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Abstract: The importance of the network defined by phosphatidylinositol-3-kinase (PI3K), AKT and
mammalian target of rapamycin (mTOR) downstream of Receptor Tyrosine Kinase (RTK) has been
recognized for many years. However, the central role of RICTOR (rapamycin-insensitive companion
of mTOR) in this pathway has only recently come to light. The function of RICTOR in pan-cancer still
needs to be systematically elucidated. In this study, we examined RICTOR’s molecular characteristics
and clinical prognostic value by pan-cancer analysis. Our findings indicate that RICTOR was
overexpressed in twelve cancer types, and a high RICTOR expression was linked to poor overall
survival. Moreover, the CRISPR Achilles’ knockout analysis revealed that RICTOR was a critical
gene for the survival of many tumor cells. Function analysis revealed that RICTOR-related genes
were mainly involved in TOR signaling and cell growth. We further demonstrated that the RICTOR
expression was significantly influenced by genetic alteration and DNA-methylation in multiple
cancer types. Additionally, we found a positive relationship between RICTOR expression and the
immune infiltration of macrophages and cancer-associated fibroblasts in Colon adenocarcinoma and
Head and Neck squamous cell carcinoma. Finally, we validated the ability of RICTOR in sustaining
tumor growth and invasion in the Hela cell line using cell-cycle analysis, the cell proliferation assay,
and wound-healing assay. Our pan-cancer analysis highlights the critical role of RICTOR in tumor
progression and its potential as a prognostic marker for various cancer types.

Keywords: Pan-cancer; mTORC2; RICTOR

1. Introduction

mTORC2 is a protein complex that plays a crucial role in multiple biological processes
in cells, such as cell proliferation, metabolic regulation, cell polarity, and cell apoptosis.
It consists of mTOR, RICTOR (rapamycin insensitive companion of mTOR), SIN1 (stress-
activated map kinase-interacting protein 1), mLST8 (mammalian lethal with SEC13 protein
8) and other regulatory subunits [1,2]. Studies have increasingly shown that mTORC2 can
promote numerous types of cancer, such as prostate and breast cancers, making it a potential
target for novel cancer therapies [3–6]. As a critical subunit of the mTORC2 complex,
RICTOR regulates the activity of mTORC2 and its downstream signaling pathways by
interacting with mTOR, mLST8, and other subunits [7]. Previous research has shown that
the deletion of RICTOR can significantly delay the tumorigenesis of pancreatic cancer [8].
Additionally, RICTOR has been identified as the most frequently amplified gene in a cohort
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of metastatic, small, cell lung cancer (SCLC) patients (~14% of patients) and SCLC patients,
with RICTOR amplification having a significantly decreased overall survival [9]. These
results suggest that RICTOR plays a critical role in maintaining the survival of tumor cells
and could be a promising target for cancer treatment.

Although there is growing evidence supporting the important role of RICTOR in the
tumorigenesis of specific cancer types, its mechanism of action in cancer remains poorly
understood. Additionally, there has been no comprehensive pan-cancer analysis of RICTOR
to date. Therefore, the aim of this study was to comprehensively analyze the expression
pattern, mutation status, methylation levels, prognostic value, and potential association
between RICTOR expression and immune function in various cancers. From the results,
we found that 29 types of cancer exhibited abnormal RICTOR gene expression, 10 types
of cancer exhibited RICTOR mutation dysregulation, and 9 types of cancer exhibited
methylation dysregulation. We further demonstrated that the RICTOR expression was
significantly influenced by genetic alteration and DNA-methylation in multiple cancer
types. These findings may provide new insights into the therapeutic targeting of RICTOR
on different cancer types.

2. Materials and Methods

We obtained the mRNA expression profiles in tumor tissues and their correspond-
ing normal tissues from The Cancer Genome Atlas (TCGA), Therapeutically Applica-
ble Research to Generate Effective Treatments (TARGET) (https://www.cancer.gov/ccg/
research/genome-sequencing/target, accessed on 15 February 2023), and the Genotype-
Tissue Expression (GTEx) database (cancer list in Supplementary Table S1). The analysis
of DNA methylation and protein expression level were performed by UALCAN [10]
(http://ualcan.path.uab.edu/index.html, accessed on 15 February 2023). The TISIDB
database [11] (http://cis.hku.hk/TISIDB/index.php, accessed on 15 February 2023) was
employed to check the correlation between the RICTOR expression and molecular subtypes
of cancer.

