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Abstract: Many reproductive physiological processes, such as folliculogenesis, ovulation, implanta-
tion, and fertilization, require the synthesis, remodeling, and degradation of the extracellular matrix
(ECM). The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin Motifs) family
genes code for key metalloproteinases in the remodeling process of different ECM. Several genes
of this family encode for proteins with important functions in reproductive processes; in particular,
ADAMTS1, 4, 5 and 9 are genes that are differentially expressed in cell types and the physiological
stages of reproductive tissues. ADAMTS enzymes degrade proteoglycans in the ECM of the follicles
so that the oocytes can be released and regulate follicle development during folliculogenesis, favoring
the action of essential growth factors, such as FGF-2, FGF-7 and GDF-9. The transcriptional regulation
of ADAMTS1 and 9 in preovulatory follicles occurs because of the gonadotropin surge in preovulatory
follicles, via the progesterone/progesterone receptor complex. In addition, in the case of ADAMTS1,
pathways involving protein kinase A (PKA), extracellular signal regulated protein kinase (ERK1/2)
and the epidermal growth factor receptor (EGFR) might contribute to ECM regulation. Different
Omic studies indicate the importance of genes of the ADAMTS family from a reproductive aspect.
ADAMTS genes could serve as biomarkers for genetic improvement and contribute to enhance
fertility and animal reproduction; however, more research related to these genes, the synthesis of
proteins encoded by these genes, and regulation in farm animals is needed.

Keywords: animal reproduction; ADAMTS; extracellular matrix; genetic improvement

1. Introduction

The enormous expansion in the production of food from livestock during the last
70 years has been possible, in great part, through genetic improvement [1]. Reproduction is
one of the most relevant aspects in animal production, because of relevancy to productivity
and sustainability of the different livestock systems [2]; however, these traits, as well as
other economically important traits, are quantitative, multifactorial and have low heri-
tability. The development of molecular and genomic technologies has contributed to the
identification of major genes and genetic markers associated with phenotypes, leading to
accelerated genetic improvement [3]. Nevertheless, it is important to elucidate how genes
that encode for the proteins related to such traits are regulated and how the genetic variants
affect their expression [4].

Extracellular matrix (ECM) remodeling is an important physiological process related
to reproductive capacity in males and females. This restructuring of the ECM has been
associated with the reproductive processes of folliculogenesis, ovulation, implantation and
placentation [5,6] in females and in processes that induce correct testicular development, as
well as the ongoing production and maturation of millions of spermatozoa in males [6,7].
In addition, the degradation of the ECM in the zona pellucida is an important physiological
process for oocyte fertilization [8].

Different matrix metalloproteinases function in the degradation of extracellular matri-
ces [9]. The metalloproteinases superfamily is composed of ADAM proteases (A Disintegrin-
like and Metalloproteinase), MMPs (Matrix Metalloproteinases), astacins (BMP/tolloid
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proteases and meprins in mammals) and ADAMTS (A Disintegrin-like and Metallopro-
teinase Domain with Thrombospondin type 1 repeat) [10]. Both MMPs and ADAMTS are
secretory proteins. ADAMTS are key proteases in the degradation of the ECM, particularly
cleaving large proteoglycans, whereas MMPs recognize short peptides as substrates and
thus have a wider range of protein targets and a role in many different physiological
processes [11,12]. In contrast, the ADAM proteases are integral membrane enzymes that
mainly cleave ectodomains of different secretory proteins [13].

In addition to the crucial role of the ADAMTS proteases in the ECM remodeling
of the development of reproductive organs and processes, Etacin-related proteins also
have an important function, activating growth factors necessary for the assembly of the
ECM [14–16]. Thus, the study of these genes can contribute to the full understanding and
improvement of the reproductive processes and can potentially impact the sustainability
of animal production. In this article, we describe the general structure of the ADAMTS
genes, the importance of ADAMTS proteases in reproduction biology and the biosynthesis
regulation of these proteins, as determined in reproductive genomics studies.

