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Abstract: Oil-tea (Camellia oleifera) is a woody oil crop whose nectar includes galactose derivatives
that are toxic to honey bees. Interestingly, some mining bees of the genus Andrena can entirely live on
the nectar (and pollen) of oil-tea and are able to metabolize these galactose derivatives. We present
the first next-generation genomes for five and one Andrena species that are, respectively, specialized
and non-specialized oil-tea pollinators and, combining these with the published genomes of six
other Andrena species which did not visit oil-tea, we performed molecular evolution analyses on
the genes involved in the metabolizing of galactose derivatives. The six genes (NAGA, NAGA-like,
galM, galK, galT, and galE) involved in galactose derivatives metabolism were identified in the five
oil-tea specialized species, but only five (with the exception of NAGA-like) were discovered in the
other Andrena species. Molecular evolution analyses revealed that NAGA-like, galK, and galT in oil-tea
specialized species appeared under positive selection. RNASeq analyses showed that NAGA-like,
galK, and galT were significantly up-regulated in the specialized pollinator Andrena camellia compared
to the non-specialized pollinator Andrena chekiangensis. Our study demonstrated that the genes
NAGA-like, galK, and galT have played an important role in the evolutionary adaptation of the oil-tea
specialized Andrena species.

Keywords: A. camellia; genome; RNASeq; molecular evolution; gene expression; galactose derivatives;
NAGA-like

1. Introduction

Bees have a monophyletic lineage within a clade of Anthophila in the superfamily
Apoidea [1]. There are around 20,000 different species of bees and, thanks to their effective
pollination for both crops and natural flora, bees are now essential parts of practically all
terrestrial ecosystems [2,3]. Bees can be broadly divided into two functional groups based
on floral specificity: oligolectic species, which forage on one or a small number of closely
related plant species, and polylectic species, which collect nectar and/or pollen from many
different plant species [4]. The most well-known bee species include the polylectic honey
bees (Apis spp.) and bumble bees (Bombus spp.). Numerous biological and ecological
investigations of the polylectic species have been conducted [2,5]. In contrast, oligolectic
bees have received significantly less research despite making up a sizable fraction of the
world’s bee fauna [6]. For oligolectic bee exploitation and conservation, therefore, a greater
understanding of their biology and ecology is required.

Andrena Fabricius (Andrenidae) is a large bee genus of around 1600 species with
a wide distribution mainly throughout the Holarctic. They are a crucial pollinator in
both natural and agricultural contexts, and they are a particularly important aspect of
northern temperate ecosystems [7]. Andrena species exhibit a spectrum of diet breadth,
from polylectic to oligolectic, which makes this genus a superb group to study the evolution
of diet specialization [8,9]. Oil-tea (C. oleifera) is an important woody oil crop in many
countries, including China, the Philippines, India, Brazil, and South Korea [10]. This plant
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only blooms in November and December [11], when there are few wild pollinators present.
As a result, crop yields are very limited due to significant pollinator constraints [12,13].
Local farmers have attempted to utilize domestic honey bees (Apis mellifera and Apis cerana)
to increase pollination efficiency, however, both species are badly damaged by the nectar’s
toxicity [14]. Interestingly, some wild bees such as A. camellia and Colletes gigas primarily
rely on oil-tea nectar to survive, suggesting these species have coevolved to become experts
in oil-tea [15–17].

Direct observation on floral visiting and microscope examination of pollen from
pollen baskets showed that A. camellia near exclusively collects nectar and pollen from
oil-tea blossom [12]. A. camellia emerges in the middle of October and keeps its activities
(mating, oviposition, and larval development) mainly during November and December,
well synchronizing with the blossom period of oil-tea tree [11,12]. Besides A. camellia, at
least three other Andrena bees (A. chekiangensis, Andrena hunanensis, and Andrena striata) are
also reported to visit oil tea flowers [18,19]. A. chekiangensis is much larger than A. camellia,
which makes it easier to identify between the two species. Our field observations found
that, A. chekiangensis is strictly not an oil-tea specialist, because it also frequently visits tea
tree blossoms (Camellia sinensis). In some sympatric habitats of C. oleifera and C. sinensis,
A. chekiangensis individuals were more frequently observed in C. sinensis blossoms. On
the contrary, A. hunanensis and A. striata were almost indistinguishable from A. camellia in
terms of morphology features and feeding habits (oil-tea specialization). It should be noted
that A. hunanensis and A. striata are frequently mistakenly classified as A. camellia in many
amateur fieldwork reports. Due to the morphological similarity among A. camellia and its
close relatives, the researchers believe there may even be hidden unknown species that
have yet to be discovered.