2.1. Survival Analysis

In order to investigate the potential impact of RICTOR expression levels on clinical
outcomes, the cancer patients were divided into two groups, namely, high and low ex-
pression based on the median gene expression value. We then used Kaplan–Meier (KM)
survival curves to assess the survival differences between the two patient groups with
the PrognoScan website [12] (http://dna00.bio.kyutech.ac.jp/PrognoScan/, accessed on
18 February 2023). Using data from the TIDE website [13] (http://tide.dfci.harvard.edu,
accessed on 19 February 2023), we also assessed the correlation between the methylation
levels of RICTOR and the overall survival (OS) in pan-cancer data. To ascertain statistical
significance, we established a threshold of 0.05 for the p value.

2.2. Genetic Alteration Analysis

From the cBioPortal platform [14] (https://www.cbioportal.org/, accessed on
23 February 2023), we obtained the mutation status of RICTOR. Additionally, survival
analyses were performed to compare the survival outcomes of cancers with and without
genetic alterations of RICTOR.

2.3. Protein–Protein Interaction Comprehensive Analysis

The online tool, Retrieval of Interacting Genes/Proteins (STRING) [15] (https://string-
preview.org, accessed on 25 February 2023), offers a vast collection of integrated and consoli-
dated protein–protein interaction data. We used this tool to obtain the protein–protein inter-
action (PPI) network of RICTOR. Additionally, we utilized the function-predicting website
Genemania [16] (http://genemania.org/, accessed on 25 February 2023) to investigate the
interaction network of RICTOR. For both websites, we selected the top 10 genes that showed
correlation with RICTOR for further Gene Ontology (GO) and Kyoto Encyclopedia of Genes
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and Genomes (KEGG) enrichment analysis. These analyses were performed using the R
package “clusterProfiler” [17], which helped us determine the biological and molecular
functions of the interaction genes. The GEPIA2 [18] (http://gepia2.cancer-pku.cn/#index,
accessed on 25 February 2023) and TIMER2.0 [19] (http://timer.cistrome.org/, accessed
on 25 February 2023) were used to perform expression correlation analysis between the
interaction genes in pan-cancer data.

2.4. RICTOR Gene Essential Analysis by the CRISPR Dependency Scores

Different types of cancers have essential genes that are necessary for their survival.
The Cancer Dependency Map project [20] (DepMap, www.depmap.org, accessed on
27 February 2023) aims to identify these gene dependencies by analyzing hundreds of
cancer cell lines. We utilized DepMap to investigate the impact of RICTOR on the growth
and survival of cancer cells. DepMap (Public 22Q4 + Score, Chronos) provides a compre-
hensive library of human genes that have been knocked down through RNAi or knocked
out via CRISPR in various human cancer cell lines that represent different cancer types.
The Chronos dependency scores indicate the probability of each cell line being dependent
on the particular gene. Essential genes are denoted by negative values, with more negative
values indicating greater importance. A score of 0 indicates a non-essential gene, while
scores below −0.5 and −1 represent sensitive cell lines (most cells are depleted) and lethal
cell lines, respectively.

2.5. Correlation between RICTOR Expression and Cancer Stemness

The Pearson correlation between RICTOR expression and cancer stemness was ana-
lyzed by the Sangerbox platform. The stemness was from the RNA-based stemness scores
calculated by the stemness group [20].

2.6. Immune Analysis Tools

The “Immune Association” module of TIMER2 website (http://timer.cistrome.org/,
accessed on 2 March 2023) was used to investigate the relationship between RICTOR
expression and the infiltration of immune cells, such as cancer-associated fibroblasts
(CAFs) and macrophages. Six state-of-the-art algorithms, including TIMER [21], xCell [22],
MCP-counter [23], CIBERSORT [24], EPIC [25] and quanTIseq [26] were used to investigate
the correlation between RICTOR expression levels and immune cell types associated with
pan-cancer.