2. Structural Features of ADAMTS Genes

ADAMTS proteinases are multidomain enzymes with highly conserved structures [17].
ADAMTS1 was the first gene of this family to be described in mice [18], and later, other
genes were identified in other species. In mammalian genomes, 19 ADAMTS genes
have been identified and named ADAMTS1 to ADAMTS20. It was later discovered that
ADAMTS5 and ADAMTS11 are the same gene, and ADAMTS11 is no longer used [19,20].
The expansion in the number of ADAMTS genes in mammals seems to have occurred due to
gene duplication, thus generating sub-functionalization or neo-functionalization regarding
the physiological processes in which they participate [13]. Rose et al. [21], in their excellent
review, explain that Gon-1 is the only ADAMTS orthologous gene in Caenorhabditis elegans,
and it has similarity to ADAMTS9 and ADAMTS20 in humans. The six ADAMTS proteases
in the ascidian Ciona intestinalis represent the central evolutionary clades in chordates from
which gene expansion into vertebrates occurs [22], along with the evolution of the ECM.
Phylogenetic analysis clearly suggests the gene duplication of the ADAMTS genes [21].

The signature domains of the ADAMTS proteins are: a signal peptide, necessary for
protein trafficking and secretion, and an inhibitory prodomain that must be cleaved from
the ADAMTS zymogens to render them catalytically active. Such cleavage occurs in Golgi,
the cell surface or extracellularly. The size of this prodomain comprises about 200 residues
in all ADAMTS proteases, with the exception of ADAMTS13, which has a short prodomain
that does not need to be removed for the protease to be active [23]. Interestingly, the
removal of the ADAMTS9 prodomain reduces the protease catalytic activity upon versican,
its substrate; a disintegrin-like domain; a thrombospondin type 1 repeat (TSR-1) motif; and
a cysteine-rich domain followed by a spacer region. The TSR-1 domains and the spacer
domain appear to be involved in ECM anchoring. The description of the organization of
these proteins is based on the structure of ADAMTS4, the other members of the family
vary mainly at the C-terminus, with either, more or fewer repeats of the TSR-1 motifs [24].
Figure 1 illustrates the structure and localization of these proteins.

The ADAMTS genes are located on different chromosomes that vary depending on
the species. These genes code for proteins with a theoretical weight ranging between 70.9
and 225.64 kDa, with 662 amino acid residues in species such as the rooster (Gallus gallus)
or as many as 2028 in species such as the pig (Sus scrofa). Table 1 details the structural
characteristics of these genes and their protein products in farm animals, comparing these
with the mouse sequences. It is interesting to note that in sheep (Ovis aries), the ADAMTS1,
4 and 5 genes are found on the same chromosome (Table 1). These genes are thought to
encode for proteins involved in the regulation of reproductive functions. In the case of
cattle, humans and mice, genes 1 and 5 are located in the same chromosome, as reported by
Dubail and Apte [13].
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Figure 1. Illustration of ADAMTS protein structure and localization. Cleavage can occur in trans-
Golgi, on the cellular surface or extracellularly. 
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Figure 1. Illustration of ADAMTS protein structure and localization. Cleavage can occur in trans-
Golgi, on the cellular surface or extracellularly.

Table 1. Characteristics of ADAMTS genes in livestock and mice.

Gene Species Chr Exon No Size (bp) AA No Gene Species Chr Exon No Size (bp) AA No

ADAMTS1

Mus
musculus 16 9 9287 968

ADAMTS9

M. musculus 6 40 171,752 1931

Bos taurus 1 9 8698 970 B. taurus 22 41 163,000 1937
Ovis aries 1 9 9452 968 O. aries 19 41 162,411 1935

Equus
caballus 26 9 9002 949 E. caballus 16 40 166,329 1936

Sus scrofa 13 9 8783 947 S. scrofa 13 40 175,486 2028
Gallus gallus 1 9 6915 923 G. gallus 12 41 67,065 1928

ADAMTS2

M. musculus 11 22 205,489 1213

ADAMTS10

M. musculus 17 26 30,137 1104
B. taurus 7 22 245,248 1205 B. taurus 7 26 21,940 1103
O. aries 5 23 255,023 1206 O. aries 5 27 21,873 1103

E. caballus 14 23 215,470 1211 E. caballus 7 27 21,061 1191
S. scrofa 2 23 223,979 1208 S. scrofa 2 24 16,972 1103
G. gallus 13 27 236,034 1187 G. gallus 28 25 47,963 1109

ADAMTS4

M. musculus 1 9 12,139 833

ADAMTS12

M. musculus 15 24 284,541 1600
B. taurus 3 9 8057 839 B. taurus 20 25 394,653 1607
O. aries 1 9 8091 872 O. aries 16 24 402,782 1605

