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Abstract: Focal amplifications (FAs) are crucial in cancer research due to their significant diagnostic,
prognostic, and therapeutic implications. FAs manifest in various forms, such as episomes, double
minute chromosomes, and homogeneously staining regions, arising through different mechanisms
and mainly contributing to cancer cell heterogeneity, the leading cause of drug resistance in therapy.
Numerous wet-lab, mainly FISH, PCR-based assays, next-generation sequencing, and bioinformatics
approaches have been set up to detect FAs, unravel the internal structure of amplicons, assess their
chromatin compaction status, and investigate the transcriptional landscape associated with their
occurrence in cancer cells. Most of them are tailored for tumor samples, even at the single-cell
level. Conversely, very limited approaches have been set up to detect FAs in liquid biopsies. This
evidence suggests the need to improve these non-invasive investigations for early tumor detection,
monitoring disease progression, and evaluating treatment response. Despite the potential therapeutic
implications of FAs, such as, for example, the use of HER2-specific compounds for patients with
ERBB2 amplification, challenges remain, including developing selective and effective FA-targeting
agents and understanding the molecular mechanisms underlying FA maintenance and replication.
This review details a state-of-the-art of FA investigation, with a particular focus on liquid biopsies
and single-cell approaches in tumor samples, emphasizing their potential to revolutionize the future
diagnosis, prognosis, and treatment of cancer patients.
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1. Introduction

Cancer is a genetic disease caused by multiple events, including the loss of tumor sup-
pressor genes and the activation of proto-oncogenes [1]. Proto-oncogenes are usually acti-
vated through several mechanisms, such as point mutations, chromosomal rearrangements
(leading to position effects [2] or gene fusions [3]), or high-copy number amplification [4].
Oncogene amplification is critical in tumorigenesis and tumor progression, as it provides
cell growth advantage and resistance to drug treatment [5]. In cancer genomes, oncogene
amplification mainly occurs as focal amplifications (FAs) of the genomic regions, i.e., ampli-
cons of chromosomal segments smaller than 20 Mb in size [6]. They are present in at least
30 different cancer types, including breast, colon, and lung cancers, and are often associated
with a worse patient prognosis [7,8]. Recent advances in molecular investigations have
enhanced our understanding of FAs’ properties and functions, emphasizing their relevance
as therapeutic targets and introducing new approaches and techniques for recognizing
them and analyzing their structure. For example, therapeutic strategies for reducing the FA
levels in cancer cells could downregulate the expression of the amplified genes involved in
aggressive phenotypes and drug resistance in advanced cancers [9]. Moreover, FAs have
recently been studied extensively for their potential as diagnostic and prognostic tools, also
considering their occurrence as circulating DNA into the peripheral blood system [10,11].
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Here, we review FA architectures and genesis mechanisms. We will focus on methods
and tools for detecting genomic amplification in tumor and liquid biopsies, highlighting
their potential implications for cancer diagnosis, treatment, and patient follow-up.

2. Cytogenetic Manifestation of Genomic Amplifications and Mechanisms of
Their Genesis
2.1. Types of Genomic Amplification

In cancer genomes, FAs may occur either extra- or intra-chromosomally [12]. The
former are mainly present as episomes and double minute chromosomes (DMs), also known
as extrachromosomal DNAs (ecDNAs) [9,13,14]; the latter are visible as homogeneously
staining regions (HSRs) (Figure 1a) [12].
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Figure 1. FAs and their inheritance through cell generations: (a) overview of different FA types;
(b) segregation of ecDNAs (DMs) during cell division. The lack of centromeres in ecDNAs results in
unequal segregation into daughter cells. Throughout mitosis, ecDNAs attach randomly to the ends
of chromosomes (chromosome tethering) and distribute asymmetrically between daughter cells. As
anaphase progresses, those ecDNAs not attached to chromosomal extremities accumulate, fail to be
incorporated into emerging daughter nuclei, and may persist within the micronucleus in a few cells;
and (c) segregation of normal chromosomes, HSRs, and ecDNAs with ectopic centromeres during
cell division. Ectopic centromeres maintain a segregation pattern similar to that of conventional
chromosomes, thereby determining their mitotic stability.

