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Abstract: Kingdonia uniflora is an endangered alpine herb that is distributed along an altitudinal 

gradient. The unique traits and important phylogenetic position make K. uniflora an ideal model for 

exploring how endangered plants react to altitude variation. In this study, we sampled nine indi-

viduals from three representative locations and adopted RNA-seq technology to sequence 18 tis-

sues, aiming to uncover how K. uniflora responded to different altitudes at the gene expression level. 

We revealed that genes that responded to light stimuli and circadian rhythm genes were signifi-

cantly enriched in DEGs in the leaf tissue group, while genes that were related to root development 

and peroxidase activity or involved in the pathways of cutin, suberin, wax biosynthesis, and mon-

oterpenoid biosynthesis were significantly enriched in DEGs in the flower bud tissue group. All of 

the above genes may play an important role in the response of K. uniflora to various stresses, such 

as low temperatures and hypoxia in high-altitude environments. Furthermore, we proved that the 

discrepancy in gene expression patterns between leaf and flower bud tissues varied along the alti-

tudinal gradient. Overall, our findings provide new insights into the adaptation of endangered spe-

cies to high-altitude environments and further encourage parallel research to focus on the molecular 

mechanisms of alpine plant evolution. 
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1. Introduction 

Identifying candidate genes under natural selection has been a major goal in evolu-

tionary studies. Since natural selection helps shape adaptation when species confront new 

environments, we can focus on species’ adaptation to further explore the target of natural 

selection. High-altitude adaptation is a common phenomenon in plants; numerous en-

deavors have been made on the molecular mechanism of how plants adapt to high-alti-

tude environments [1,2]. Species inhabiting high-altitude environments must face a vari-

ety of abiotic stresses, such as reduced oxygen availability, rapid fluctuations in temper-

ature, and high ultraviolet (UV) radiation [3–5]. Thanks to rapidly developed high-

throughput sequencing, researchers could acquire massive amounts of data on gene ex-

pressions using RNA sequencing (RNA-Seq) technology, which makes the evolutionary 

study of non-model species possible [6]. 

Although many advances have been made on the high-altitude adaptation of non-

model species, the molecular mechanism by which endangered plants adapt to high 

mountains remains poorly understood. Endangered plants usually have a very narrow 

distribution and are relatively vulnerable to changes in the environment. Hence, how 

these endangered plants react to altitude variation is an intriguing question. The genus 
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Kingdonia, belonging to the family Circaeasteraceae (Ranunculales), is a monotypic genus 

that is endemic to China. As the only and most endangered species in the genus, K. uniflora 

Balf. f. et W. W. Smith has been ranked as the first-class protected plant in China for a long 

time. Since K. uniflora conserves a series of ancient traits reflecting the early-diverging eu-

dicot [7,8], it is of great importance to investigate how K. uniflora adapts to the environ-

ment. In fact, K. uniflora is an alpine herb with a narrow distribution in high mountains 

(2750–3900 m). Sun et al. (2020) published the draft genome sequence of K. uniflora, which 

greatly promoted its evolutionary studies [8]. Given its unique traits and important phy-

logenetic position, we regard K. uniflora as an ideal model for exploring how endangered 

plants react to altitude variation.  

In the present study, we carried out a comparative transcriptome study of 18 tissues 

from K. uniflora, aiming to address the following two questions: (1) whether the gene ex-

pression patterns varied along the altitudinal gradient in K. uniflora, and if so, how many 

and what kind of differentially expressed genes (DGEs); and (2) whether different tissues 

of K. uniflora presented the same gene expression pattern when adapting to high-altitude 

environments. Our findings will greatly enhance our understanding of the genetic basis 

underlying the adaptation of K. uniflora to high-altitude environments and also lay the 

foundation for the future protection of endangered alpine plants.  

2. Materials and Methods 

2.1. Sample Collection 

Kingdonia uniflora is distributed very narrowly in China, and in this study, we se-

lected its core distribution area: Qinling mountain (Shaanxi province). To investigate how 

Kingdonia uniflora responds to different altitudes, we selected three locations ranging from 

2300–3300 m at Taibai mountain (the highest peak in Qinling mountain) to sample tissues 

(Figure 1 shows the Kingdonia uniflora population at Xiabansi, Taibai mountain). At each 

location, we collected three individuals that were isolated from each other by at least 5 m 

to represent this population. This could be viewed as biological replication within groups. 

