in a mouse model of anaphylaxis [39]. The IRE1 kinase also
has multiple targets for phosphorylation which are important for angiogenesis, migration,
adhesion, and infiltration of nearby tissue, as described above [30–32]. Importantly, inhibi-
tion of the RNAase activity leads to sensitization of GBM cells to TEM chemotherapy in an
in vivo model [40].

GeneCards database analysis revealed that the spleen tyrosine kinase inhibitor fosta-
matinib (FOS) can potentially bind to and inhibit the activity of multiple kinases, including
the IRE1 protein. Rolf et al. (2015) used a combination of bioinformatics, kinase binding
assays and functional assays to identify kinase targets of the active metabolite of FOS,
R406. Using a single-dose screen for function at physiologically relevant concentrations
(10 µmol/L) they found that R406 inhibits IRE1 kinase activity by 70% [41]. Recent data
indicate that R406 inhibits in vitro GBM stem cell survival and neuro-sphere formation,
as well as tumor growth and temozolomide resistance, in mouse xenograft models [42].
SYK/PI3K and PI3K/Akt pathway inhibition and subsequent shifts from aerobic glycolysis
to oxidative phosphorylation (i.e., anti-Warburg effect) were implicated as mechanisms
of R406-mediated GBM stem cell cytotoxicity [42]. Mancayo et al. (2018) report that SYK
inhibition in vitro blocks proliferation, migration, and colony formation in U87 cells [43].
Using flow cytometry and multiphoton imaging they show that inhibition of SYK in vivo
attenuates GBM tumor growth and invasiveness and decreases cell mobility and infiltra-
tion [43]. They also demonstrate the R406 kills both SYK positive and SYK negative GBM
cells. We suggest that the death of SYK-negative GBM cells induced by R406 may be in
part due to IRE1 inhibition. Our study adds to the substantial body of preclinical data
providing evidence that SYK and IRE1 are critical mediators of GBM growth and survival.
We conclude that further study of the GBM anti-tumor effects of FOS/R406, including in
clinical trials, is warranted.

DrugBank database analysis revealed several molecules that target genes found to
be upregulated in hypoxic T98G cells, including tenecteplase, succinic acid, artenimol,
and copper (see Supplementary Table S11). Tenecteplase is a recombinant form of tissue
plasminogen activator (tPA), a thrombolytic indicated for acute thrombotic and thromboem-
bolic disease. Interestingly, tPA has demonstrated efficacy in improving antioxidant drug
delivery to a colon cancer model via fibrin degradation and blood flow restoration [44]. A
recent study of tissue factor inhibition in GBM tumor mouse models showed tumor mi-
croenvironment remodeling associated with fibrin reduction, suggesting a possible role for
fibrinolytic therapy in GBM [45]. Succinate dehydrogenase downregulation and accumula-
tion of succinate has been implicated in HIF stabilization and increased glycolytic activity
among GBM cells [46]. Our data support the notion that succinate may promote expression
of glycolytic genes that contribute to neoplastic behavior in a hypoxia-dependent manner,
and strategies aimed at succinate depletion may have therapeutic potential in GBM. The
antimalarial drug artenimol is thought to induce cytotoxic effects via production of reactive
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oxygen species and stimulation of autophagy [47]. Notably, artenimol decreased expres-
sion of tumor markers, induced clinical remission, and was well-tolerated in ten patients
with advanced cervical carcinoma, and exploration of its therapeutic potential in GBM is
similarly warranted [48]. Finally, copper is believed to cause cancer cell cytotoxicity via
multiple mechanisms including oxidative stress and proteasome inhibition, and a number
of copper complexes have shown anti-tumor activity in a variety of in vitro cancer models,
including GBM [49–51]. Our data suggest that copper’s anti-cancer effects may be related
to inhibition of hypoxia-responsive genes.

