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Abstract: Potential single nucleotide polymorphisms (SNPs) were detected between two chicken
breeds (Kashmir favorella and broiler) using deep RNA sequencing. This was carried out to compre-
hend the coding area alterations, which cause variances in the immunological response to Salmonella
infection. In the present study, we identified high impact SNPs from both chicken breeds in order to
delineate different pathways that mediate disease resistant/susceptibility traits. Samples (liver and
spleen) were collected from Salmonella resistant (K. favorella) and susceptible (broiler) chicken breeds.
Salmonella resistance and susceptibility were checked by different pathological parameters post infec-
tion. To explore possible polymorphisms in genes linked with disease resistance, SNP identification
analysis was performed utilizing RNA seq data from nine K. favorella and ten broiler chickens. A
total of 1778 (1070 SNPs and 708 INDELs) and 1459 (859 SNPs and 600 INDELs) were found to be
specific to K. favorella and broiler, respectively. Based on our results, we conclude that in broiler
chickens the enriched pathways mostly included metabolic pathways like fatty acid metabolism,
carbon metabolism and amino acid metabolism (Arginine and proline metabolism), while as in
K. favorella genes with high impact SNPs were enriched in most of the immune-related pathways like
MAPK signaling pathway, Wnt signaling pathway, NOD-like receptor signaling pathway, etc., which
could be a possible resistance mechanism against salmonella infection. In K. favorella, protein–protein
interaction analysis also shows some important hub nodes, which are important in providing defense
against different infectious diseases. Phylogenomic analysis revealed that indigenous poultry breeds
(resistant) are clearly separated from commercial breeds (susceptible). These findings will offer
fresh perspectives on the genetic diversity in chicken breeds and will aid in the genomic selection of
poultry birds.

Keywords: Kashmir favorella; broiler; SNP identification; RNA sequencing

1. Introduction

Salmonella enterica serovar typhimurium is a Gram-negative, facultative anaerobe, non-
spore producing, motile bacillus in the Enterobacteriaceae family. It colonizes the digestive
tracts of many vertebrates and cause severe intestinal pathology in young chicken [1,2].
Salmonellosis poses a serious socioeconomic hazard and is associated with significant
human and animal mortality and morbidity [3]. Salmonella is one of the most prevalent
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bacteria, responsible for sporadic cases or outbreaks of gastroenteritis [4]. The annual
economic cost of foodborne illness has been estimated to be as high as USD90 billion [5].
Globally, Salmonella is the most common cause of foodborne illnesses, with poultry and
poultry-related products considered the primary causes of such outbreaks [6]. Salmonella
infection is a major threat in the poultry industry. Poultry is a major global reservoir of
non-typhoidal Salmonellae that cause foodborne diseases. Systemic salmonellosis causes
significant losses in the poultry sector in terms of mortality and decreased poultry produc-
tion [7]. Vaccination, sanitation, and the use of antibiotics are the most common methods
used to combat Salmonella infections. As none of the current vaccination programs have
been successful in controlling Salmonella infections [8], antibiotics are being preferred by
the poultry industry. Owing to widespread antibiotic use, growth of antibiotic-resistant
microorganisms and the buildup of antibiotic residues in food intended for human con-
sumption are the two main problems resulting from the emergence of antibiotic-resistant
bacteria and the accumulation of antibiotic residues in food. These are the two key difficul-
ties associated with widespread antibiotic use in poultry for human consumption [9,10].
The human immune system has the power to successfully fend off microbial invasion and
eradicate microbes. Following bacterial identification, host macrophages induce bacterici-
dal action, which stimulates the maturation and migration of dendritic cells as well as the
production of inflammatory chemokines, cytokines, interleukins, and other substances [11].
On the other hand, Salmonella has certain defense mechanisms that help it to combat these
host barriers and inhibit host-immune responses via their its virulence genes [11]. After
the Salmonella reaches the intestinal macrophages, it senses the phagosomal environment
and triggers various virulence mechanisms that help it to survive in the macrophages [12].
Salmonella uses the Salmonella pathogenicity islands during host invasion. Within the
Salmonella pathogenicity islands 1 and 2, Salmonella encodes two distinct virulence related
T3SSs that act at different times during infection [13]. Once in contact with the host cell,
the SPI1-encoded T3SS is activated and translocates bacterial proteins across the plasma
membrane, while the SPI2-encoded T3SS that is expressed within phagosomes is involved
in the translocation of the effectors across the vacuolar membrane. The SPI1 system plays a
key role in invading non-phagocytic cells, induction and activation intestinal inflammatory
responses, diarrhea and intestinal colonization. In contrast, the SPI2-encoded T3SS is
required for the survival of bacteria in macrophages and the onset of systemic disease [12].
After the Salmonella has entered the cell, it resides within a vacuolar compartment known
as a spacious phagosome (SP) [14]. This spacious phagosome shrinks within minutes to
hours and forms an adherent membrane that wraps one or more bacteria and is referred as
the Salmonella-containing vacuole (SCV). Intracellular persistence of SCV can range from
hours to days, which makes it a unique phagosome in terms of normal maturation and
recycling of phagolysosomes. Despite controversies, some studies report that Salmonella
can live in macrophages that have lysosomal compartments fused with the SCV [15,16].