The ESTIMATE package was employed to estimate the presence of interstitial and
immune cells in malignant tumor tissues using gene expression data [27]. It utilizes
single-sample GSEA (ssGSEA), an extension of Gene Set Enrichment Analysis (GSEA), to
generate three scores: stromal score, which measures the presence of stroma in tumor tissue;
immune score, which reflects the infiltration of immune cells in tumor tissue; and estimated
score, which infers tumor purity. The Sangerbox platform was employed to calculate the
correlation between RICTOR expression levels and the three scores.

Furthermore, we investigated the correlation between RICTOR expression and immune-
related genes, including chemokines, chemokine receptors, MHC genes, immunostimulator,
immunoinhibitor, and immune checkpoint genes (both inhibitory and stimulatory) [27,28].
Pearson correlation analysis was performed to assess the association between RICTOR
expression and these immune-related genes. These analyses can be achieved through the
Sangerbox platform.

2.7. Cell Cycle Analysis

Cell pellet were harvested and suspended in 70% ethanol at 4 ◦C for 2 h. After
centrifugation at 300× g for 5 min, the supernatant was aspirated. The cell pellet was
resuspended in PBS and centrifuged at 300× g for 5 min, and the supernatant was discarded.
The fixed cell pellet was then resuspended in PI staining solution containing RNase A and
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incubated for 15 min while being protected from direct light exposure. Finally, the cells
were analyzed using flow cytometry.

2.8. Cell Growth Assay

Cell counting kit-8 (Selleck Chemicals, Houston, TX, USA) was used in accordance
with the manufacturer’s instructions. Hela cells were seeded in 96-well plates (1000 cells/well)
and cultured at 37 ◦C in an incubator. A total of 10 µL of CCK8 solution was added to
each well after 24, 48, 72, 96 and 120 h, respectively, and incubated for 2 h. Relative cell
density was determined at a wavelength of 450 nm using the Biotek Synergy HTX (BioTek
Instruments, VT, USA).

2.9. Cell Wound-Healing Assay

Hela cells were seeded into six-well plates at a density that allows cells to grow to con-
fluency within 1–2 days. Once cells are confluent, we make a scratch in the monolayer with
a pipette tip, creating a “wound”; wash cells twice with PBS to remove any cellular debris,
and add fresh medium to cells; then take images of the cells at 0 and 48 h after scratching.

3. Results
3.1. RICTOR Demonstrated Differential Expression in Pan-Cancer

According to the combined tumor and normal samples from TCGA, TARGET, and
GTEx, RICTOR was significantly overexpressed in GBMLGG, LGG, ESCA, STES, STAD,
HNSC, WT, PAAD, ALL, LAML, PCPG, and CHOL, compared to normal tissues (Figure 1A),
and significantly downregulated in GBM, UCEC, BRCA, CESC, LUAD, KIRP, COAD,
COADREAD, PRAD, LUSC, SKCM, BLCA, THCA, OV, TGCT, UCS, and ACC.
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Next, we extended our investigation by analyzing the protein expression levels of
RICTOR using a large-scale proteome dataset obtained from the Clinical Proteomic Tumor
Analysis Consortium (CPTAC) database where 10 types of cancer have protein expression
data of RICTOR (Figure 1B) [10]. We found that PAAD and HNSC, which show significantly
increased protein expression, also exhibit upregulated gene expression. On the other hand,
BRCA, OV, KIRC, UCEC, and LIHC, show significant decreases in both protein and gene
expression. This suggests a significant consistency between mRNA and protein expression
in these seven types of cancer. The differential protein expression of COAD, LUAD–LUSC,
and GBM are not significant, which may be attributed to posttranscriptional modifications.