For each individual, we sampled two tissues for transcriptome sequencing: a leaf and a 

flower bud. The criterion for leaf samples is fresh, mature ones without any withering 

parts. The criterion for a flower bud is a 1 cm long young bud, which means it is at an 

early stage of flower development. To avoid unnecessary differences, we sampled all the 

tissues at 12:00 a.m. in August; leaf and flower buds from the same location were sampled 

at the same time. All fresh tissues were stored in liquid nitrogen. In all, we contained 6 

groups of tissues: A, B, C (leaf), C, D, and E (flower bud). There was a total of 18 samples 

for transcriptome sequencing, and detailed information is shown in Table 1. 
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Figure 1. Kingdonia uniflora in Taibai mountain. 
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Table 1. The geographical information and tissue type of the 18 samples used in this study. 

Group Name Location Latitude Longitude Altitude (m) Tissue Type 

A 
Honghegu, Meixian, 

Shaanxi province 
34°0′46″  107°47′26″  2346 leaf 

D 
Honghegu, Meixian, 

Shaanxi province 
34°0′46″  107°47′26″  2346 flower bud 

B 

Xiabansi, 

Meixian, 

Shaanxi province 

33°42′11″ 107°46′53″  2771 leaf 

E 

Xiabansi, 

Meixian, 

Shaanxi province 

33°42′11″ 107°46′53″  2771 flower bud 

C 

Fangyangsi, 

Meixian, 

Shaanxi province 

33°58′28″ 107°46′15″  3294 leaf 

F 

Fangyangsi, 

Meixian, 

Shaanxi province 

33°58′28″ 107°46′15″  3294 flower bud 

2.2. RNA Extraction Library Construction and Sequencing 

We adopted the Trizol reagent (Thermo Fisher, Waltham, MA, USA, 15596018) to 

extract the total RNAs of leaf and flower bud tissues following the manufacturer’s proto-

col. The total RNA quantity and purity were analyzed with the Bioanalyzer 2100 and RNA 

6000 Nano LabChip Kit (Agilent, Palo Alto, CA, USA, 5067-1511). High-quality RNA sam-

ples with an RIN number >7.0 were used to construct the sequencing library. We purified 

mRNA from total RNA (5 ug) using Dynabeads Oligo (dT) (Thermo Fisher, MA, USA) 

with two rounds of purification. Then, the mRNA was fragmented into short fragments 

using divalent cations under elevated temperature (Magnesium RNA Fragmentation 

Module (NEB, cat.e6150, Ipswich, MA, USA) at 94 °C for 5–7 min). All the cleaved RNA 

fragments were reverse-transcribed to create the cDNA by SuperScript™ II Reverse Tran-

scriptase (Invitrogen, cat. 1896649, Carlsbad, CA, USA), which was then used to synthe-

size the U-labeled second-stranded DNAs with E. coli DNA polymerase I (NEB, 

cat.m0209, USA), RNase H (NEB, cat.m0297, USA), and dUTP Solution (Thermo Fisher, 

cat. R0133, USA). An A-base was added to the blunt ends of each strand, which was pre-

pared for ligation to the indexed adapters. Each adapter contained a T-base overhang for 

ligating the adapter to the A-tailed fragmented DNA. Then, we ligated dual-index adapt-

ers to the fragments and performed size selection with AMPureXP beads. When the heat-

labile UDG enzyme (NEB, cat.m0280, USA) treatment of the U-labeled second-stranded 

DNAs was performed, the ligated products were amplified with PCR under the following 

conditions: initial denaturation at 95 °C for 3 min; 8 cycles of denaturation at 98 °C for 15 

s, annealing at 60 °C for 15 s, and extension at 72 °C for 30 s; and then final extension at 72 

°C for 5 min. The average insert size for the final cDNA libraries was 300 ± 50 bp. In the 

end, we performed the 2 × 150 bp paired-end sequencing (PE150) on an Illumina No-

vaseq™ 6000 (LC-Bio Technology CO., Ltd., Hangzhou, China) following the vendor’s 

recommended protocol.  