In the context of the above statements, genetic resistance is a long-term approach
for a disease-control strategy [17]. Selecting more resistant hens may be an alternative
option to reduce illness occurrence. Genetic disease resistance is often more relevant in
underdeveloped nations since indigenous breeds are more resistant to local diseases [18].
K. favorella is a well-known indigenous chicken breed from the north Indian state Jammu
and Kashmir. It is regarded as the most significant source of animal protein and is raised
largely for meat and egg production [19]. The local climate conditions, feed, and stress
management are well matched to this native breed, which has a good disease resistance [20].

Recent developments in molecular science have opened up new possibilities for
improving quantitative traits genetically, especially those that are resistant to disease.
The use of gene introgression or marker-assisted selection would be made easier with
the discovery of direct or indirect molecular markers. Molecular markers are essential
tools for marker-assisted breeding. The simple sequence repeats (SSRs) (SNP) markers
are two attractive and widely used markers because of many merits including locus-
specificity, reproducibility, co-dominance, and random genome-wide distribution in many
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organisms [21,22]. These features, however, are not only regulated at the DNA level, but
also at the mRNA level before and after transcription, and this level of regulation is more
extensive, systematic, and accurate. SNP detection by RNA-seq is of great interest to
researchers as whole genome sequencing is expensive as well as exome sequencing tools
are uncommon. The detection of SNPs in coding regions is used to understand variants
affecting protein functions and analyze allele-specific expressions. Gene expression can
be highly variable and which makes SNP detection and genotype calling by RNA-seq a
challenging endeavor [23]. The study aims to identify SNPs, which are potentially involved
in disease resistance against Salmonella infection in poultry and thus may lay a foundation
step for future in-depth studies of disease resistance mechanisms.

2. Materials and Methods
2.1. Experimental Birds and Sample Collection

Experimentation and animal tissue collection was carried out with the proper consent
of the Institutional Animal Ethics Committee on Ethical Standards in Animal Experiments
(AU/FVSc/PS-57/16021). During all of the experimental studies, the Institutional Animal
Ethics Committee’s rules were rigorously followed. The experimental chicks from two
breeds, i.e., K. faverolla and broiler (Cobb), were procured from the Division of Livestock
Production and Management, Sher-e-Kashmir University of Agricultural Sciences and
Technology of Kashmir (SKUAST-K)-India. From day one of hatching, the experimental
birds were kept in the animal house facilities center at SKUAST-K, under standard sanitary,
temperature, and pressure conditions. The birds were monitored on a daily basis and
provided unlimited access to food and water.

To ensure that all the birds under experimental study from both the breeds were free
from Salmonella infection, fecal swabs from all the birds were taken and inoculated in
tetrathionate broth and further streaked on BGA and MacConkey plates. Only Salmonella
negative birds were taken for the study. After 12 h post infection, fecal swabs were taken
from all the birds and incubated overnight in tetrathionate broth at 42 ◦C. The overnight
culture was streaked on BGA and MacConkey plates. The plates were kept overnight at
37 ◦C. Following overnight incubation, the colonies on the plates were then examined for
Salmonella species.