Episomes can range in size up to 1 Mb, so they cannot be observed using a conventional
cytogenetic analysis as ecDNA elements. Despite their small size, they have been shown
to play an interesting role in oncogene activation, not only because they can harbor and
amplify oncogenes, such as MYCN in medulloblastomas [13], but as they can also generate
fusion genes via their circularization. For instance, Graux et al. described an amplification
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of the NUP214::ABL fusion on episomes in T-cell Acute Lymphoblastic Leukemia (T-ALL)
patients [15].

Episomes may represent the first step of genomic amplification, originating after the
excision/deletion of the corresponding genomic segment from the original chromosomal
location and its subsequent circularization. This mechanism, known as the “episome
model”, was initially proposed in 1988 by Carroll et al., who suggested that episomes can
gradually expand until they become DMs, which could alternatively be integrated into
chromosomes to generate HSRs [16].

DMs are a type of FA first described over five decades ago [17]. Originally referred to
as “minute chromatin bodies”, they include circular DNA elements containing tandemly
arrayed genomic segments (amplicons), ranging from 1 to 3 Mb in size [14]. They can be
observed through a conventional cytogenetics analysis.

DM amplicons are described as harboring known oncogenes. They are the primary
source of genomic amplification in neoplasia and observed in nearly half of human can-
cers, representing a driving force toward the accelerated evolution of tumors [18]. The
main impact of these ecDNA structures consists of the activation of embedded oncogenes,
which increases their expression level for a gene copy number increase and their peculiar
chromatin topology. It has been demonstrated that ecDNA nucleosomal organization is
less compacted than chromosomal DNA, leading to enhanced DNA accessibility for the
transcriptional machinery at oncogene promoters [14]. Furthermore, an increased number
of ultra-long range interactions within ecDNA active chromatin has also been observed,
indicating effects on the transcription of the genes that are typically distant on chromo-
somes [14]. Another interesting consequence of amplicon arrangement within ecDNA is
the genesis of amplified intra- and inter-chromosomal fusion genes, potentially impacting
tumorigenesis and tumor progression [19] due to the remodeling of the transcriptional
landscape associated with ecDNAs.

DMs are also involved in determining intratumoral heterogeneity, which is crucial
to causing drug resistance and a shorter overall survival in cancer patients [20] for two
main reasons. The former is related to differences in the internal amplicon architecture.
An integration of cytogenetic and molecular approaches shows the coexistence of different
amplicon types, diverging in size and sequence composition, even when they show the
same embedded oncogene in the same tumor cell population [21,22]. The latter is due
to the ecDNA copy number in cells, which is a consequence of the acentric structure of
ecDNAs, leading to the random segregation of DMs in daughter cells following a non-
mendelian inheritance mechanism [23]. Interestingly, some authors have described a
tethering of ecDNAs at chromosome extremities during anaphase, called “hitchhiking”,
which drives their unequal segregation and distribution among the cells originated by
cell division [24–26] (Figure 1b). Furthermore, if a single DM attaches to the tips of sister
chromatids, their segregation at anaphase could form DNA bridges that could end with
breakage upon cytokinesis [24,25], leading to differences in the amplicon copy numbers in
the dividing cells and contributing to their genetic heterogeneity [18].

Despite the established acentric nature of DMs, we documented the emergence of
ectopic centromeres (neocentromeres) in them, increasing their size towards small ring
chromosomes in a portion of tumor cells in the bone marrow of Acute Myeloid Leukemia
(AML) patients with MYC-DM amplifications [21]. We speculate that centromere recruit-
ment at ecDNAs could augment the selective advantage of tumor cells carrying genomic
amplifications, ensuring ecDNAs’ mitotic stability upon cell division (Figure 1c). Other ex-
amples of neocentromere seeding in the literature are mainly in regard to well-differentiated
liposarcomas on ring and rod-shaped chromosomes harboring high-level amplifications,
hence stabilized by the ectopic centromeres [27,28].