E. caballus 5 9 7009 837 E. caballus 21 24 314,874 1598
S. scrofa 4 9 8885 872 S. scrofa 16 24 373,778 1599
G. gallus 25 9 7976 662 G. gallus Z 23 170,964 1580

ADAMTS5

M. musculus 16 9 42,969 930

ADAMTS16

M. musculus 13 24 114,040 1222
B. taurus 1 9 50,445 934 B. taurus 20 23 193,779 1246
O. aries 1 8 57,118 934 O. aries 16 23 183,599 1226

E. caballus 26 9 49,839 929 E. caballus 21 23 154,339 1249
S. scrofa 13 10 60,092 929 S. scrofa 16 24 164,333 1238
G. gallus 1 8 46,807 877 G. gallus - - - -

ADAMTS6

M. musculus 13 28 210,178 1117

ADAMTS18

M. musculus 8 24 152,221 1219
B. taurus 20 26 286,175 1117 B. taurus 18 24 145,453 1223
O. aries 16 28 289,952 1117 O. aries 14 21 147,254 1050

E. caballus 21 25 358,367 1117 E. caballus 3 23 125,706 1199
S. scrofa 16 24 308,302 1117 S. scrofa 6 23 164,005 1224
G. gallus Z 26 159,448 1119 G. gallus 11 23 69,793 1228

Chr = chromosome location, AA = amino acids. Data from NCBI (https://www.ncbi.nlm.nih.gov/) accessed on
10 March 2023.

According to different studies, the ADAMTS family proteins have functions in tis-
sue remodeling during the development of organs and reproductive processes [6]. The

https://www.ncbi.nlm.nih.gov/
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reproductive function of proteins encoded by these genes has been extensively studied in
mice, while studies in farm animals are scarce; however, as shown in Table 2, there is a high
ADAMTS protein similarity among species.

Table 2. Identity and similarity percentage of ADAMTS proteins between M. musculus and farm
animals.

Species

ADAMTS

1 2 4 5 6 9 10 12 16 18

I S I S I S I S I S I S I S I S I S I S

B. taurus 81 87 89 93 88 92 88 90 96 97 88 93 95 96 78 85 78 85 86 91
O. aries 80 87 89 93 88 92 88 90 95 97 88 93 95 96 79 85 78 86 87 93

E. caballus 86 91 87 91 89 92 91 93 96 97 90 94 96 97 79 86 80 86 89 93
S. scrofa 86 91 88 92 89 92 91 93 95 97 89 94 95 96 80 86 79 86 87 91
G. gallus 74 81 74 84 60 71 79 86 91 95 74 85 73 83 57 70 - - 75 84

I = identity percentage; S = similarity percentage. Alignments performed with BLAST tool at the NCBI database
(https://blast.ncbi.nlm.nih.gov/Blast.cgi) accessed on 10 March 2023.

3. ADAMTS and Fertility in Females
3.1. Folliculogenesis

The process of development and maturation of follicles, termed folliculogenesis, is
necessary for ovulation to occur [25]. The ADAMTS family genes seem to be related to
this process, inferred by the relative abundance of mRNA transcripts in the follicles and
corpus lutea of several mammalian species. ADAMTS1 have been reported to be expressed
in granulosa cells in cows [26], horses [27] and pigs [28].

According to Brown et al. [29], ADAMTS1 functions are necessary for the structural
changes of the ECM to occur during follicular development. The proteoglycans present
in the ECM can inhibit the action of certain growth factors, such as FGF-2, FGF-7 and
GDF-9 [30], which are essential for various exquisite reproductive processes to occur. For
example, FGF-2 stimulates angiogenesis and granulosa cell proliferation and function
in cattle [31] and buffalo [32]. FGF-2 also stimulates the initiation and development of
follicular growth in sheep and goats [33,34].

Thus, the functions of ADAMTS1 and 4 are thought to enhance these processes
by controlling the amount and location of various proteoglycans [35]. Shozu et al. [36]
inactivated the ADAMTS1 gene and reported that the absence of ADAMTS1 led to follicular
atresia. Versican is an abundant ECM proteoglycan that is hormonally regulated by the
ovary. Versican abundance varies throughout the several stages of follicular growth but
particularly during ovulation in rodents [37]. The presence of versican in bovine and
porcine follicular basement membrane [38,39], suggests that ADAMTS1 may also regulate
the development of follicles during folliculogenesis.