3.2. RICTOR Has Significant Correlations with the Development and Survival in Pan-Cancer

Next, we studied the association between the RICTOR expression and patient progno-
sis to check whether it could be used as an early diagnostic biomarker for cancers. Based on
TCGA dataset and GEO dataset (from PrognoScan database), survival analysis revealed a
significant correlation between higher RICTOR expression and a poorer prognosis in cases
of CESC, LIHC, KICH, Breast cancer (GSE6532-GPL570), Colorectal cancer (GSE14333),
Ovarian cancer (GSE9891), and LUAD (GSE13213) (Figure 2A,B). These analyses indicate
that RICTOR is a valuable diagnostic biomarker in these cancer types.Genes 2023, 14, x FOR PEER REVIEW 6 of 18 
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Figure 2. Clinicopathological feature analysis of different cancer types. Kaplan–Meier curves of
cancers with significant survival differences between high and low RICTOR expression in the TCGA
(A) and GEO dataset (B). (C) Associations between RICTOR expression and molecular subtypes.
Cancers with significant differences between molecular subtypes were shown. Relapse Free Survival
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Furthermore, we examined the impact of RICTOR on tumorigenesis and cell sur-
vival across different types of cancer cells using the DepMap CRISPR data. Among the
1078 cell lines, 378 cell lines’ proliferation was seriously suppressed by RICTOR gene
knockout, indicating RICTOR is important for the growth and survival of these cells
(Supplementary Figure S1A). By analyzing the tissue origin, Bladder Urothelial Carcinoma
BC3C is the most sensitive cell line (Supplementary Table S2), and Non-Hodgkin Lym-
phoma is the most sensitive disease (Supplementary Table S3) for RICTOR knockout. We
also find that the cancers that have a poorer prognosis in TCGA can also been found in
the DepMap database, such as the cell line BOKU and CASKI of cancer CESC, with strong
negative CRISPR dependency scores. Therefore, it will be meaningful to select these cancer
types for further exploration of RICTOR’s regulatory mechanisms.

Next, we examined the relationship between RICTOR expression and cancer subtypes
by the TISIDB database [11]. The results demonstrated a significant correlation between
RICTOR expression and molecular subtypes of BRCA, GBM, ACC, LGG, PCPG, READ,
STAD, and UCEC (Figure 2C). Additionally, we employed the GEPIA2 database to inves-
tigate the relationship between RICTOR expression and tumor pathological stages, and
observed a significant association in SKCM, OV, and TGCT (Supplementary Figure S1B).

3.3. The Genetic Alteration of RICTOR Has Significant Correlations with Survival and mRNA
Expression in Pan-Cancer

Next, we investigated the genetic alteration of RICTOR in pan-cancer. As depicted in
Figure 3A, the alteration frequency of RICTOR mutations was highest in Non-Small Cell
Lung Cancer (LUAD and LUSC), with a frequency of approximately 12%. Amplification
was the most prevalent form of genetic alteration observed in these cancers. Esophagogas-
tric, Bladder, Endometrial, Cervical, Sarcoma, Ovarian Epithelial, Head and Neck, and
Adrenocortical Carcinoma also showed amplification-dominated variants.

Subsequently, we examined the types and sites of mutation in the RICTOR sequence.
Only missense mutations were found with seven recorded samples. As a contrast, the
missense variant of uncertain significance (VUS) has 234 recorded samples, which might be
a potential cancer driver and in need of further investigation (Figure 3B).

We then evaluated the effect of RICTOR genetic alterations on the clinical outcomes of
patients. A genetic alteration in RICTOR significantly enhanced the overall survival (OS)
of patients with UCEC and CESC, as illustrated in Figure 3C. Conversely, ACC patients
with RICTOR genetic alteration exhibited a significantly poor prognosis in terms of OS
(Figure 3C). Nonetheless, for patients with other cancer types, RICTOR genetic alterations
did not lead to a significant change in OS.