DMs are described to evolve towards HSRs in vivo and in vitro through chromosome
reintegration [29,30].

HSRs are chromosomal regions harboring genomic amplifications that display an
atypical banding pattern after trypsin-Giemsa staining (Figure 1c). Their amplicons might
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be head-to-tail oriented when located within different chromosomal sites from that of the
target oncogene [16], as they might be originated by episome/ecDNA integration after their
genesis and amplification. Alternatively, HSR amplifications located close to the original
oncogene site are formed via the breakage-fusion-bridge (BFB) cycle model and have a
head-to-head orientation [22] (see Section 2.2).

Both ecDNAs and HSRs can coexist in various types of tumors, as revealed by re-
assessing large-scale DNA sequencing datasets. Glioblastoma (GBM) and sarcoma tumors
have the highest frequency of ecDNAs (60% and 47%, respectively) [7]. HSRs are commonly
found in specific cancer types, such as lung squamous (32%) and bladder carcinomas
(28%) [7,30]. Several oncogenes are amplified on ecDNAs and HSRs, including MDM2,
MYC, EGFR, CDK4, and ERBB2 [7,31]. It is worth noting that HSRs are less accessible at the
chromatin level than ecDNAs. Therefore, the same high-copy number increase leads to a
higher expression of an oncogene if it is amplified on ecDNAs rather than HSRs [14].

2.2. Mechanisms of FA Emergence

It has been well established that the genomic amplification process starts after double-
strand breaks (DSBs), which trigger a copy number increase in one or more oncogenes
following different mechanisms. DNA replication stress due to carcinogen and pathogen
exposure and a failure in the DNA damage repair pathway could produce DSBs [32]. As
summarized in Figure 2, three main mechanisms are involved in the genesis of DMs and
HSRs: BFB cycles, the extra replication (or loop-formation)–excision–amplification model
(also known as the “episome” model), and chromothripsis.
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genesis of head-to-head amplicon copy number increase through the repetition of breakage-fusion-
bridge cycles; (b) Episome Model: Replication fork stalling or loop formations may induce the
excision of genomic regions, harboring oncogenes, that undergo circularization through ligation of
their extremities. The newly originated episomes can evolve into ecDNAs through replication and
recombination; and (c) Chromothripsis Model: Chromosome shattering can yield multiple acentric
DNA segments. The DNA repair machinery reassembles some fragments, originating ecDNAs and
new chromosomes featuring complex structural rearrangements. Occasionally, selective pressure
and linear DNA damage may prompt ecDNA molecules to reintegrate into the linear genome,
originating HSRs.

2.2.1. BFB Cycles Model

In this model, the initial DSB usually locates telomerically to a target oncogene due to
the occurrence of downstream common fragile sites [33] or collapsed replication-stalled
forks [34]. The DSB is then followed by the fusion of two broken ends of sister chromatids,
forming a dicentric anaphase bridge [35]. The products of the asymmetric breakage of the
dicentric bridge are broken down in daughter cells, showing an inverted duplication and
deletion [36]. If the chromosome with the inverted duplication undergoes subsequent BFB
cycles, it will display FAs as inverted duplications [37]. According to the model, once the
BFB cycle has been initiated, the consecutive breakages of the anaphase bridges must occur
near the first breakage location for HSR formation to occur [38] (Figure 2a).

Alternatively, dysfunctional telomeres could trigger BFB cycles after their joining via
non-homologous end-joining (NHEJ) to create dicentric chromosomes among the sister
chromatids [39]. Several gene amplifications or genomic instability events have been
attributed to this model, including amplifications of the DHFR, AMPD2, CCND1, MDM4,
EGFR, AKT3, and ERBB2 oncogenes [7].