Understanding the poisoning and detoxifying processes used by various bee species
could be crucial to enhancing oil-tea flower pollination. According to chemical tests,
the primary toxins affecting western honey bees are the galactose derivatives: raffinose,
manninotriose, and stachyose [20,21]. Typically, these oligosaccharides must be broken
down in two steps: first, the α-galactosidine linkages are hydrolyzed by galactosidases to
produce sucrose and galactose and, then, the galactose molecules are converted to UDP-
glucose via the Leloir route [22–24]. It should be noted that little is known about the genes
involved in the metabolism of galactose derivates in Andrena species. Here, we present
the first next-generation sequencing of Andrena species consuming oil-tea nectars. By
combining these data with genomic information on other Andrena species from GenBank,
we performed bioinformatic analyses of the genes involved in the metabolism of galactose
derivatives. The objective is to determine whether the oil-tea-specialized Andrena species
differ from the other Andrena species in terms of evolutionary specialization.

2. Materials and Methods

All pollinators were live-trapped from oil-tea blossoms in Jiangxi, Anhui, Sichuan,
Zhejiang, Guangdong, and Hunan Provinces, China (Figure 1). In order to pick out Andrena
samples, the specimens were identified based on morphological characteristics [18]. One
female sample for each species was chosen for genome sequencing. Total genomic DNA
was extracted from the thorax of each individual using the QIAGEN DNeasy Blood and
Tissue kit (Germany), following the manufacturer’s protocols. DNA libraries with ~350 bp
insertions were constructed and were then sequenced with both directions of 150 bp reads
using the Illumina HiSeq 2000 sequencing platform (Illumina Inc., San Diego, CA, USA).
Quality control for raw reads data was performed using fastp 0.20.0 with default settings
and parameters [25].

The clean reads were used for de novo assembly with MEGAHIT [26]. The mitochondrial
COI sequences were extracted by local blast using NCBI-BLAST+ program v2.13.0 [27] and were
used as queries to search in BOLD system (www.boldsystems.org, accessed on 1 April 2023) to
determine their taxonomic information. Previously published six Andrena genomes downloaded
from GenBank were used as comparison objects: Andrena dorsata, GCA_929108735.1; Andrena fulva,
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GCA_946251845.1; Andrena haemorrhoa, GCA_910592295.1; Andrena hattorfiana, GCA_944738655.1;
Andrena minutula, GCA_929113495.1; and Andrena bucephala, GCA_947577245.1. All 13 mi-
tochondrial coding sequences in the genomes sequenced in this study and those from
GenBank were extracted and were concatenated to reconstruct phylogenetic trees using
IQ-TREE [28].
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Figure 1. Sampling sites of the six Andrena species of pollinating oil-tea (red dots, oil-tea specialized
species; blue dot, non-specialized oil-tea pollinator).

The galactose metabolism pathway of Hymenoptera in KEGG (ko00052) was used to
identify the candidate genes involved in galactose derivatives metabolism. With honey
bee (A. mellifera) candidate genes as query sequences, the exonerate program v2.4.0 [29]
was used to find homologous genes in Andrena genomes. MEGA v10 [30] was used to
combine and align the coding sequences from all samples for each gene. DNasP v6 [31] was
used to identify the genetic variation information for each gene. The sequence similarity
information among the genes as well as their translated protein sequences are calculated
using clustal omega [32].