After giving an acclimatization time of 3 days to the chicks from both the breeds, they
were orally infected with S. typhimurium (2 × 108 CFU/mL) at 4 days of age and were
initially assessed for disease resistance up to 10 days post infection. The two chicken breeds
were classified as Salmonella-resistant and -susceptible breeds by taking into consideration
the clinical symptoms and bacterial loads. The clinical scores were recorded twice daily
following points based a scoring system. Chicks with severe clinical signs (progressive
weakening, anorexia, diarrhea, and head lowering) as well as significant liver disease and
greater bacterial loads in fecal swabs were identified as the challenged susceptible group.
The challenged-resistant birds were recognized as chicks with little clinical and pathological
symptoms and low bacterial burdens. The K. favorella was determined to be resistant based
on the aforementioned clinical signs and bacterial levels, and broilers were determined
to be susceptible to Salmonella infection. Samples (liver and spleen) were collected from
Salmonella-resistant (K. favorella) and susceptible (broiler) chicken breeds [1] (Table S1).

Carcass of sacrificed birds were subjected to a systemic necropsy technique for the
examination and documentation of the Salmonella specific lesions. Lesions primarily in-
cluded bronze colored discoloration of liver, typhilitis and splenomegaly. For compara-
tive histopathological analysis, representative liver and spleen samples from commercial
broilers and K. favorella were collected in 10% buffered formalin and processed using the
standard paraffin embedding technique using alcohol and acetone as dehydrating agents,
benzene as a clearing agent, and paraffin wax with a melting point of 60 ◦C. For routine
investigation, sections of 5 m thickness were cut and stained with Harris Hematoxylin
and Eosin.
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In this study, 10 samples from broiler chicken (5 liver and 5 spleen) and 9 samples
from favorella chicken (5 liver and 4 spleen) were utilized to identify SNPs that could
potentially mediate the Salmonella disease resistance in chicken. To reduce the effect of
confounding factors, and increase sensitivity and specificity of SNPs, both groups have
control and infected samples. In the broiler liver group, 3 are infected and 2 are control
samples. Similarly, in the broiler spleen group, 3 are infected and 2 are control samples. In
the K. favorella liver group, 2 are infected and 2 are control samples. In the K. favorella spleen
group, 3 are infected and 2 are control samples. The reason for including infected samples
with control for SNP identification was to reduce any biological, technical or genomic
factors that could possibly affect the key SNP identification with the phenotype of interest,
i.e., Salmonella resistance.

2.2. Total RNA Isolation, cDNA Library Construction, and Sequencing

The sequencing data were downloaded from our previously published dataset NCBI
(Accession ID: GSE168060). All sample processing and sequencing steps are described
previously [24]. Briefly, total RNA was extracted using Trizol method (Ambion, Naugatuck,
CT, USA) following the manufacturers guidelines. The RNA quality and integrity were
examined using a spectrophotometer (ThermoFisher, Waltham, MA, USA) and a bioana-
lyzer (Agilent, Santa Clara, CA, USA). Libraries were prepared using RNA samples with
RIN values ≥ 8. The Illumina TruSeq stranded mRNA sample preparation kit was used to
construct cDNA libraries, and the manufacturer’s protocol was followed. The 4 µg/sample
total RNA was utilized to prepare libraries. Poly-T attached magnetic beads were used to
purify poly-A containing mRNA molecules. Following purification, divalent cations were
used in a high-temperature process to break the RNA down into smaller bits. Using the en-
zyme reverse transcriptase and random primers, the RNA fragments were utilized to create
first strand cDNA (Illumina, San Diego, CA, USA). After DNA fragments were adenylated
(at their 3 ends), the hybridization process was started by ligating the Illumina paired-end
adaptor and index. Using an Illumina PCR primer cocktail, the cDNA fragments (150 bp)
were produced and used to create the sequencing paired end cDNA library. Libraries were
pooled in equimolar levels using a High Throughput Model flow cell on an Illumina HiSeq
2500 platform and paired end sequenced by SciGenom, Cochin, Kerala-India.