2.3. Sequencing of All Samples and Filtering of Clean Reads 

We sequenced all the above cDNA libraries, comprising 18 samples, with the Illu-

mina Novaseq TM 6000 sequencing platform. Using the Illumina paired-end RNA-seq ap-

proach, we sequenced the transcriptome of all 18 samples, generating a total of 2 million 

× 150 bp paired-end reads. Raw reads containing adapters or low-quality bases that will 

affect the following assembly and analysis were trimmed. We further filtered the reads 
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using Cutadapt (https://cutadapt.readthedocs.io/en/stable/, version: cutadapt-1.9, ac-

cesses on 1 August 2011) [9,10]. The parameters were as follows:  

(1) Removing reads containing adapters; 

(2) Removing reads containing polyA and polyG;  

(3) Removing reads containing more than 5% of unknown nucleotides (N); 

(4) Removing low quality reads containing more than 20% of low-quality (q-value ≤ 20) 

bases. Then, sequence quality was verified using FastQC (http://www.bioinformat-

ics.babraham.ac.uk/projects/fastqc/, 0.11.9), including the Q20, Q30, and GC-content 

of the clean data. After that, a total of approximately 6G bp of cleaned, paired-end 

reads were produced for each sample; detailed information is given in Supple-

mental Table S1. We submitted the raw sequence data to the NCBI Sequence Read 

Archive (SRA) database with accession number PRJNA971146. 

2.4. Alignment with the Reference Genome 

We aligned the reads of all samples to the Kingdonia uniflora reference genome 

(https://www.ncbi.nlm.nih.gov/genome/?term=PRJNA587615) using the HISAT2 

(https://daehwankimlab.github.io/hisat2/,version:hisat2-2.2.1) package, which initially re-

moves a portion of the reads based on quality information accompanying each read and 

then maps the reads to the reference genome [8,11]. HISAT2 allows multiple alignments 

per read (up to 20 by default) and a maximum of two mismatches when mapping the 

reads to the reference. HISAT2 compared the previously unmapped reads against the da-

tabase of putative junctions to construct the database of potential splice junctions [11–13].  

2.5. Quantification of Gene Abundance  

We adopted StringTie (http://ccb.jhu.edu/software/stringtie/,version:stringtie-2.1.6) 

to assemble the mapped reads of each sample with default parameters [14]. All transcrip-

tomes from all samples were merged to reconstruct a comprehensive transcriptome using 

gffcompare software (http://ccb.jhu.edu/software/stringtie/ gffcompare.shtml, ver-

sion:gffcompare-0.9.8). After the final transcriptome was generated, we estimated the ex-

pression levels of all transcripts by StringTie and ballgown (http://www.bioconductor. 

org/packages/release/bioc/html/ballgown.html) and performed expression abundance for 

mRNAs by calculating the FPKM (fragment per kilobase of transcript per million mapped 

reads) value [15]. 

2.6. Differentially Expressed Gene (DEG) Analysis 

Gene differential expression analysis was performed by DESeq2 software 3.17 [16,17] 

between two different groups (and by edgeR between two samples). Differentially ex-

pressed genes were screened by the following criteria: genes with a parameter of false 

discovery rate (FDR) below 0.05 and an absolute fold change ≥ 2. These differentially ex-

pressed genes were used for later enrichment analysis of GO functions and KEGG path-

ways [18,19]. 

2.7. Relationship Analysis of Samples 

We used the R package to carry out the correlation analysis of replicas. The Pearson 

correlation coefficient between two replicas was calculated to evaluate repeatability be-

tween samples. The closer the correlation coefficient approaches 1, the better the repeata-

bility between two replicas. We also performed principal component analysis (PCA) with 

the princomp function of R (http://www.r-project.org/) to reveal the relationship among 

the samples. 

2.8. GO Enrichment Analysis 

GO terms in the Gene Ontology database (http://www.geneontology.org/) were 

adopted in this study to infer the potential function of all DEGs screened between samples. 
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We calculated gene numbers for every term. Significantly enriched GO terms in DEGs 

compared to the genome background were defined by the hypergeometric test [20]. The 

formula for calculating the p-value is as follows: N is the number of all genes with GO 

annotation; n is the number of DEGs in N; M is the number of all genes that are annotated 

to a certain GO term; m is the number of DEGs in M. N stands for total background gene 

(TB gene number); n stands for total significant gene (TS gene number); M stands for back-

ground gene (B gene number); m stands for significant gene (S gene number). In this 

study, GO terms meeting this condition, with p < 0.05, were defined as significantly en-

riched GO terms in DEGs. We used Metascape (http://metascape.org/) to conduct the plots 

related to GO analysis in this study. 

2.9. Pathway Enrichment Analysis (KEGG) 

We adopted KEGG (Kyoto Encyclopedia of Genes and Genomes) 

(https://www.kegg.jp/kegg/) to conduct the pathway enrichment analysis [21]. The for-

mula for calculating the p-value is as follows: N is the number of all genes with the KEGG 

annotation, n is the number of DEGs in N, M is the number of all genes annotated to spe-

cific pathways, and m is the number of DEGs in M. Pathways meeting this condition, with 

p < 0.05, were defined as significantly enriched pathways in DEGs. N stands for total back-

ground gene (TB gene number); n stands for total significant gene (TS gene number); M 

stands for background gene (B gene number); m stands for significant gene (S gene num-

ber). We used OmicStudio (https://www.omicstudio.cn/index) to conduct the plots re-

lated to GO analysis in this study. 