The molecular evolution analyses were performed in PAML program package [33]. The
branch model was used to estimate the dN/dS (nonsynonymous/synonymous mutation)
ratios of the foreground clade (oil-tea specialized species). The likelihood ratio tests (LRTs)
between M0 (null model) and the branch model were performed by comparing twice the
difference in log-likelihood values (2∆lnL) against a chi-square distribution (df = 2). We also
used the branch-site model called Model A to test for positive selections in the foreground
clade oil-tea specialized species. The null model for Model A is Model A1, which is a
modification of Model A, but with ω2 = 1 fixed [34,35]. The putative positive selection
sites were deduced with Bayes Empirical Bayes (BEB) analysis. It should be noted that the
seven non-specialized Andrena species lacked NAGA-like gene. Due to the high sequence
similarity between NAGA and NAGA-like genes, we arbitrarily used NAGA genes of these
species instead.

In order to analyze the relative expression level of each gene, we also carried out
RNAseq sequencing for A. camellia and A. chekiangensis, representing specialized and
non-specialized oil-tea pollinators, respectively. Total mRNA was isolated from whole
specimens of each individual (4 individuals were analyzed for each species). Following the
manufacturer’s instructions, 150 bp reads were sequenced bidirectionally by the Illumina
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platform (Illumina, San Diego, CA, USA). The obtained clean reads of a randomly selected
individual of each species were used for de novo assembly using the Trinity program [36].
The transcripts were processed by CD-HIT-EST [37] to remove the redundant sequences,
and the generated unigenes were then used to predict coding sequences (CDSs) with the
GeneMarkS-T program [38].

Orthologous genes were identified using OrthoFinder v2.3.11 [39]. The salmon pro-
gram v1.0.0 [40] was used to calculate the expected read counts and transcripts per million
(TPM) value for every orthologous gene, which were then used to identify differentially
expressed genes (DEGs) with the DEBrowser program [41]. The genes with posterior fold
changes (FC) in A. camellia against A. chekiangensis over two (i.e., FC > 2 or FC < 0.5) and
with highly significant posterior probabilities of differential expression (Padj < 0.05) were
considered to be DEGs. It should be noted that one of our candidate genes for the galactose
derivatives metabolism had two closely related copies (NAGA and NAGA-like, see below),
which made it challenging to pinpoint the true source of their mapped reads. In order to
differentiate the relative expression levels between the copies, we initially extracted all
reads that map to the two copies using bowtie2 program [42] and samtools [43]. We then
randomly selected five 50 bp variable segments (in each segment, at least seven variable
sites occurred between the two gene copies) as baits, and directly counted the number of
reads that match the baits using grep module of seqkit program [44].

3. Results

Based on the morphological characteristics and DNA barcoding using mitochondrial
COI sequences, six distinct Andrena species were discovered. Four species were recognized:
A. camellia, A. hunanensis, A. striata, and A. chekiangensis. Since neither GenBank blasting
nor BOLDSYSTEMS searching produced any COI hits for the two remaining species, they
were temporarily designated as Andrena sp. 1 and Andrena sp. 2 (Table 1). A total of
62.74 giga bases (Gb) of WGS clean reads were obtained for the six Andrena species (five
oil-tea-specialized species and A. chekiangensis). After assembly, 345~389 Mb of contigs
were generated, with an N50 contig size of 8.8~15.6 Kb (Table 2). Phylogenetic analysis
showed that the known three species (A. camellia, A. hunanensis, and A. striata) and the
unknown two species formed to a single clade, while A. chekiangensis and A. haemorrhoa
formed another clade (Figure 2).

Table 1. Sample information of six Andrena species collected from oil-tea blossoms.

Sample Species Location Longitude Latitude

XJ01 A. camellia Xiajiang, Jiangxi 115.1285 27.6546
QY01 A. hunanensis Qingyang, Anhui 117.8796 30.5977
RX01 A. striata Rongxian, Sichuan 104.2913 29.4377
CN02 A. sp. 1 Cangnan, Zhejiang 120.2556 27.4591
DY03 A. sp. 2 Dongyuan, Guangdong 114.9792 24.1905
NX04 A. chekiangensis Ningxiang, Hunan 112.4206 27.9832

Table 2. Short reads and assembly of next-generation genome of six Andrena species.