5. Conclusions

Our study characterizes hypoxia-induced changes in gene expression that potentially
mediate GBM cell adaptations that promote tumor proliferation, invasion, and survival.
T98G cells retain some non-neoplastic qualities and were used as a model system for
hypoxia-adapted GBM stem-like cells that are the likely source of recurrence of GBM after
standard of care is completed. Our study provides supportive evidence to the hypothesis
that targeting the IRE1-mediated UPR pathway is a potential therapeutic option for GBM.
Our work supports the work of prior labs in preclinical models that identify SYK and
IRE1 as targets for GBM therapy. We are the first to suggest that fostamatinib (FOS) could
potentially target both molecules in patients with GBM and warrants future study in human
clinical trials.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/genes14040841/s1,Table S1: Quality Control measures of
the six samples used for RNA Sequencing; Table S2: All DEGs identified at p < 0.05 with negative
log2FoldChanges representing genes upregulated in hypoxia; Table S3:All T98G GBM cell DEGs
upregulated in hypoxia at p < 0.05; Table S4: T98G GBM cell DEGs upregulated in normoxia
at p < 0.05; Table S5: T98G GBM Panther Gene Ontology Cell Components Analysis of DEGS
Upregulated in Hypoxia Sorted by p-value; Table S6: T98G GBM Panther Gene Ontology Cell
Components Analysis of DEGS Upregulated in Hypoxia Sorted by Enrichment; Table S7: T98G GBM
Panther Gene Ontology Reactome Analysis of DEGS Upregulated in Hypoxia Sorted by p-value;
Table S8: T98G GBM Panther Gene Ontology Biological Processes Analysis of DEGS Upregulated in
Normoxia Sorted by p-value; Table S9: T98G GBM Panther Gene Ontology Cellular Components
Analysis of DEGS Upregulated in Normoxia Sorted by p-value; Table S10: T98G GBM Panther Gene
Ontology Reactome Analysis of DEGS Upregulated in Normoxia Sorted by p-valuet; Table S11:
DrugBank analysis searched a subset of the hypoxia upregulated DEGs (601 with p < 0.01) with its
target database and identified four molecules targeting genes upregulated in hypoxic T98G cells.
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2. Grochans, S.; Cybulska, A.M.; Simińska, D.; Korbecki, J.; Kojder, K.; Chlubek, D.; Baranowska-Bosiacka, I. Epidemiology of

Glioblastoma Multiforme-Literature Review. Cancers 2022, 14, 2412. [CrossRef]
3. Strickland, M.; Stoll, E.A. Metabolic Reprogramming in Glioma. Front. Cell Dev. Biol. 2017, 5, 43. [CrossRef] [PubMed]
4. Li, Z.; Bao, S.; Wu, Q.; Wang, H.; Eyler, C.; Sathornsumetee, S.; Shi, Q.; Cao, Y.; Lathia, J.; McLendon, R.E.; et al. Hypoxia-inducible

factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 2009, 15, 501–513. [CrossRef] [PubMed]
5. Colwell, N.; Larion, M.; Giles, A.J.; Seldomridge, A.N.; Sizdahkhani, S.; Gilbert, M.R.; Park, D.M. Hypoxia in the glioblastoma

microenvironment: Shaping the phenotype of cancer stem-like cells. Neuro-Oncol. 2017, 19, 887–896. [CrossRef] [PubMed]
6. Patel, A.P.; Tirosh, I.; Trombetta, J.J.; Shalek, A.K.; Gillespie, S.M.; Wakimoto, H.; Cahill, D.P.; Nahed, B.V.; Curry, W.T.; Martuza,

R.L.; et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 2014, 344, 1396–1401.
[CrossRef] [PubMed]

7. Darmanis, S.; Sloan, S.A.; Croote, D.; Mignardi, M.; Chernikova, S.; Samghababi, P.; Zhang, Y.; Neff, N.; Kowarsky, M.; Caneda,
C.; et al. Single-Cell RNA-Seq Analysis of Infiltrating Neoplastic Cells at the Migrating Front of Human Glioblastoma. Cell Rep.
2017, 21, 1399–1410. [CrossRef]

8. Stein, G.H. T98G: An anchorage-independent human tumor cell line that exhibits stationary phase G1 arrest in vitro. J. Cell
Physiol. 1979, 99, 43–54. [CrossRef]

9. Kiseleva, L.N.; Kartashev, A.V.; Vartanyan, N.L.; Pinevich, A.A.; Filatov, M.V.; Samoilovich, M.P. Characterization of New Human
Glioblastoma Cell Lines. Cell Tissue Biol. 2018, 12, 1–6. [CrossRef]