2.3. Quality Control, Aligning and Mapping Reads to the Genome

The FASTQC program v0.11.1 was used to examine read quality control [25]. Follow-
ing preprocessing, low-quality sequence filtering and adaptor trimming with Cutadapt
v3.40 [26], high-quality sequencing reads that exceeded thresholds (Phred Score > 30) were
combined for SNP identification analysis. For each sample, more than 40 million clean,
high-quality readings were gathered. HISAT2 was used to map the cleaned reads to the
reference genome assembly ARS-UCD1.2.99 [27]. Before variant identification, the data
pretreatment stages suggested in the Genome Analysis Toolkit (GATK) best practices work-
flow were carried out [28]. MarkDuplicates from Picard tools were used to identify PCR
duplicates [29]. Additionally, we used GATK to recalibrate the base quality scores, examine
intron–exon junctions, and perform local realignment around InDels. SNP and INDELs
discovery across 10 broiler and 10 K. favorella transcriptome samples independently was
carried out using two distinct variant callers: (i) mpileup from SAMtools v1.4 [30] in multi-
sample calling mode with default parameters; (ii) GATK utilizing the HaplotypeCaller
tool in multi-sample calling mode (modality “GATK”). The final set for analysis contains
SNPs and InDels, which are common in both datasets. Chicken genetic variants from
dbSNP 2.0 build 153 dated: 8 August 2019 were incorporated in SNP calling to populate
the RS_ID column of the known SNPs. Filtering [base quality score (Q Score) > 30, map-
ping quality > 30, and minimum depth > 10] of generated variants and annotation were
performed using VCFtools version 0.1.8 and SnpEff program v4.1. Biological significance
was further evaluated for the genes that had high-impact variations. The KEGG pathway
enrichment analysis was performed using KOBAS server version 3 [31,32].
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3. Results
3.1. Quality Control, Mapping, and Post Treatment

A total of 46.95 million reads (range 30.51–68.56 million reads/library) and 41.74 mil-
lion reads (range 26.92–63.61 million reads/library) were generated by the liver and spleen
transcriptome libraries, respectively. Overall, 43.76 million reads (92.82%) of the 46.95 mil-
lion hepatic transcriptome reads passed quality control and were mapped to the Gallus
gallus genome GRCg6a. The remaining reads were deleted, and 41.46 million uniquely
mapped reads in total were processed further. In the spleen, 38.65 million reads (92.24%)
of the total 41.74 million reads passed the quality check and were aligned to the G. gallus
CRCg6a genome. Additionally, 35.45 million uniquely mapped reads were processed
further, while the remaining reads were discarded. K. favorella and broiler yielded a total of
1,141,122 and 1,151,874 variations, respectively. The chromosomal distribution of SNPs and
INDELs is shown in Table S2 and the variant types are shown in Tables S3 and S4. Kashmir
favorella had a total of 26.036% missense, 0.138% nonsense, and 73.785% silent alterations,
while broiler chicken had a total of 26.845% missense, 0.167% nonsense, and 72.988% silent
mutations. The transitions to transversions ratio (Ts/Tv) for K. favorella and broiler was
determined to be 2.7 (6080998/2236247) and 2.7 (6993925/2563136), respectively, in line
with earlier studies. SNP distribution on different chromosomes in both K. favorella and
commercial broiler are shown (Figure 1). It was found that there were 758 common genes
with SNPs (Figure 2). The common SNPs were filtered out, and the high-impact SNPs and
INDELs specific to broiler 1778 (1070 SNPs and 708 INDELs) and K. favorella 1459 (859 SNPs
and 600 INDELs) (Supplementary File S1 and S2) were further studied. List of genes with
high impact SNPs involved in Salmonella disease resistance in chickens are shown in Table 1.Genes 2023, 14, 1283 6 of 14 
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Table 1. List of genes with high impact SNPs involved in Salmonella disease resistance in chicken.