Species
Reads Assembly

Length
(Gb) Accession Length

(Mb)
N50
(Kb)

A. camellia 10.38 SRR23869504 369.7 11.1
A. hunanensis 11.01 SRR23869503 384.3 8.2

A. striata 9.79 SRR23869502 393.1 8.5
A. sp. 1 10.75 SRR23869501 363.2 9.6
A. sp. 2 9.74 SRR23869500 353.5 14.7

A. chekiangensis 10.02 SRR23869499 365.7 11.6
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According to the KEGG database, α-galactosidase (EC 3.2.1.22, also known as α-
galactosidase A), which is prevalent in chordates, plants, and bacteria, is not found in
arthropods such as bees (Hymenoptera) and other insects. As an alternative, bees have the
equivalent α-N-acetylgalactosaminidase (NAGA, EC 3.2.1.49, also called α-galactosidase B),
which is a homologous gene of α-galactosidase. Similar to other bees, there was only one
NAGA gene in the A. chekiangensis genome. Intriguingly, two close, similar copies of the
NAGA gene were discovered in the genome of the five oil-tea-specialized species. One was
the conventional NAGA, while the other appeared to be a novel copy of the conventional
NAGA. For ease of use, we refer to the novel copy as a NAGA-like gene. The NAGA
and NAGA-like genes were highly similar; taking A. camellia as an example, there were
86% and 78% identity sites between them at nucleotide and amino acid sequence levels,
respectively. It is worth noting that NANA-like had a termination mutation in the last exon
(the sixth exon) which resulted in a shortened protein (Figure 3). All genomes of the five
oil-tea-specialized species and the other seven species (including A. chekiangensis) contained
four of the Leloir pathway genes [22], which most organisms use to metabolize galactose:
aldose 1-epimerase (galM, EC 5.1.3.3), galactokinase (galK, EC 2.7.1.6), galactose-1-phosphate
uridylyltransferase (galT, EC 2.7.7.12), and UDP-galactose 4-epimerase (galE, EC 5.1.3.2).

Genetic variations were surveyed within the five oil-tea-specialized species. The
coding sequence of NAGA was 1320 bp in length, with 16 (1.21%) variable sites among
the five species. The NAGA-like gene was shorter but, interspecifically, much more vari-
able (2.66%) than NAGA. The four Leloir pathway genes were shorter than NAGA and
NAGA-like and the number of variable sites ranked as galM > galK > galT > galE
(Table 3). The sequences of the six genes of all the 12 Andrena species analyzed in this
study are shown in the Supplementary Table S1. Branch model analyses were executed
with the five oil-tea-specialized species as foreground clade and the remaining seven
species as background clade. The results showed that NAGA-like, galK, and galT had signifi-
cantly greater dN/dS ratios in the foreground clade than in the background clade (χ2 test,
df = 1, p < 0.001). However, no significant divergence was seen for NAGA, galM, and galE
(p > 0.2) (Table 4). We also assessed the putative positive selection sites in the two genes us-
ing the branch-site model test. With the Bayes Empirical Bayes (BEB) analysis, twelve sites
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in NAGA-like, four sites in galK, and one site in galT were found under positive selection
with posterior probabilities >0.95.
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genes of A. camellia (note in the red box the termination mutation in NAGA-like).

Table 3. Sequence length and genetic variation of genes involved in galactose derivatives metabolism
within five oil-tea-specialized Andrena species.

Gene Length Variable Sites Percent of Variable Sites

NAGA 1320 16 1.21
NAGA-like 1239 33 2.66

galM 1077 29 2.69
galK 1182 24 2.03
galT 1152 15 1.30
galE 1098 8 0.73

Table 4. Branch model analyses of genes involved in galactose derivatives metabolism.