3.2. Ovulation

The preovulatory surge of gonadotropins induces a series of biochemical processes
within the dominant follicle that culminate in ovulation and, subsequently, in the forma-
tion of the corpus luteum. Ovulation is associated with the degradation of the follicular
basement membrane and the fragmentation of the ECM at the apex of the follicle wall,
resulting in the release of the oocyte [40]. Metalloproteinases enzymes are responsible for
the degradation of the follicular ECM during ovulation [9]. ADAMTS1 degrades versican,
aggrecan and brevican, proteoglycans present in the ECM of the follicle. Such degrada-
tion of the follicular wall allows oocyte release [41,42]. Indeed, ADAMTS1 was reported
to have a fundamental function in ovulation, as reported by Mittaz et al. [43], based on
results from a study with female mice lacking the ADAMTS1. In this study, exon 2 was
deleted to disrupt the ADAMTS1 gene and a selectable marker gene was inserted in intron
1. The modified ADAMTS1 allele was functionally null. The authors reported that these

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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females were subfertile due to impaired ovulation, resulting in the mature oocytes not
being released from the follicles, as would typically occur during ovulation. Likewise,
Brown et al. [44] reported that the ovulation rate was 77% less in female mice lacking the
ADAMTS1 enzyme, compared to the wild-type animals. The finding was explained by the
lack of versican degradation during the matrix expansion of the cumulus–oocyte complex.

ADAMTS1 and ADAMTS9 mRNA abundance was increased in the granulosa [45]
and theca cells [46] of periovulatory follicles compared with the preovulatory follicles
of cattle. This was also observed in vitro in response to LH stimulation in theca cells
and to LH or FSH stimulation in granulosa cells [47], indicating the importance of the
ADAMTS proteins in ovulation, as these enzymes are necessary for the disruption of the
ECM integrity of the follicles and the subsequent release of the oocytes [46]. In mice, there is
a marked increase in the mRNA expression of the ADAMTS4 gene in granulosa cells before
ovulation and in different cell types after ovulation, including the site where follicle wall
degradation occurs [16]; however, when studying expression in cattle, Madan et al. [26]
did not observe changes in the ADAMTS4 mRNA transcript abundance in granulosa or
theca cells in periovulatory compared to preovulatory follicles. On the other hand, in a
transcriptome sequencing study, ADAMTS4 was one of the genes with the highest relative
expression, based on mRNA transcript abundance in the ovarian tissue of prolific compared
to non-prolific sheep [48].

Hu et al. [49] reported that SNP-type polymorphisms in ADAMTS1 are related to litter
size in goats; therefore, they could be used as molecular markers for the selection of litter
size. ADAMTS1, 4 and 9 are considered to be of great importance for animal production,
where reproductive prolificacy is a determinant for sustainability. Figure 2 depicts the
possible functions of ADAMTS proteins in folliculogenesis and ovulation in livestock.
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3.3. Implantation, Placentation and Parturition

Similar to the constant remodeling of the ECM required for the cyclical transforma-
tions of the ovary, the uterus also undergoes the cyclic development and remodeling of
the endometrial tissue matrix. This remodeling is necessary for implantation and placenta-
tion [50]. Implantation is a critical process for the establishment of pregnancy and begins
with essential signaling from the blastocyst to the endometrium, which must be prepared to
respond [51,52]. The attachment of the blastocyst to the uterus and subsequent trophoblast
cell invasion occurs through ECM remodeling [53]. Uterine tissue remodeling is also re-
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quired for placental cotyledon formation and angiogenesis near trophoblast tissue in sheep,
as well as a decrease in endometrial thickness during implantation [54,55]. Shindo et al. [56]
reported that non-ADAMTS1 female mice had thicker uteri compared to wildtype females,
and such uterine thickening negatively affected fertilization. In addition, ADAMTS1 is
expressed in the endometrium during the estrous cycle of cattle and at the time of uterine
remodeling for implantation and placental development. Mishra et al. [57] reported that
ADAMTS1 was more abundant in the last stage of gestation in the cotyledonary tissues
of the placenta. This could be because the remodeling of the endometrial ECM leads to
the modification of the composition in response to implantation signals. ADAMTS5 and
ADAMTS6 genes are expressed in the mouse placenta and ADAMTS5 is expressed in the
7-day embryo but not in the later stages of development [17]. The remodeling of the uterine
ECM, therefore, was proposed to be essential for embryonic/fetal development.