2.2.2. Episome Model

Episome genesis was first described by Wahl and colleagues in 1987 [40]. Accordingly,
replication fork stalling elicits its collapse and the replication bubble subsequently falls
off the chromosome, circularizes, and transforms into an autonomously replicating epi-
some [16,41] (Figure 2b). Additionally, the autonomous replication and recombination of
episomes lead to the formation of ecDNAs or their integration into different chromosomes
to form HSRs [16]. The higher frequency of these elements in cancer cells compared to
normal cells shows that they may contribute to cell transformation and tumor progression,
increasing genomic instability [42]. For example, our group reported that MYC-containing
ecDNAs in AML patients could have originated from this mechanism. In Storlazzi et al.
(2006), 23 out of 30 AML-reported patients showed deletions of the 8q24 amplified region
on one of the two chromosomes 8 and, in one case, the sequencing of the DM and del(8q)
junctions revealed their correspondence [43]. Furthermore, in L’Abbate et al. (2018), 11 out
of 23 AML patients investigated via an SNP array and whole-genome sequencing (WGS)
displayed the heterozygous deletion of the amplified region on DMs, rings, and HSRs [21].
This evidence is in perfect agreement with the episome model [43].

The episome model could also be applied to derivative chromosomes originated via
chromosomal translocations. Barr et al. described a “translocation-amplification” mecha-
nism, in which amplification events occur after translocations and are frequently triggered
by exogenous stimuli [44]. The DNA repair system can excide fusion sequences that could
generate DMs and/or HSRs [45]. In a few studies, through this mechanism, amplifications
of the MYC, ATBF1, HMGIC, and MDM2 oncogenes have been observed [46,47].

2.2.3. Chromothripsis

The word “chromothripsis”, coined by Stephens et al. in 2011, indicates a single-step
catastrophic event in which one or a few chromosome/s is/are broken into thousands of
tiny fragments that are randomly rejoined, resulting in a profound genomic rearrangement
that affects the entire chromosomes or chromosomal arms [48]. Chromothripsis is described
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to drive ecDNA genesis by originating episomic fragments that undergo extra-chromosomal
amplification (Figure 2c). Furthermore, a telomeric fusion of the chromosomes involved
in a chromothripsis event has been linked to the genesis of complex ecDNA in some
cancers, including medulloblastomas with TP53 mutations [49] and small-cell lung cancer
(SCLC) [50,51]. Ly et al., by selectively inactivating the Y chromosome centromere, also
established that chromothripsis induced by mitotic errors could produce ecDNA [52].

3. Methods and Bioinformatic Tools to Detect Genomic Amplification in
Tumor Samples
3.1. Definition of Amplicon Structure at the DNA Level

The detection and analysis of FAs have become increasingly important for understand-
ing tumor biology and devising targeted therapies. Several wet methods and bioinformatic
tools have been developed, which are often used as integrated multi-technique approaches
to investigate the amplicon unit structure, chromatin architecture, and compaction status
related to the embedded oncogene expression. Here, we provide an overview of these
methods and tools from the earliest to most recent ones (Figure 3).
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3.1.1. Detection of DMs/HSRs

Early studies on FAs relied on electron microscopy (EM), including scanning electron
microscopy (SEM) and transmission electron microscopy (TEM), providing the first visual
evidence of FAs in cancer cells and being particularly useful for visualizing the circular
nature of DMs [57]. Subsequently, optical microscopy techniques, such as brightfield,
phase contrast, and fluorescence microscopy, have been employed to observe FAs and
their localization within cells [14]. Although these techniques allow for high-resolution
single-cell analyses of the DM number, cytogenetic structure, spatial location into the
nucleus, and position relative to cell chromosomes, they are not informative about the
DM gene content, chromatin status, and gene expression regulation. For these reasons,
to the best of our knowledge, their use in FA studies is presently minimal. Following
this, fluorescence in situ hybridization (FISH) has been used to identify ecDNAs/HSRs
and detect specific gene amplifications, offering valuable insights into the presence and
localization of these elements within tumor cells [58]. FISH analyses with probes specifically
designed for amplified genomic regions have added important information related to the
mechanisms of gene amplification in various cancer types as, in some cases, a “scar” on the
chromosome of origin corresponding to the amplified sequences on the ecDNA/HSR has
been found [21,43,53,59,60]. Moreover, FISH allows for the mapping of HSR insertion sites
in some tumor types, showing no particular sequence tag at their locations, supporting
an NHEJ process [22,61]. Finally, due to their application at the single-cell level, FISH
assays can also unveil the heterogeneity of the amplified regions among different cells of
the same sample [21]. Compared to microscopy-based assays, an important advantage of
the FISH technique is the possibility of detecting FAs in interphase cells (i-FISH), which
are often more abundant in cancer samples than metaphases. Zakrzewski et al. exploited
i-FISH to develop a pipeline for the automated evaluation of the ERBB2 amplification status
in breast and gastric cancer [62]. The analytical resolution of FISH is related to the size
of the probes used, ranging between whole chromosomes (for the whole-chromosome
paintings) and 40–50 kb of the fosmid probes [63]. Due to the probe size, FISH does not
allow for FA characterization at a single nucleotide resolution level; hence, it is not adequate
for characterizing the structural variations joining the different genomic regions of the
amplicons or for determining the exact fusion junction generating a chimeric gene.