2.10. Gene Set Enrichment Analysis (GSEA) 

Additionally, we performed gene set enrichment analysis using the software GSEA 

(v4.1.0) and MSigDB to identify whether a set of genes in specific GO terms or KEGG 

pathways shows significant differences between two groups [22]. Briefly, we input the 

gene expression matrix and rank genes using the Signal2Noise normalization method. We 

used default parameters to calculate enrichment scores and p-values. GO terms and KEGG 

pathways that meet this condition, with |NES| > 1, NOM p-value < 0.05, FDR q-value < 

0.05 in a comparison, were defined as significant AS events. The classification of alterna-

tive splicing is as follows: SE: skipped exon MXE: mutually exclusive exon A5SS: alterna-

tive 5′ splice site A3SS: alternative 3′ splice site RI: retained intron. 

3. Results 

3.1. Transcriptome Data of 18 Samples and Mapping Information 

By using the Illumina Novaseq™ 6000 sequencing platform, we gained a range of 

5.61–6.99 GB of transcriptome raw data for each sample, with an average of 6.10 GB. The 

valid read ratio was 96.24–98.18% in all 18 samples (Supplemental Table S1), which indi-

cated that these data were adequate for further analyses. When mapping to the reference 

genome, the mapped read ratio ranged from 87.94% to 96.49%, especially the unique 

mapped reads, which ranged from 62.20% to 86.10%. Meanwhile, we calculated the inter-

val distribution of mapped reads and found that the majority of mapped reads showed 

>30 coverage. Moreover, we found that more than 85% of mapped reads lie in exon regions 

(Supplemental Table S2 and Supplemental Figure S1). According to the reference genome 

annotation, we examined the mapped reads and found that the mapped genes from the 

transcriptome ranged from 23,059 to 25,241 in 18 samples. After FPKM standardization, 

we also calculated the gene expression interval distribution of each sample; the top 1 in-

terval was 0.3–3.57 FI and the top 2 interval was 3.57–15 FI; more than 50% of mapped 

genes exhibited a 0.3–15 FI value (gene expression abundance parameter) in 18 samples; 

detailed information is given in Supplemental Table S3. We presented all the mapped 

genes with their exact expression information in Supplemental Table S4. We also depicted 

a boxplot, a violin plot, and the gene expression density of 18 samples. Pearson correlation 
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analysis showed that three biological replicate samples within each group presented a 

high correlation, while the correlations weakened among groups (Supplemental Figure 

S2). All of the above indicated that the transcriptomes of 18 samples from six groups in 

this study were appropriate for later differentially expressed gene analyses. 

3.2. Differentially Expressed Genes (DEGs) Detected from Leaf or Flower Bud Tissue at Different 

Altitudes 

To briefly describe the sample name, leaf tissue from low, intermediate, and high 

altitudes is denoted as A, B, and C, respectively; flower bud tissue from low, intermediate, 

and high altitudes is denoted as D, E, and F, respectively. First, we carried out pairwise 

comparisons within the same tissue and found that differentially expressed genes (DEGs) 

ranged drastically from 2408 (E vs. F) to 7603 (A vs. B). As a whole, pairwise comparisons 

within leaf tissue preserved much more DEGs than comparisons within flower bud tissue. 

Notably, the most DEGs were identified between the A vs. B group (2346 m vs. 2771 m) 

rather than the A vs. C group (2771 m vs. 3294 m) in leaf tissue, while the most DEGs were 

identified between the A vs. C group (2346 m vs. 3294 m) in flower bud tissue. In flower 

bud tissue, we could observe that the DEGs increased with altitude. However, such a 

trend could not be observed in leaf tissue. We also found that DEGs were more down-

regulated than up-regulated (Figure 2). For instance, in the A vs. C comparison, the ratio 

of down-regulated to up-regulated genes was 2444:1233. Since we selected three different 

altitudes in this study, the pairwise comparison was not enough to reveal the gene expres-

sion variation across all three gradients, so we examined the DEGs among the multiple 

comparisons A vs. B vs. C (leaf tissue) and D vs. E vs. F (flower bud tissue); the gene 

expression heatmap is shown in Supplemental Figure S3. In total, we screened 11,860 

DEGs in comparisons A vs. B vs. C and 3460 DEGs in comparisons D vs. E vs. F; details 

are given in Supplemental Tables S5 and S6. Leaf tissue groups preserved much more 

DEGs than flower bud tissue groups in this study. Interestingly, down-regulated and up-

regulated genes were equivalent in comparisons A vs. B vs. C, while down-regulated 

genes were much more common than up-regulated ones in comparisons D vs. E vs. F. 