Gene Chromosome Reference Nucleotide Mutated Nucleotide SNP Nature Impact

MADPRT1 1 C T Stop gained HIGH

PPARD 26 A T Splice donor variant and
intron variant HIGH

IL18 24 G A Splice donor variant and
intron variant HIGH

IL18R1 1 TCC TCCC frameshift variant HIGH

TNFRSF10B 22 A C Splice acceptor variant
and intron variant HIGH

IL1R1 1 T A Splice donor variant and
Intron variant HIGH

TNFAIP1 19 G A Stop gained HIGH

MMP28 19 G T Splice donor variant and
intron variant HIGH

SLC9A9 9 T A Splice donor variant and
intron variant HIGH

SLC5A10 14 A G Stop lost and splice
region variant HIGH

SLC13A2 19 T C Splice donor variant and
intron variant HIGH

3.2. Analysis of Genes with SNPs and INDELs

Functional annotation indicates that signaling pathways, such as those involved in
metabolism, herpes simplex virus type 1 infection, Influenza A, fatty acid biosynthesis,
fatty acid metabolism, carbon metabolism and citrate cycle in broiler chicken are enriched
(p < 0.05) (Table S5, Figure 3a). The enhanced pathways in K. favorella chicken comprised
the Wnt signaling route, the FoxO signaling pathway, the cellular senescence pathway, and
the NOD-like receptor signaling pathway (Table S6, Figure 3b). In K. favorella and broiler
chicken, gene ontology (GO) research shows genes (p < 0.05) with SNPs were primarily
involved in the binding process (enzyme, ribonucleotide, and histone binding), as well as
antigen processing (Figure 4a,b, Tables S7 and S8).
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3.3. Protein-Protein Interaction

Salmonella infection affects every chicken breed; however, every breed has its own
defense mechanism to counter the infection. In both the chicken breeds, we found similar
hub genes; however, in the resistant breed (K. favorella) PLK1, MK1671P gene mutations
were hyperactive, suggesting a possible role in this particular breed. Plk-1 is the member
of the serine/threonine polio-like kinase family has a vital role in immune signaling [33].
Further PLK-1 interacts with BRCA-2 and MLF1P, which regulate autophagy, antigen
presentation, immune response, angiogenesis and apoptosis [34,35] (Figure 5).
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4. Discussion

Salmonella, one of the major infectious diseases in poultry, causes considerable eco-
nomic losses in terms of mortality and morbidity, especially in countries that lack effective
vaccination programs. Besides being resistant to diseases, indigenous chicken breeds are
also a potential source of animal protein in developing countries. For understanding the
disease resistance, an indigenous chicken line K. favorella, and commercial broilers were
selected [1]. The severity of clinical symptoms, pathological manifestations and bacterial
load post infection were used to assess the disease susceptibility and resistance.

An effective immune response against the invading pathogen requires a balance
between the pathogen clearance and self-damage. However, this balance likely to change
dynamically as the infection will progress. The host will destroy the invading pathogen
at the initial stage of infection and towards the end, the host repairs the damage so that
it can return to its original state. An effective host response is referred to as a balancing
resistance and infection tolerance mechanism [36]. Indigenous chickens are genetically
more diversified than commercial breeds due to their extensive history of breeding and
improvement through methods remarkably distinct from those employed for commercial
varieties. Therefore, it is essential to preserve regional chicken breeds as genetic resources
in order to be prepared for unforeseen breeding demands in the future [37,38].

In our pilot study, we found the bacterial load in the resistant chicken breed (K. favorella)
was lower than the bacterial load in the susceptible chicken breed (broiler). Our studies
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were in accordance with the previous studies, which showed the bacterial load in the local
chicken was lower than other chicken breeds [39,40]. K. favorella showed minor lesions in
the liver and spleen while the broiler chicken showed major necrotic lesions. This was in
consensus with previous studies, which showed that the higher the bacterial count, the
greater the pathological score [41].