10. Minchenko, O.H.; Garmash, I.A.; Kovalevska, O.V.; Tsymbal, D.O.; Minchenko, D.O. Expression of phosphoribosyl pyrophosphate
synthetase genes in U87 glioma cells with ERN1 knockdown: Effect of hypoxia and endoplasmic reticulum stress. Ukr. Biochem. J.
2014, 86, 74–83. [CrossRef]

11. Kim, J.; Han, J.; Jang, Y.; Kim, S.J.; Lee, M.J.; Ryu, M.J.; Kweon, G.R.; Heo, J.Y. High-capacity glycolytic and mitochondrial
oxidative metabolisms mediate the growth ability of glioblastoma. Int. J. Oncol. 2015, 47, 1009–1016. [CrossRef] [PubMed]

12. Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675.
[CrossRef] [PubMed]

13. Liao, Y.; Smyth, G.K.; Shi, W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of
RNA sequencing reads. Nucleic Acids Res. 2019, 47, e47. [CrossRef] [PubMed]

14. Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome
Biol. 2014, 15, 550. [CrossRef]

15. Mi, H.; Muruganujan, A.; Ebert, D.; Huang, X.; Thomas, P.D. PANTHER version 14: More genomes, a new PANTHER GO-slim
and improvements in enrichment analysis tools. Nucleic Acids Res. 2019, 47, D419–D426. [CrossRef]

16. Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [CrossRef]
17. Wishart, D.S.; Knox, C.; Guo, A.C.; Shrivastava, S.; Hassanali, M.; Stothard, P.; Chang, Z.; Woolsey, J. DrugBank: A comprehensive

resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006, 34, D668–D672. [CrossRef]
18. Mishra, D.; Banerjee, D. Lactate Dehydrogenases as Metabolic Links between Tumor and Stroma in the Tumor Microenvironment.

Cancers 2019, 11, 750. [CrossRef]
19. Markert, C.L.; Shaklee, J.B.; Whitt, G.S. Evolution of a gene. Multiple genes for LDH isozymes provide a model of the evolution

of gene structure, function and regulation. Science 1975, 189, 102–114. [CrossRef]
20. Daniele, S.; Giacomelli, C.; Zappelli, E.; Granchi, C.; Trincavelli, M.L.; Minutolo, F.; Martini, C. Lactate dehydrogenase-A inhibition

induces human glioblastoma multiforme stem cell differentiation and death. Sci. Rep. 2015, 5, 15556. [CrossRef]
21. Li, J.; Zhu, S.; Tong, J.; Hao, H.; Yang, J.; Liu, Z.; Wang, Y. Suppression of lactate dehydrogenase A compromises tumor progression

by downregulation of the Warburg effect in glioblastoma. Neuroreport 2016, 27, 110–115. [CrossRef] [PubMed]
22. Di, H.; Zhang, X.; Guo, Y.; Shi, Y.; Fang, C.; Yuan, Y.; Wang, J.; Shang, C.; Guo, W.; Li, C. Silencing LDHA inhibits proliferation,

induces apoptosis and increases chemosensitivity to temozolomide in glioma cells. Oncol. Lett. 2018, 15, 5131–5136. [CrossRef]
[PubMed]

23. Valvona, C.J.; Fillmore, H.L.; Nunn, P.B.; Pilkington, G.J. The Regulation and Function of Lactate Dehydrogenase A: Therapeutic
Potential in Brain Tumor. Brain Pathol. 2016, 26, 3–17. [CrossRef] [PubMed]

24. Sørensen, B.S.; Hao, J.; Overgaard, J.; Vorum, H.; Honoré, B.; Alsner, J.; Horsman, M.R. Influence of oxygen concentration and pH
on expression of hypoxia induced genes. Radiother. Oncol. 2005, 76, 187–193. [CrossRef]

25. Sørensen, B.S.; Alsner, J.; Overgaard, J.; Horsman, M.R. Hypoxia induced expression of endogenous markers in vitro is highly
influenced by pH. Radiother. Oncol. 2007, 83, 362–366. [CrossRef]

26. Leiblich, A.; Cross, S.S.; Catto, J.W.; Phillips, J.T.; Leung, H.Y.; Hamdy, F.C.; Rehman, I. Lactate dehydrogenase-B is silenced by
promoter hypermethylation in human prostate cancer. Oncogene 2006, 25, 2953–2960. [CrossRef]
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