The continuous development of advanced methods, such as ultra-high-resolution
microscopy technologies, for example, super-resolution three-dimensional structured illu-
mination microscopy (3D-SIM), have further enabled the visualization of structures and
molecules with a high spatial resolution [14].

In addition to wet-lab techniques, image analysis tools have also been developed to
analyze the FA occurrence in cells. In 2017, ECdetect, a semi-automated image analysis
software package, was designed to detect and quantify FAs by analyzing DAPI-stained
metaphase images. Turner et al. utilized this tool to reveal the presence of ecDNAs in
nearly half of the 17 cancer types studied, highlighting their role in accelerating cancer
progression and increasing intratumoral heterogeneity [18]. However, ECdetect can only
report FAs occurring as ecDNAs, as it does not reveal HSRs and does not provide infor-
mation about their genomic structure. Furthermore, Rajkumar et al. developed ecSeg, a
tool that employs the U-Net machine learning algorithm for analyzing DAPI-stained DNA
images, enabling the identification of FAs and localization of oncogene amplification at the
single-cell level [54]. Integrating FISH-stained metaphase images, with a maximum of two
hybridized probes, ecSeg has the advantage of detecting both ecDNAs and HSRs at the
single-cell level [64]. A limitation of both ECdetect and ecSeg lies in the need for cells in
metaphase; for example, in their work, Turner et al. analyzed at least 20 metaphases for
each sample under study, a number not always easy to reach [18].

3.1.2. Amplicon Architecture Definition

For the reconstruction of the internal structure of FAs, Southern Blotting and FISH
assays [43,64] have been integrated with long-range PCR approaches to map the amplicon
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junctions in ecDNAs [43,53,60,65]. The development of WGS technologies marked a sig-
nificant breakthrough in the study of ecDNAs, offering high-throughput, high-resolution
genomic data, providing insights into the organization and composition of ecDNA ele-
ments [18,30,66,67]. Subsequently, the advent of third-generation sequencing (TGS) and
single-molecule sequencing technologies, such as Nanopore sequencing, have further revo-
lutionized ecDNA research by providing an unprecedented resolution for the analysis of
complex extrachromosomal structures. Interestingly, such approaches could be applied
after the enrichment of ecDNAs to increase the NGS resolution and the specificity of the
structural variation (SV) detection.

One of the earliest methods for enriching the DNA samples of ecDNAs was set up
by Radloff et al. in 1967 [68], which used cesium chloride (CsCl)/ethidium-bromide
gradients to isolate extrachromosomal circular DNAs (eccDNAs) from the linear DNA. This
approach was further integrated with exonuclease V (exoV) treatment to enzymatically
digest linear DNA and a Tn5 transposition fragmentation and tagging system for the genesis
of sequencing libraries, which were specifically enriched with eccDNAs for their profiling
(Circulome-seq) [69]. A pretreatment step consisting of a Plasmid-Safe DNase digestion of
linear chromosomes was used in the Circle-Seq approach [70]. EcDNAs were then enriched
via rolling circle amplification mediated by Phi29 DNA polymerase. Then, CIDER-Seq
(circular DNA enrichment sequencing) aimed to isolate eccDNA for PacBio long-read
sequencing without undergoing a PCR or restriction digestion pretreatment. The obtained
full-length sequences were subsequently processed using DeConcat, a new read-processing
algorithm that does not need any sequence assembly steps [71]. A further refinement of this
procedure developed a new three-step eccDNA purification (3SEP) procedure, leading to
eccDNA preparations with a high purity and reproducibility level for sequencing purposes,
combining rolling-circle amplification with Nanopore sequencing [72].