Another member of this family of metalloproteinases, ADAMTS9, has been reported
to contribute to remodeling in the uterus at the time of parturition. The extracellular matrix
undergoes remodeling during late gestation to allow smooth muscle cells to connect to each
other and effect uterine contractions at the time of parturition [58]. ADAMTS9 is present
in all reproductive states and contributes to uterine tissue remodeling. The accumulation
of versican from the extracellular matrix in the uterus leads to abnormal contractions.
Mead et al. [59] reported that there are abnormally large concentrations of versican in
mice that do not produce ADAMTS9, leading to abnormal parturition processes. This
abnormality was due to a reduction in focal adhesions between cells that interact with one
another to generate uterine contractions. Thus, ADAMTS9 contributes to the remodeling
of the uterine extracellular matrix through the degradation of versican, and its null or
poor functionality disrupts parturition processes. The possible functions of the ADAMTS
proteases in implantation, placentation and parturition in livestock is illustrated in Figure 3.
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4. ADAMTS and Fertility in Males
4.1. Testicular Development

The expression of ADAMTS family genes, in addition to being related to fertility in
females, has also been linked to reproductive capacity in males, specifically to testicular
development [60]. The testicles develop in the abdomen during the embryonic and fetal
stages. Subsequently, the testes pass through the inguinal canal into the scrotum [7], with
this process requiring the tissue remodeling of the ECM [6]; however, regarding this process,
the literature is limited to only a few studies of rodents. Jacobi et al. [61] reported there
was expression of ADAMTS16 in the testes of mouse embryos. Likewise, alterations in



Genes 2023, 14, 1181 7 of 12

ADAMTS16 led to cryptorchidism and infertility in male rats [60,62]. Nevertheless, as re-
ported by Livermore et al. [63], the silencing of ADAMTS16 via CRISPR/Cas9 gene editing
led to the production of mice that were fertile, although with smaller testicles. On the other
hand, Carré et al. [64] reported that there was a greater abundance of ADAMTS12 expressed
in developing testicular cords at the time of sex determination in poultry. Only these two
genes of the ADAMTS family (12 and 16) have been linked to testicular development,
and more research is needed to elucidate ADAMTS functions during the development of
gonads in different species.

4.2. Spermatogenesis

Spermatogenesis is the process through which germ cells multiply and differentiate to
produce sperm in the seminiferous tubules [65]. The presence of ADAMTS10 expression in
the testis, epididymis and ejaculated spermatozoa of Asian buffalo (Bubalus bubalis) [66]
suggests a possible function in the sperm maturation process [67]. ADAMTS2 has also
been linked to sperm maturation in mice, as shown by Li et al. [68]. In transgenic mice
homozygous for the inactive alleles of ADAMTS2, there was less sperm maturation and
activity compared to those in the control group; however, more research is needed to
determine the functions of these proteins in sperm maturation.

In bulls with besnoitiosis compared to healthy bulls, ADAMTS1 mRNA abundance
is lower in scrotal skin, the pampiniform plexus and testicular parenchyma [69]. This
disease causes the fibrosis and thickening of the skin of the scrotum, which leads to
failure in thermoregulation and to the inhibition of spermatogenesis, ultimately causing
infertility [70].

Wu et al. [71] performed a transcriptomic analysis of yak and cattleyak testes to
investigate the genetic causes of hybrid animal sterility, and several ADAMTS genes
were differentially expressed. ADAMTS1, 10, 12, 3, 5 and 14 were upregulated, whereas
ADAMTS16, 20, 6 and 18 were downregulated; thus, these proteins could be involved in
cattleyak sterility. However, how these proteins are associated with hybrid animal sterility
is still unclear.

4.3. Fertilization

ADAMTS is apparently involved in sperm and egg fertilization processes. In a study
conducted by Dun et al. [8] in mice, ADAMTS10 was expressed during the late stages
of spermatogenesis, and the protein was incorporated into the acrosome of developing
spermatids. ADAMTS10 presence in the acrosome is thought to function by inducing sperm
adhesion to the zona pellucida. The zona pellucida is an ECM that surrounds the oocytes
and must be crossed by spermatozoa to penetrate the oocyte and carry out fertilization.
ADAMTS10 has important functions in this process by acting in the degradation of the
zona pellucida [72]; however, further research in farm animals is needed to understand the
role of ADAMTS10 in fertilization.