To find the possible regulatory mechanism of mutation resulting in aberrant RICTOR
expression, we also examined the alteration frequency of RICTOR in pan-cancer data
(Figure 3D). Our findings revealed significant correlations between RICTOR expression
levels and RICTOR mutations in LUAD, KIPAN, LUSC, STAD, and UCEC. Specifically, mu-
tations improved RICTOR expression levels in LUAD, KIPAN, and LUSC, while decreasing
expression in STAD and UCEC. These results suggest that mutations may contribute to the
aberrant expression of RICTOR in these cancers.
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3.4. The Promoter Methylation Level of RICTOR Has Significant Correlations with Aberrant
Expression in Pan-Cancer

It has been demonstrated that alterations in promoter DNA-methylation patterns can
impact gene expression and participate in the tumor oncogenesis [29]. Thus, we studied the
methylation levels of RICTOR between normal and tumor tissues in pan-cancer data. Com-
pared to the normal group, the promoter methylation levels of RICTOR were significantly
higher in KIRP, LIHC, COAD, KIRC, PRAD, LUSC, PAAD, and SARC. Conversely, THCA
exhibited significantly lower promoter methylation levels than normal tissues (Figure 4A).
This finding is in line with the low RICTOR expression in KIRP, COAD, PRAD, and LUSC
patients shown in Figure 1A. Further correlation analyses demonstrated that the gene
expression of RICTOR was significantly negatively correlated with methylation levels in
KIRP, PRAD, and LUSC (Supplementary Figure S2), indicating higher DNA methylation
leads to lower gene expression in these cancers. Additionally, we did not observe signif-
icant changes in RICTOR methylation levels in other cancers. Our results indicate that
an aberrant expression of RICTOR in these cancers may be attributed to the promoter
methylation of RICTOR.
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Next, we employed the TIDE database to analyze the correlation between methylation
levels and survival outcome. As illustrated in Figure 4B, a higher methylation level of
RICTOR predicted worse OS in glioma, liver, and endometrial cancer.

3.5. The Function of RICTOR-Interacting Genes Correlate with Cell Growth

Next, we used functional enrichment analysis to evaluate the underlying molecular
mechanisms of RICTOR in tumorigenesis and cancer development. First, we used the
STRING database to find the PPI network of the RICTOR protein. The top 10 interacting
proteins of RICTOR were obtained (Figure 5A). We also investigated the protein interactions
in Geneamia and obtained the network, as depicted in Supplementary Figure S3A. Gene
AKT1, MAPKAP1, MLST8, MTOR, PRR5 were shared in the top 10 gene lists from the two
websites. Among these, MAPKAP1 is also known to be a core subunit specific to mTORC2
complex. Meanwhile, GO and KEGG enrichment analyses in Figures 5B and S3B indicated
that the RICTOR-interacting genes were mainly involved in TOR signaling biological
processes and mTOR signaling pathway. Further pan-cancer analyses show positive corre-
lations between the expression of RICTOR and the top 10 interacting genes in the majority
of cancer types, except for gene PRR5 with negative correlation (Figures 5C and S3C).
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We further queried the DepMap CRISPR RICTOR knockout data for significant co-
dependency Pearson correlations. Our analysis revealed that MAPKAP1 was the top
co-dependency identified (Supplementary Table S4), which is consistent with their known
collaborative function as core subunits that are specific to the mTORC2 complex.

3.6. RICTOR Has Significant Relationship with Cancer Stemness, MSI, and TMB

The initiation, development, and recurrence of cancer after chemotherapy are driven
by cancer stem cells [30,31], and a greater abundance of these stem cells is linked to poor
patient survival. Thus, we further investigated the correlation between RICTOR expression
and the cancer stemness. Figure 5D revealed a significant positive association between the
stemness of GBMLGG and RICTOR expression, with the correlation coefficient being the
highest of all pan-cancers analyzed in TCGA. These results suggest that RICTOR could
potentially influence the cancer stemness of gliomas and facilitate the advancement of
the tumor.

TMB and MSI are biological markers spanning the entire genome, which have been
utilized for forecasting the effectiveness of immune checkpoint inhibitor treatments in
cancer patients. Therefore, we examined how RICTOR expression and TMB and MSI were
interrelated. We observed that the level of RICTOR expression was positively linked with
TMB in LUAD and SKCM, but negatively associated with TMB in UCEC, UVM, STES,
and STAD (Supplementary Figure S4A). Regarding GBMLGG, we found that RICTOR
expression was positively associated with MSI, whereas in DLBC, it was negatively related
to MSI (Supplementary Figure S4B).