Hung et al. proposed a new method based on a modified CRISPR-Cas9-Assisted
Targeting of Chromosome segments (CATCH) technique, combining the CRISPR-Cas9
treatment and pulsed-field gel electrophoresis (PFGE) of agarose-entrapped genomic DNA
to isolate and analyze large ecDNAs, along with the corresponding chromosomal region.
This method allowed an ecDNA analysis at single nucleotide resolution, identifying, for
example, exclusive oncogene mutations on ecDNAs, such as the EGFRvIII mutation in the
glioblastoma GBM39 cell line. The high-resolution potential of this method could also be
exploited to study the mechanism of FA genesis, since chromosomal deletions of the corre-
sponding amplified sequences, or “scar”, can be detected, supporting an excision model for
ecDNA formation. Moreover, CRISPR-CATCH, followed by nanopore sequencing, could
be used for ecDNA cytosine methylation profiling [73].

Bioinformatic tools have been used to analyze the next-generation sequencing data
from these experimental methods. Deshpande and colleagues developed AmpliconAr-
chitect (AA), a tool designed to reconstruct the fine structure of focally amplified regions
using WGS data. They extensively validated AA on multiple simulated and real datasets,
spanning a wide range of coverage and copy numbers. The analysis of 68 cancer samples
caused by viral infections revealed FA occurrence in a broad range of cancer types and
suggested their involvement in the genesis of complex rearrangements [74]. Additionally,
in 2019, Circle-Map was developed by Prada-Luengo et al. as a sensitive method for
detecting circular DNA from circle-enriched next-generation sequencing data at single-
nucleotide resolution. Circle-Map addresses the limitations of short-read mappers by
guiding the realignment of partially aligned reads using information from discordantly
mapped reads. This approach significantly enhanced the sensitivity for detecting circular
DNA in simulated and real data while maintaining a high precision [75].

Building on AA, in 2020, Luebeck et al. developed AmpliconReconstructor (AR)
to integrate optical mapping and next-generation sequencing for resolving focal copy
number amplifications at single-nucleotide resolution. AR can detect ecDNAs in WGS data
generated using methods such as conventional WGS, Nanopore, and PacBio technologies,
but it is most effective when these WGS data are produced from methods that capture
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long DNA fragments, as AR employs a graph-based approach to identify ecDNAs, which
works better with longer DNA fragments [76]. Lastly, in 2022, Mann et al. introduced
the ECCsplorer pipeline, designed to detect extrachromosomal eccDNAs in any organism
or tissue using Illumina-sequencing-based next-generation sequencing techniques. The
pipeline combines read mapping and a reference-free comparison of the read clusters,
showcasing its sensitivity and specificity by successfully detecting mitochondrial mini-
circles and retrotransposon activation in various organisms. ECCsplorer is valuable for
diverse downstream investigations, including cancer-related eccDNAs, organelle genomics,
and active transposable elements [77].

Importantly, all the resulting bioinformatic data on EccDNAs are collected on specific
platforms such as eccDNAdb [78], CircleBase [79], and TeCD (The eccDNA Collection
Database) [80], helping researchers to gain information on isolated eccDNA, mainly in
human cancers, and investigate their functions.

The advantages and limitations of each method are summarized in Table 1.

Table 1. Methods for amplicon analysis and their advantages/disadvantages.