The K. favorella, a well-known indigenous chicken breed from the north Indian state of
Jammu and Kashmir, is regarded as the most important source of animal protein [13]. This
native breed is disease-resistant and highly adapted to local climate circumstances, feed,
and stress management [14]. For understanding the disease resistance mechanism, we have
analyzed RNA sequencing data and performed a comparative study between K. favorella
and broiler chicken breeds [1]. To evaluate putative polymorphisms in disease resistance
genes, SNP detection analysis was performed using RNA seq data from 10 K. favorella and
10 broiler chicken.

A total of 1,141,122 and 1,151,874 variants were identified from K. favorella and broiler,
respectively. A total of 1778 (1070 SNPs and 708 INDELs) and 1459 (859 SNPs and 600 IN-
DELs) were identified in broiler and K. favorella, respectively. The KEGG and gene ontology
analyses revealed that the genes were engaged in a variety of significant immune-related
pathways. The MAPK signaling pathway, ECM-receptor interaction, Wnt signaling route,
FoxO signaling pathway, and cellular senescence were shown to be substantially enriched
in Ka. favorella. These pathways stimulate the immune response against Salmonella in-
fection [42,43]. WNT signaling is essential for maintaining tissue homeostasis, epithelial
barrier functioning, inflammatory cytokine production and modulation, host cell innate de-
fense mechanisms, and the integration of innate and adaptive immunity [44]. In K. favorella,
amplification of the WNT signaling pathway in response to Salmonella infection could
increase B cell survival or proliferation [45]. Recent studies suggest that Wnt signaling
performs an essential function in immune cell modulation and counteracts various disor-
ders [46]. We found variations in different genes that regulate Wnt signaling (Figure S1)
(TCF7, LRP5, CaMKII, WNT5A, NLK, etc.). TCF7 plays a vital role in tissue repair, remod-
eling and disease pathogenesis [47]. LRP5 has been found to possess a novel role in IL-10
signaling, thereby exerting a protective role during inflammation [48]. CaM-dependent
proteins (CaMKII) have a critical role in infectious diseases through involvement in inflam-
matory processes, apoptosis and necroptosis [49]. Wnt5A promotes the death of numerous
bacterial pathogens by altering actin assembly in macrophages, and thus resulting in bacte-
rial phagocytosis [50]. Nemo-like kinase (NLK) has a role in modulating immune responses
through regulation of NF-κB signaling by interfering with different signaling molecules [7].
In broilers, the enrichment analysis revealed that genes with high impact SNPs were in-
volved mainly in metabolic pathways, fatty acid metabolism, carbon metabolism and amino
acid metabolism (Arginine and proline metabolism). Salmonella utilizes these metabolites
as an energy source for its intracellular survival and proliferation [51].

The phylogenomic analysis revealed the exhaustive similarity between commer-
cially available chicken breeds and possible similar mechanism of weak resistance against
Salmonella infection (Figure 6). Resistance to salmonellosis in chicken greatly varies among
the chicken line [52]. Due to breed differences, there is significant genetic heterogeneity in
chicken for resistance to S. typhimurium [39].

MADPRT1, PPARD, IL18, IL18R1, TNFRSF10B, IL1R1, TNFAIP1, MMP28, SLC9A9,
SLC5A10, SLC13A2 genes were identified with high impact SNPs involved in Salmonella
disease resistance in chicken. This correlates with our previous study, which highlights
their role in innate and adaptive immune responses [1]. Genetic variation in IL-18 has been
associated with increased risk of atopy and asthma [53,54]. Further, IL-18 polymorphism
has been linked to an increased or decreased progression of hepatocellular carcinoma [55].
Polymorphisms and haplotypes in TNFRSF10B are associated with an increased risk of
death in non-small cell lung cancer [56].
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Abbreviations

DNA Deoxyribonucleic acid
mRNA Messenger RNA
TCF Transcription Factor
CaMK CaM-dependent proteins
SSRs Simple sequence repeats
INDELs insertions and deletions
BRCA Breast cancer gene
SNP Single nucleotide polymorphism
KEGG Kyoto encyclopaedia of genes and genomes
IL Interleukin
NLK Nemo-like kinase
LRP Low-density lipoprotein receptor-related protein
GO Gene ontology
MLF1P Myeloid leukemia factor
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