Gene Foreground Background 2∆lnL p (df = 1)

NAGA 0.049 0.023 1.412 0.234
NAGA-like 0.680 0.021 145.673 <1.000 × 10−10

galM 0.251 0.360 1.283 0.257
galK 0.864 0.161 24.279 8.336 × 10−7

galT 0.387 0.088 12.761 3.540 × 10−4

galE 0.129 0.063 0.913 0.339

A total of 33.7 Gb and 35.1 Gb of RNASeq clean reads were obtained for A. camellia and
A. chekiangensis, respectively (Table 5). The assembly of A. camellia generated 23,087 unigenes,
with a N50 value of 1668 bp. For A. chekiangensis, 18,387 unigenes were produced with a
N50 value of 1692 bp. A total of 7151 orthologs were shared by the two species, with a total
length of 7,847,865 bp and N50 of 1632 bp. The average value of relative expression level
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(TPM) of these orthologs in each sample was 140. The TPM values of the six candidate
galactose metabolism genes are shown in Table 6. Taking the A. chekiangensis samples
as the control group, 1987 differentially expressed genes were detected, including 1155
up-regulated (FC > 2) and 853 down-regulated (FC < 0.5) genes in A. camellia. NAGA-
like, galK, and galT were significantly up-regulated in A. camellia (FC > 2, Padj < 0.05),
while NAGA, galM, and galE did not deviate in expression levels between A. camellia and
A. chekiangensis (Padj > 0.05) (Figure 4).

Table 5. RNASeq clean reads of A. camellia and A. chekiangensis.

Sample Accession Length
(Gb)

Q30
(%)

GC
(%)

Acam1 SRR8335252 7.54 91.55 45.84
Acam2 SRR8335251 9.50 92.41 46.35
Acam3 SRR8335254 7.64 91.76 46.23
Acam4 SRR8335253 9.04 92.35 45.97
Ache1 SRR23869498 9.03 95.82 41.95
Ache2 SRR23869497 8.88 96.10 42.46
Ache3 SRR23869496 7.82 96.16 41.61
Ache4 SRR23869495 9.36 95.81 43.69

Table 6. Gene expression analyses of genes involved in galactose derivatives metabolism.

Gene
TPM (Mean ± SD)

FC Padj
A. camellia A. chekiangensis

NAGA 574.88 ± 162.33 740.45 ± 470.32 0.639 0.387
NAGA-like 69,465.93 ± 7690.83 0 +∞ −∞

galM 537.64 ± 78.69 210.82 ± 211.28 2.14 0.118
galK 172.87 ± 47.92 41.77 ± 34.05 3.35 0.016
galT 987.77 ± 139.04 318.55 ± 57.03 2.99 1.781 × 10−12

galE 32.45 ± 10.07 21.82 ± 14.73 1.23 0.624
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4. Discussion

Oil-tea is an important woody edible and industrial oil tree species [45]. Its product, tea
oil, was categorized by the FAO (Food and Agriculture Organization of the United Nations)
as a premium health-grade edible oil [46]. This plant presents a low oil yield because of self-
incompatibility. Previous studies showed that the oil yield can be improved by an increase
in pollinating insects [19,47]. However, blooms occur in late autumn and winter (from
October to January), when bee pollinators are few due to cold temperatures. Additionally,
some compounds in the nectar are toxic to most bees, including managed honey bees [13]. It
is interesting to note that the poisonous elements in oil-tea nectar can be detoxified by both
adults and larvae of several Andrena species. Unfortunately, despite the significant attention
these species have received [47–50], little is known about the molecular mechanisms of
detoxification. In this study, we presented the first genome and transcriptome sequencing
of oil-tea specialized Andrena species and carried out bioinformatic analyses on the genes
involved in galactose derivatives metabolism.

As stated in the introduction, in order to degrade galactose derivatives, theα-galactosidine
bonds need to be first hydrolyzed to release galactose residues. In most organisms, such as
chordates, plants, and bacteria, this process is accomplished by α-galactosidase A. However,
honey bees and other insects have not yet been found to contain such a gene. Instead,
NAGA, a homologous gene of α-galactosidase A, was commonly present in insect genomes.
Although the protein produced by NAGA was initially thought to be an isozyme of α-
galactosidase and given the name α-galactosidase B, it was actually an exoglycosidase
acting on N-acetylgalactosamine [51]. There is no proof that it can replace α-galactosidase
A’s role, which is why honey bees (such as A. mellifera and A. cerana) are unable to process
oil-tea nectar. According to our molecular evolution analyses, there was no discernible
selective differentiation of NAGA between the five oil-tea-specialized species and the
other Andrena species. According to gene expression assessments, NAGA in A. camellia
was not significantly deviated from that in A. chekiangensis (p > 0.05). As a result, we
hypothesize that the conventional NAGA makes no contribution to the detoxification of
oil-tea-specialized Andrena species.