3.7. RICTOR Has Significant Correlations with Immune Microenvironment and
Immune-Related Genes

Macrophages and CAFs are both important components of the tumor microenviron-
ment and they play crucial roles in tumor development and metastasis [32]. Thus, we
further studied whether RICTOR expression can increase or decrease the infiltration level of
macrophages and CAFs (Figure 6A). We found a significantly positive association between
the macrophage infiltration and RICTOR expression in COAD, HNSC, and PAAD, while
KIRP, LGG, and MESO demonstrate a significantly negative correlation. In terms of CAFs,
we observed a significantly positive correlation in BRCA, COAD, HNSC, and READ on all
algorithms, while negative correlation in LGG and PCPG.

Infiltrating stromal and immune cells form the prominent components of normal tissue
in tumor and can significantly impact cancer progression and treatment response [27]. We
used the ESTIMATE method to compute the stromal, immune, and ESTIMATE scores for
cancer tissue (Supplementary Table S5). We observed that RICTOR expression has most
significant correlation with stromal scores in GBMLGG, LGG, and COADREAD (Figure 6B).
In terms of immune scores and ESTIMATE scores, the most significant correlation was found
in GBMLGG, LGG, and PCPG. Interestingly, most correlations are negative, excluding the
stromal scores in COADREAD.

We further performed gene co-expression analyses to investigate the correlation be-
tween the RICTOR expression and immune-related genes in pan-cancer data, including
chemokine, chemokine receptor, MHC, immunostimulator, immunoinhibitor, and immune
checkpoint genes. According to the results, strong positive correlations were found be-
tween RICTOR and most of the immune-related genes in multiple cancer types except
for GBMLGG and LGG which show negative correlations (Supplementary Figure S5). In
detail, the expression of chemokine receptors such as CCR1, CXCR2, and CX3CR1 and
chemokines such as CCL28, CXCL8, and XCL1 were positively correlated with RICTOR
in various tumors. MHC genes had a co-expression with RICTOR in almost all cancer
types, particularly in LIHC, ACC, BRCA, and GBM. In addition, the expression of most
immunostimulatory genes and immunosuppressive genes were also positively correlated
with RICTOR in TCGA pan-cancer. A high expression of immune checkpoint genes can
reduce the immune response against the tumor and lead to tumor-immune escape. Thus,
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we explored the association between immune checkpoint genes and RICTOR (Supplemen-
tary Figure S6). Similar with immune-related genes, the transcription level of RICTOR is
positively associated with most immune checkpoint genes in most cancer types except for
GBMLGG and LGG. This result reveals that RICTOR may suppresses immune response by
regulating immune checkpoint genes and may be a hopeful target to enhance the efficacy
of immunotherapy.
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(A) The correlation between the expression of RICTOR and immune cell infiltration of macrophage
(left) and cancer-associated fibroblast (right) calculated by six evaluation algorithms; (B) The as-
sociation between the RICTOR expression and Stromal score (top), Immune score (middle), and
ESTIMATE score (bottom) with top 3 most significant correlated cancers shown.

3.8. RICTOR Knockdown Inhibits the Proliferation and Migration of Hela Cells

To confirm the function of RICTOR in tumor growth, we selected cervical cancer
cell line, Hela, to examine the effect of RICTOR knockdown on cell growth. The results
demonstrated that RICTOR knockdown could induce cell cycle arrest, with a decrease in
G1 phase and an increase in S and G2/M phase (Figure 7A). Additionally, the results of
the CCK8 assay and wound-healing assay confirmed that cell proliferation (Figure 7B) and
migration (Figure 7C) were suppressed after knockdown. Taken together, these results
suggest that RICTOR may promote tumor cell growth by regulating the cell cycle.
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4. Discussion

In this study, we performed a comprehensive analysis to investigate the molecular
characteristics of RICTOR in different cancers from diverse databases, including TCGA,
TARGET, CPTAC, and GEO, and the value of RICTOR in patient survival and treatment.