Method for
Amplicon
Analysis

Gained Information Strengths Limitations References

Southern Blotting Validation of FA
breakpoints Direct analysis of cell DNA

Preliminary information on
the amplified regions is

required to design
appropriate probes

[64]

FISH

FA visualization within
cell nuclei by the use of

specific fluorescent
probes

Identification of FA
cytogenetic manifestation

(ecDNAs vs. HSRs);
definition of HSR insertion

sites; detection of cell
heterogeneity and number

of FAs per cell

Resolution linked to the
probe size (ranging from
the whole chromosome to

40–50 Kb)

[43]

Long-range PCR
approaches

Characterization of
amplicon SVs and HSR

insertion sites

Single nucleotide
resolution analyses;
informative to the

mechanisms involved in
FA genesis (e.g., NHEJ)

Need of preliminary
information on the

amplified regions to design
appropriate primer pairs

[43,53,60,65]

WGS-based
technologies

Single nucleotide level
characterization of FAs

High-resolution,
high-throughput analyses;
reconstruction of the whole

amplicon structure

Issues in discriminating
between ecDNAs and

HSRs; problems in
validating rearranged

ecDNA sequences due to
the read length

[18,30,66,67]

Circulome-seq Enrichment and
sequencing of ecDNAs

Good yield also starting
from a small amount of
ecDNAs; detection of
ecDNAs up to several

hundred kb

Impossibility to obtain
single-molecule sequence

data
[69]

Circle-Seq Enrichment and
sequencing of ecDNAs

Suitable for analysis of
broad-range size ecDNAs

Potential incomplete
removal of linear DNA by

exonuclease digestion
[70]
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Table 1. Cont.

Method for
Amplicon
Analysis

Gained Information Strengths Limitations References

CIDER-Seq Purification and
sequencing of ecDNAs

No need for PCR assays,
cloning, and computational

sequence assembly

High accuracy only for
ecDNAs smaller than

10 kb; need for long-read
sequences

[71]

3SEP Purification of ecDNA
molecules

Accurate removal of linear
DNA and mitochondrial

genome; time-saving
technique

Limited to small ecDNA
molecules [72]

CRISPR-CATCH

Sample enrichment
with ecDNAs and the

corresponding genomic
locus

Large size ecDNA
enrichment; possibility to

isolate and analyze the
corresponding

chromosomal locus of the
amplified DNA; ecDNA

separation based on
the size

Need of preliminary
information on the

amplified regions to design
appropriate sgRNAs

[73]

AmpliconArchitect

WGS-data-based
reconstruction of the
internal structure of

FAs with
single-nucleotide

resolution

Characterization of
complex and

heterogeneous amplicons

Issues in FA reconstruction
in presence of duplicated

segments within the
amplicons

[74]

Circle-Map

Fine detection of
ecDNAs and

breakpoint junctions of
the circular DNA

structure

Highly sensitive and
precise tool

Need of circle-enriched
data to produce the most

accurate results;
impossibility to detect SVs
internal to the FA structure

[75]

Amplicon
Reconstructor

Single-nucleotide
resolution

reconstruction of the
fine-scale and
large-scale FA

architecture, based on
the optical mapping of
long DNA fragments

and NGS data

Reconstruction of
amplicons with complex
architectures, mainly due
to the use of long-range

sequencing data

Limitations of the optical
map assembly process;

issues in reconstructing the
FA structure when nested
duplication of amplicon

segments occur

[76]

ChIP-seq Information on FA
chromatin accessibility

Identification of actively
transcribed chromatin at a

single-nucleotide
resolution; possibility to

perform single cell analyses

Introduction of a potential
bias by PCR amplification;

potential for epitope
masking due to the

formaldehyde crosslinking
process

[81]

4C-seq

Unbiased detection of
long-range chromatin
interactions involving

amplified regions

High-throughput screening
of physical interactions
between chromosomes

without pre-determination
of the interacting partners

Missing local interactions
(<50 kb) from the region of

interest; not efficient
amplification of large

circles

[82,83]
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Table 1. Cont.