 

Figure 2. Differentially expressed genes from pairwise comparison using RNA-seq data. A, B, and 

C represent leaf tissue from low, intermediate, and high altitudes, respectively; D, E, and F represent 

flower bud tissue from low, intermediate, and high altitudes, respectively. 
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3.3. Differentially Expressed Genes (DEGs) Detected from Pairwise Comparison of Leaf and 

Flower Bud Tissue at the Same Altitude 

On the other hand, we also detected DEGs between leaf and flower bud tissue at the 

same altitude (Figure 2). DEGs were 3431 for comparison A vs. D, 8377 for comparison B 

vs. E, and 6282 for comparison C vs. F. Tissues from the A and D groups, which were 

sampled at the lowest altitude, presented the fewest DEGs. Tissues from the B and E 

groups, which were sampled at middle altitude, presented the most DEGs. Notably, DEGs 

were still more down-regulated than up-regulated in all three comparisons here. 

3.4. GO, KEGG, and Gsea Enrichment Analyses of DEGs 

To better comprehend the biological processes of all the above DEGs, GO, KEGG, 

and Gsea enrichment analyses were applied in this study. In the multiple comparisons A 

vs. B vs. C (Figure 3), actin filament bundle assembly ranked as the top 1 in the GO en-

richment analysis. Among the top 20 significantly enriched GO terms, we were especially 

concerned about those that were involved with high-altitude adaptation. Thus, we should 

pay more attention to two GO terms here: response to light stimulus (GO:0009416) and 

circadian rhythm—plant (GO:0007623). For the KEGG analysis, circadian rhythm—plant 

was among the top 20 significantly enriched pathways. Similarly, in multiple comparisons 

D vs. E vs. F (Figure 4), DNA-binding transcription factor activity ranked as the top 1 in 

GO enrichment analysis. Among the top 20 significantly enriched GO terms, regulation 

of root development and peroxidase activity deserved more attention. For the KEGG anal-

ysis, cutin, suberin, and wax biosynthesis and monoterpenoid biosynthesis deserved fol-

low-up research to dissect their roles in high altitude adaptation. 
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Figure 3. The GO enrichment scatterplot (a) and the KEGG enrichment scatterplot (b) from leaf 

tissue multiple comparisons A vs. B vs. C. 



Genes 2023, 14, 1291 10 of 20 
 

 

 
Figure 4. The GO enrichment scatterplot (a) and the KEGG enrichment scatterplot (b) from flower 

bud tissue multiple comparisons D vs. E vs. F. 

Furthermore, GO, KEGG, and Gsea enrichment analyses of DEGs in pairwise com-

parisons were shown in Supplemental Figures S4–S14. Here, we presented those most 

likely related to high-altitude adaptation. In the A vs. B comparison, responses to cold, 

heat, and water deprivation were significantly enriched in GO terms. Responses to heat 

and high light intensity were significantly enriched in the Gsea analysis. In the A vs. C 
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comparison, responses to cold, heat, and light stimuli were significantly enriched in GO 

terms. Responses to temperature, high light intensity, and heat acclimation were signifi-

cantly enriched in the Gsea analysis. In the B vs. C comparison, responses to heat and light 

stimuli were significantly enriched in GO terms. Pollen tube growth, positive regulation 

of seed germination, and responses to blue and far-red light were significantly enriched 

in the Gsea analysis. Notably, circadian rhythm—plant pathway was significantly en-

riched in the KEGG analysis in the above three comparisons. In the D vs. E comparison, 

root development and aging were significantly enriched in GO terms. Cutin, suberin, and 

wax biosynthesis were significantly enriched in the KEGG analysis. Aging and response 

to nitrogen starvation were significantly enriched in the Gsea analysis. In the D vs. E com-

parison, root development was significantly enriched in GO terms. Circadian rhythm—

plant and response to blue and far-red light were significantly enriched in the Gsea anal-

ysis. In the E vs. F comparison, cutin, suberin, and wax biosynthesis were significantly 

enriched in both GO and KEGG analyses. Pollen tube growth, flower development, and 

response to brassinosteroid were significantly enriched in the Gsea analysis. On the other 

hand, tissues from the same altitude provided an ideal opportunity to explore how plants 

adapt to the environment in different ways. We observed that cutin, suberin, and wax 

biosynthesis were significantly enriched in both B vs. E and C vs. F comparisons, but were 

not enriched in the A vs. D comparison. Notably, the A and D groups were sampled at 

the lowest altitude. The overall GO and KEGG enrichment results are shown in Figure 5. 