5. Regulation of ADAMTS Genes Involved in Reproduction

The ADAMTS proteases family is formed of 19 members that have actions on a huge
range of substrates and in different tissues. In an excellent review about the ADAMTS
regulation [21], the authors highlight the importance of the regulation of these metallo-
proteinases in different human pathologies, such as arthritis, where pro-inflammatory
molecules promote the transcriptional overexpression of the ADAMTS genes.

The transcription of the ADAMTS genes in reproduction-related processes is hormon-
ally regulated. The gonadotropin surge that induces ovulation leads to a series of drastic
changes in the follicles. ADAMTS1, 2, 7 and 9 are regulated in vivo by the LH/FSH surge in
the ovarian theca cells of cattle, in a time-dependent manner, whereas results from in vitro
studies confirmed the effect of LH on ADAMTS1 and 9 but not on ADAMTS2; however,
using the same in vitro cell model, the treatment with mifepristone, a progesterone receptor
inhibitor, blocked the up-regulatory effect of LH in periovulatory theca cells [46]. These
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results confirm that the gonadotropin surge regulates the ADAMTS1 and 9 transcription
through the progesterone/progesterone receptor (PGR) complex, as was also reported for
ADAMTS1 in follicle granulosa cells of cattle [47], horses [27] and pigs [28].

In vitro studies with cattle granulosa cells stimulated by forskolin showed a greater
abundance of ADAMTS1, thus providing a good model to study the regulation of this
gene. Using different fragments of the ADAMTS1 promoter region and luciferase as a
reporter gene, Sayasith et al. [73] determined that the deletion between −330 and −177 led
to a marked reduction in both basal promoter activity and forskolin-stimulated promoter
activity, with the Ebox elements located in this region appearing to play a key role in the
regulation of ADAMTS1 transcription. Investigating the possible pathway for transcription
regulation, it was determined that protein kinase A (PKA), extracellular signal-regulated
protein kinase (ERK1/2), epidermal growth factor receptor (EGFR) and progesterone
receptors (PGR) have a potential role in the activation of ADAMTS promoter in cattle.

Little is known about the regulation of ADAMTS genes related to reproductive biology
in farm animals; therefore, further research should be conducted. In addition, from what
is described in this review article, it is important to consider that these genes have a large
number of post-transcriptional and post-translational modifications, some of which have
already been described in humans and mice and excellently compiled by Rose et al. [21].

6. ADAMTS in Omics Studies

The genomics era has evolved throughout the past two decades. Genomics and tran-
scriptomic studies have been conducted in different animal species to determine what genes
are present in these genomes, to identify genetic variations and their possible association
with traits of interest and to determine differences in transcription levels in different cell
types, environmental conditions, physiological stages, etc.

Wu et al. [71] performed a transcriptomic analysis of yak and cattleyak testes to in-
vestigate the genetic causes of hybrid sterility. The mRNA abundance in several ADAMTS
family genes was different: ADAMTS1, 10, 12, 3 and 5 were over-expressed and ADAMTS16,
20, 6 and 18 were under-expressed in cattleyaks in comparison to yaks. In transcriptomes
analyzed in uterine tissue at day 6 post-insemination, genes related to ECM remodeling
had differential mRNA transcript abundance in pregnant and non-pregnant cows, 30 days
post-insemination. ADAMTS1 was among these genes, indicating the importance of this
protein in the uterine receptivity for the embryo to ensure the sustaining of pregnancy [74].
In an in vitro study, ADAMTS20 was one of the 20 over-expressed genes in the granulosa
cells of cattle in response to severe heat stress [75]. In sheep, where prolificacy is a very
important aspect, ADAMTS4 and ADAMTS14 were overexpressed in the whole ovarian
transcriptomes of Pelibuey ewes with greater prolificacy compared with ewes with less
prolificacy [48]. Furthermore, Gootwine [76] suggests further investigation on the possible
relationship between ADAMTS9 and uterine capacity in sheep, considering the relative
abundances of these gene-transcripts in different genomic studies in pigs and sheep. Tran-
scriptomic studies and genome scans can be conducted to identify genes for the further
analysis of functionality and regulation.

7. Conclusions

The results of many studies indicate the ADAMTS family genes are involved in
the reproductive biology of both males and females in farm animals; however, further
research is required to elucidate the specific functions of the products of these genes and
the regulation of their expression and effects of environmental conditions, as well as the
genotype:environment:phenotype integration. With such integrative understanding, more
strategies can emerge that will allow genetic improvement and gradually enhance the
sustainability of animal production systems.
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