The most intriguing discovery in this study might be the novel copy of NAGA, named
the NAGA-like gene, in the five oil-tea-specialized Andrena species. Such a gene duplication
pattern was not found in the other seven Andrena species, including A. chekiangensis which
also consume oil-tea nectar, although not specifically. We also examined the genomes
and transcriptomes of C. gigas, another crucial oil-tea pollinator [17,19], and no novel
copy was found. Considering that the five oil-tea-specialized Andrena species formed a
monophyletic group, we speculated that the NAGA-like gene was created from a particular
gene-duplicating event that occurred in the common ancestor of these species. Molecular
evolution analyses with branch models and branch-site models indicated that NAGA-like
was under strong positive selections, a sign that a new phenotype of this gene would
arise for these species [52]. The seqkit grep counts showed that the majority of reads
mapping on NAGA were actually from NAGA-like. As a result, it is possible to estimate
that the expression level of NAGA-like in A. camellia is ~120 times that of NAGA in the same
species, or ~94 times that of NAGA in A. chekiangensis. Additionally, given that each of the
7151 orthologs had an average expression level (TPM) of 140, NAGA-like had a TPM that
was around 496 times the average value. Such a high degree of NAGA-like expression
suggests that it is essential for oil-tea specialization in A. camellia, and maybe for the other
four oil-tea-specialized species. Since the novel NAGA-like gene was highly similar (86%
DNA identity) to conventional NAGA, it was logical to assume that the NAGA-like protein
could likewise catalyze N-acetylgalactosamine residue. In other words, although more
research is required to confirm this idea, we propose that NAGA-like may have acquired a
new role to break the α-galactosidine linkages from galactose derivatives.

There are four steps in the classic Leloir pathway. Firstly, β-d-galactose (natural
galactose) is epimerized to α-d-galactose by galM. Secondly, α-d-galactose is phosphory-
lated to yield α-d-galactose 1-phosphate by galK. Thirdly, galT catalyzes the transfer of a
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UMP (uridine monophosphate) group from UDP-glucose (uridine diphosphate glucose)
to galactose 1-phosphate, thereby generating glucose 1-phosphate and UDP-galactose.
Finally, UDP-galactose is converted to UDP-glucose by galE [22]. Our results of the branch
model and branch-site model tests showed that, galK and galT, but not galM nor galE,
showed significantly larger dN/dS ratios in the five oil-tea-specialized species than in the
background Andrena species. Moreover, the gene expression analyses showed that galK
and galT, but not galM nor galE, was significantly more upregulated in A. camellia than in
A. chekiangensis. These findings suggested that galK and galT may have been crucial in
helping the oil-tea-specialized Andrena species adapt. We hypothesize that an improvement
in catalytic efficiency may result from positive selection in galK and galT of the oil-tea-
specialized species. In contrast, although galM and galE were also involved in galactose
metabolism, no significant deviations in molecular evolution and gene expression were
detected between A. camellia and A. chekiangensis, suggesting that the universal activity and
quantity of these two epimerases are sufficient to deal with the catalytic demand in the
oil-tea-specialized species.

5. Conclusions

Our study clearly demonstrated that the genes involved in galactose derivatives
metabolism were crucial in the evolution of the oil-tea-specialized Andrena species. A novel
NAGA-like gene was created to aid in the hydrolysis of the galactose residue from galactose
derivatives, while the galK and galT genes were functionally improved to speed up the
metabolism of the hydrolyzed galactose. It should be noted that, despite the fact that these
species can handle poisonous oligosaccharides, their too-small population densities make
it appear as though they are unable to meet the pollination needs of oil-tea. Our findings
would provide insight into the poisoning and detoxifying processes of various bee species.
We propose that the genetic engineering of relevant genes in cultivated species such as
A. mellifera may finally assist in meeting the enormous pollination needs.

Supplementary Materials: The following supporting information can be downloaded at: https://
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