Given the various significantly enriched GO terms or pathways, it is impossible to inves-

tigate them all. Hence, we emphasized nine GO terms or pathways here: response to cold, 

response to heat, response to water deprivation, cellular response to hypoxia, response to 

light stimulus, response to high light intensity, circadian rhythm—plant, cutin, suberine, 

wax biosynthesis, and cellular response to nitrogen starvation, all of which exhibited func-

tions concerned with high-altitude environments such as low temperature, low oxygen, 

and intense sunlight. Moreover, we provided a candidate gene list from the above nine 

GO terms or pathways (Table 2) based on statistical significance. There were two criteria 

for selecting candidate genes: (1) the p-value and q-value were both <0.05; (2) GO terms of 

candidate genes should belong to the nine terms mentioned above. Interestingly, we ob-

served that the genes that respond to heat mainly belong to the 17.3 kDa class II heat shock 

protein family; the genes that respond to hypoxia mainly belong to the lignin-forming 

anionic peroxidase family; and the genes that respond to high light intensity mainly be-

long to the heat shock 70 kDa protein family. More importantly, we also found that phy-

tochrome B, which has been proven to play a crucial role in regulating plant flowering 

time, was differentially expressed between samples from different altitudes. 
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Figure 5. Results of the overall presentation of the GO enrichment scatterplot (a) and the KEGG 

enrichment scatterplot (b). 
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Table 2. Candidate gene list that may participate in the adaptation of Kingdonia uniflora to high altitude. 

Gene Name p-Value q-Value Putative Function 

GIB67_027134 0 0 Response to heat, 17.3 kDa class II heat shock protein  

GIB67_005997 0 0 Response to heat, Small heat shock protein HSP 

GIB67_007978 0 0 Response to heat, 17.1 kDa class II heat shock protein-like 

GIB67_028015 0 0 Response to heat, HSP20 domain-containing protein  

GIB67_035570 0 0 Response to heat, 17.3 kDa class II heat shock protein 

GIB67_023343 0 0 Response to cold, ACT domain-containing protein DS12, chloroplastic-like 

GIB67_027084 0 0 Response to cold, cold-inducible protein 

GIB67_027089 0 0 Response to cold, early light induced protein 2 

GIB67_027141 0 0 Response to cold, Chlorophyll A-B binding protein 

GIB67_033329 0 0 Response to cold, photosystem I chlorophyll a/b-binding protein 3-1, chloroplastic  

GIB67_042678 0 0 Response to water deprivation, hypothetical protein AQUCO_00200416v1 

GIB67_023028 0 0 Response to water deprivation, Stress-related protein  

GIB67_035316 0 0 Response to water deprivation, plasma membrane-associated cation-binding protein 1 

GIB67_037972 0 0 Response to water deprivation, hypothetical protein AQUCO_08400041v1 

GIB67_017844 0 0 Cellular response to hypoxia, lignin-forming anionic peroxidase 

GIB67_017843 0 0 Cellular response to hypoxia, lignin-forming anionic peroxidase  

GIB67_007868 0 0 Cellular response to hypoxia, lignin-forming anionic peroxidase  

GIB67_035929 0 0 Cellular response to hypoxia, lignin-forming anionic peroxidase  

GIB67_035933 0 0 Cellular response to hypoxia, lignin-forming anionic peroxidase  

GIB67_016048 0 0 Response to light stimulus, PREDICTED: metacaspase-4 

GIB67_025148 0 0 Response to light stimulus, Chlorophyll A-B binding protein  

GIB67_026789 0 0 Response to light stimulus, PREDICTED: chlorophyll a-b binding protein of LHCII type 1-like  

GIB67_026779 0 0 Response to light stimulus, glyceraldehyde-3-phosphate dehydrogenase B, chloroplastic 

GIB67_000124 0 0 Response to light stimulus, β tubulin1  

GIB67_034645 0 0 Response to high light intensity, heat shock 70 kDa protein  

GIB67_031347 0 0 Response to high light intensity, hypothetical protein AQUCO_00800081v1  