The PI3K/Akt/mTOR pathway plays a crucial role in cell growth, proliferation and
survival, and is frequently dysregulated in cancer. AKT is phosphorylated and activated by
PDK1 and mTORC2, and activated AKT then phosphorylates various downstream targets
involved in cell growth and proliferation. In many cancers, including Cervical and Breast
cancer, RICTOR overexpression leads to increased Akt S473 phosphorylation and promotes
tumorigenesis [6,33,34].

We investigated the correlation between RICTOR expression, genetic alteration, methy-
lation and patient prognosis to check whether they could be used as an early diagnostic
biomarker for cancers. Based on our results, we found that the higher expression of RICTOR
was significantly correlated with poor patient survival in multiple cancer types, including
CESC, LIHC, KICH, BRCA, COAD, OV, and LUAD. On the other hand, genetic alteration
has a significant correlation with the prognosis of UCEC, CESC, and ACC patients. Methy-
lation has a significant correlation with the prognosis of GBM, LIHC, and UCEC patients.
Compared with gene expression, genetic alteration and methylation have a weaker impact
on prognosis.

We also observed a significant correlation between a higher expression of RICTOR
and higher survival probability for LGG, SKCM, KIRC, Glioma (GSE4412-GPL97), AML
(GSE12417-GPL570), Melanoma (GSE19234), and HNSC (GSE2837)
(Supplementary Figure S7). This result indicates that RICTOR may act as tumor suppressor
in these cancers. A high expression of RICTOR can enhance its suppressive functions,
leading to better control of cell proliferation, and improved patient outcomes. Another
reason is the potential involvement of RICTOR in DNA repair pathways and maintaining
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genomic stability. Reduced expression can compromise the cell’s ability to repair DNA
damage, leading to genomic instability, accumulation of mutations, and increased suscepti-
bility to further genetic alterations that promote cancer progression. Since the underlying
mechanisms connecting gene expression to prognosis are complex and multifaceted, further
research is required to fully understand its implications in different cancer contexts.

Given the upregulation in 12 cancer types, we investigated possible regulatory mecha-
nisms of a high RICTOR expression using correlation analysis between mRNA expression,
methylation and genetic alteration. We found that LUAD and LUSC have higher mRNA
expression when comparing mutated and wild-type tissue, indicating mutation is one
of the main reasons of RICTOR abnormal expression in lung cancer. Additionally, no
significantly negative regulatory relation between methylation and mRNA expression were
found, indicating that the contribution of methylation levels to the upregulation of RICTOR
gene expression is negligible. As mRNA expression could be modulated at multiple levels,
more regulatory mechanisms are needed to be investigated in the future.

To obtain a deep understanding of the biological function of RICTOR, we identified
the top 10 interacting proteins from STRING and the Geneamia database for co-expression,
GO, and KEGG pathway enrichment analysis. The enrichment analysis suggested that
these genes were mainly involved in TOR signaling and cell growth, which suggested that
RICTOR is essential for cell cycle regulation. These findings might provide new cues for
further exploring the molecular function of RICTOR.

The immune cell plays a critical role in recognizing and eliminating cancer cells. Thus,
we also checked the associations between RICTOR expression and immune microenviron-
ment. We found a significantly positive association between the macrophage infiltration
and RICTOR expression in COAD, HNSC, and PAAD. COAD and HNSC are also positively
correlated with the infiltration of CAFs. According to this result, we speculate that the
immunotherapy efficacy might be improved for COAD and HNSC, with RICTOR as new
target, and biomarkers.

In conclusion, our pan-cancer analysis shows that RICTOR has a high expression in var-
ious cancers, and its mRNA expression, mutation, and DNA methylation are significantly
associated with patient survival in certain tumors. In addition, immune microenvironment
analysis and gene function analysis suggests potential mechanisms that RICTOR may regu-
late tumor immunity, and sustain tumor growth and proliferation. Further experimental
and clinical studies are needed to confirm these findings by elucidating the molecular
mechanisms underlying the relationship between RICTOR and cancer, and to explore the
practical application of RICTOR in cancer therapy and prognosis prediction.
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