GIB67_025134 0 0 Response to high light intensity, Heat shock protein 70 family 

GIB67_040467 0 0 Response to high light intensity, Heat shock protein 70 family 

GIB67_019867 0 0 Response to high light intensity, small heat shock protein, chloroplastic-like 

GIB67_001312 0 0 Circadian rhythm—plant, phytochrome B 
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GIB67_007364 0 0 Circadian rhythm—plant, Cyclic dof factor 2  

GIB67_001069 0 0 Circadian rhythm—plant, zinc finger protein  

GIB67_035301 0 0 Circadian rhythm—plant, Chal_sti_synt_N domain-containing protein 

GIB67_029338 0 0 Circadian rhythm—plant, Basic-leucine zipper domain  

GIB67_008159 0.02 0.04 Cutin, suberine and wax biosynthesis, fatty acyl-CoA reductase 3-like 

GIB67_019375 0.02 0.03 Cutin, suberine and wax biosynthesis, omega- hydroxypalmitate O-feruloyl transferase  

GIB67_042139 0 0 Cutin, suberine and wax biosynthesis, Fatty acid hydroxylase 

GIB67_038019 0 0 Cellular response to nitrogen starvation, 

GIB67_011552 0 0 Cellular response to nitrogen starvation, 

GIB67_026985 0 0 Cellular response to nitrogen starvation, 
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4. Discussion 

4.1. Molecular Mechanism Underlying the High-Altitude Adaptation of K. uniflora 

Elucidating the molecular mechanism of how species adapt to extreme environments 

has been a hotspot in evolutionary biology. Compared to low-altitude areas, the high-

altitude environment is a combination of various abiotic stresses, such as reduced oxygen 

availability, rapid fluctuations in temperature, and high ultraviolet (UV) radiation [23]. 

Therefore, genes responding to the above stresses would underlie the molecular mecha-

nism of high-altitude adaptation. To date, a series of studies had reported differentially 

expressed genes (DEGs) and putative pathways that may be responsible for high-altitude 

adaptation in different organisms based on transcriptome data. For instance, glutathione 

metabolism, plant—pathogen interaction, and ribosome biogenesis in eukaryotes were 

three predicted metabolic pathways that may be associated with the high-altitude adap-

tation between Notopterygium incisum Ting ex H. T. Chang and Notopterygium franchetii 

H.Boissieu [5]. Most of the differentially accumulated metabolites (DAMs) were enriched 

in flavone and flavonol biosynthesis, and the most heavily enriched KEGG pathway was 

related to the subcategory oxidative phosphorylation in intraspecific adaptation to high 

altitude in Cyclocarya paliurus (Batal.) Iljinsk [24]. The most significantly differentially ex-

pressed top 50 genes in the high-altitude samples were derived from plants that re-

sponded to abiotic stress, such as peroxidase, superoxide dismutase protein, and the ubiq-

uitin-conjugating enzyme, and the KEGG pathway was related to secondary metabolites, 

including phenylpropane and flavonoids, in intraspecific adaptation to high altitude in 

Potentilla bifurca L. [25]. Compared to the above research, our findings showed a different 

picture of DEGs. In this study, we revealed that genes that responded to light stimulus 

and circadian rhythm genes were significantly enriched in DEGs in the leaf tissue group. 

Given that light intensity varied considerably along the altitudinal gradient, we regarded 

these genes that responded to light stimuli as candidates contributing to the adaptation of 

K. uniflora to glaring light in high altitude environments. As for the circadian rhythm 

genes, previous studies have proved that variation in plant circadian rhythm genes is im-

plicated in an array of plant environmental adaptations, including growth regulation, 

photoperiodic control of flowering, and responses to abiotic and biotic stress. Plant circa-

dian rhythm genes can also be reset by environmental cues such as acute changes in light 

or temperature [26]. Therefore, the plant circadian rhythm genes may play an important 

role in helping K. uniflora adapt to abiotic stress in high-altitude environments, such as 

low temperatures and UV radiation. Secondly, we observed that the top significantly en-

riched DEGs were quite different between leaf and flower bud tissue groups. Cutin, su-

berine, and wax biosynthesis and monoterpenoid biosynthesis were two notable path-

ways that showed significantly different expression patterns along an altitudinal gradient 

in the flower bud tissue group. Cutin, suberine, and wax biosynthesis were shown to be 

related to plants’ response to high altitude [27,28]. Guo et al. (2016) reported that the var-

iations of leaf cuticular waxes helped Compositae plants adapt to various environmental 

stresses and enlarge their distribution [29]. Similarly, K. uniflora in high-altitude environ-

ments would face more challenges, such as drought and low temperatures. The thicker 

the cutin, suberine and wax accumulated on the outer layer of the flower bud, the better 

the plant’s protection. Thus, we suggest that the genes involved in the cutin, suberine, and 

wax biosynthesis pathway may contribute to the adaptation of K. uniflora to drought and 

low temperature stress. As for monoterpenoid biosynthesis, monoterpenoid is regarded 

as an important volatile oil in plants and mostly has the functions of attracting pollination 

insects, preventing animals from foraging, or coordinating the relationship between 

plants and environment [30]. Hence, it is plausible that the monoterpenoid biosynthesis 

pathway was only significantly enriched in the flower bud tissue group rather than the 

leaf tissue group. We suggest that the reproductive organs in K. uniflora may accumulate 

some volatile oil components, such as monoterpenoid, to better respond to altitude varia-

tions. 
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Aside from the above GO terms or pathways discussed, we also found out about 

some other valuable ones, such as responses to cold, responses to heat, responses to water 

deprivation, cellular responses to hypoxia, responses to high light intensity, and cellular 

responses to nitrogen starvation. These GO terms or pathways covered nearly all the abi-

otic stress that plants would face in a high-altitude environment. Therefore, the DEGs re-

vealed in this study would greatly enhance our understanding of how K. uniflora re-

sponded to different altitudes. 

4.2. Response to Altitude Variation in Different Tissues of K. uniflora 

Plants respond to environmental stress in a variety of ways [31–33]. Different tissues 

may not present the same expression pattern when reacting to the same stress. Likewise, 

leaf and flower buds have contrasting functions in plants. When it comes to high-altitude 

adaptation, the living conditions are relatively harsh in high-altitude habitats, and the leaf 

usually responds to stress related to light or oxygen. Will the intrinsic discrepancy be-

tween leaf and flower bud tissue vary across the altitudinal gradient? To answer this, we 

compared the leaf and flower bud tissue groups from the same location (A vs. D, B vs. E, 

and C vs. F). Notably, as the lowest altitude group, the A vs. D comparison conserved the 

fewest DEGs (See Figure 2). A plausible explanation might be that the living conditions at 

2346 m altitude were not as harsh as those at 2771 m or 3294 m altitude. The gene expres-

sion patterns of leaf and flower bud tissue tend to be more similar when the environment 

is more suitable. The intrinsic metabolic pathway of K. uniflora might be more different 

between leaf and flower bud tissue when adapted to higher altitudes since vegetative or-

gans are more affected by certain ecological factors such as soil type and air moisture. 

Additionally, DEGs from the A vs. D comparison also showed a different picture from the 

other two. Cutin, suberine, and wax biosynthesis was significantly enriched in both high 

altitude groups B vs. E and C vs. F, while they were absent in A vs. D. Thus, we suspected 

that when K. uniflora expands to higher locations, the genes related to cutin, suberine, and 

wax biosynthesis accumulate differently between leaf and flower bud tissue to improve 

its fitness under drought, salinity, or pathogen stress. 

5. Conclusions 

K. uniflora is an endangered alpine herb that is distributed along an altitudinal gradi-

ent. In this study, we sampled nine individuals from three representative locations and 

adopted RNA-seq technology to sequence 18 tissues, aiming to uncover how K. uniflora 

responded to different altitudes on the gene expression level. We revealed that genes that 

responded to light stimuli and circadian rhythm genes were significantly enriched in 

DEGs in the leaf tissue group, while genes that were related to root development and 

peroxidase activity or involved with the pathways of cutin, suberin, wax biosynthesis, 

and monoterpenoid biosynthesis were significantly enriched in DEGs in the flower bud 

tissue group. All of the above genes might play an important role in the response of K. 

uniflora to various stresses, such as low temperatures and hypoxia in high-altitude envi-

ronments. Furthermore, we proved that the discrepancy of gene expression pattern be-

tween leaf and flower bud tissue varied along altitudinal gradient. Overall, our findings 

provided new insights into the adaptation of endangered species to high-altitude envi-

ronments and would encourage more parallel research to focus on the molecular mecha-

nisms of alpine plant evolution. 
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enrichment analysis (e), and the KEGG Gsea enrichment analysis (f) of DEGs between flower bud 
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plot (d), the GO Gsea enrichment analysis (e), and the KEGG Gsea enrichment analysis (f) of DEGs 
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enrichment analysis (f) of DEGs between leaf tissue B and flower bud tissue E groups. Supplemental 
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