Method for
Amplicon
Analysis

Gained Information Strengths Limitations References

ATAC-seq
Detection and mapping

of FA chromatin
accessibility regions

Gather chromatin regions
of increased

accessibility;map regions of
transcription-factor

binding and nucleosome
position; detect ecDNAs at
the pre-amplification stage,

useful for predicting
resistance to therapy

Potential contamination of
data with mitochondrial
DNA; potential sequence
or structural biases of the

Tn5 enzyme

[84–87]

ATAC-see

Unveiling of the
specific spatial

organization of the
accessible FA

chromatin, labelling
open chromatin
accessible loci

Revelation of the accessible
chromatin regions in their
native context; analysis of
fixed samples, providing

both spatial and
epigenomic information

Potential contamination of
data with mitochondrial
DNA; potential sequence
or structural biases of the

Tn5 enzyme

[88]

ChIA-PET

Study of the ecDNA
chromatin interactions
within its structure and

with chromosomal
regions and ecDNA

sequences

Suitable for detecting a
large number of both

long-range and short-range
chromatin interactions
globally, independently

from their size and
sequence content;

removing background
generated during

traditional ChIP assays;
best resolution and

coverage balance to map
long-range interactions

A large amount of cell
material required,

generally (at least 108);
limited sensitivity

[82,89–91]

ChIA-Drop
Characterization of the

ecDNA-associated
chromatin interactions

Decipher
ecDNA-chromosome

complexity at a
single-molecule resolution;

direct analysis of
chromatin samples without

the need to purify them

[92]

3.2. HSR/ecDNA Chromatin Status Assessment

To further elucidate the role of the chromatin structure and histone modifications in
ecDNA-driven gene overexpression, researchers have set up various methods over the
years (Table 1). ChIP-seq, 4C-seq, and ATAC-seq were introduced in 2007, 2011, and 2013,
respectively [93–95]. These techniques have enabled the characterization of histone marks,
chromatin accessibility, and other epigenetic features associated with ecDNA [30]. For
instance, H3K4me1/H3K27ac ChIP-seq has identified multiple active histone marks and
a few repressive histone marks on the ecDNA in GBM cells [14]. Furthermore, H3K27ac
ChIP-seq has shown an interaction between amplified super-enhancers, downstream map-
ping the MYC gene with the MYC promoter in lung adenocarcinomas and endometrial
carcinomas [96]. The same approach unveiled interactions between super-enhancers and
focally amplified oncogenes in multiple tumors [97]. ATAC-seq shows open chromatin
regions due to their sensitivity to the hyperactive transposase Tn5 [86]. This technique has
been used to identify eccDNAs in ovarian cancer, prostate cancer, and GBM cell lines, apart
from GBM and glioma samples from The Cancer Genome Atlas (TCGA) [87]. ATAC-seq
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has also been used to study mutations in open chromatin regions and their association
with genomic amplification [98]. ATAC-seq is implemented using a modified Tn5 using
DNA adapters conjugated to fluorophores. This technique, called an “assay of transposase-
accessible chromatin with visualization” (ATAC-see), introduced in 2016, allows for both
the sequencing and in situ visualization of the accessible chromatin through the fluorescent
signal. This approach could be exploited to study the chromatin accessibility in specific
regions of the genome, including those associated with FAs, and to study the mechanisms
that regulate the formation and stability of FAs [88].

Furthermore, 4C-seq, a method detecting the chromatin interaction between one
single locus and the rest of the genome, has disclosed the highly accessible chromatin of
ecDNAs and their long-range interactions with active chromatin, promoting oncogene
overexpression in prostate cancer, breast cancer, GBM, medulloblastomas, neuroblastomas
(NB), and Wilms tumors [97,99,100]. Proximity ligation-assisted ChIP-seq (PLAC-seq),
introduced at the end of 2016, combines ChIP with proximity ligation and high-throughput
sequencing. PLAC-seq allows for the study of protein–DNA interactions (e.g., transcription
factor binding), histone modification, and DNA methylation. It has also been used to detect
and analyze the presence of FAs in tumor biopsies [101]. Along with wet techniques, some
bioinformatic tools have been developed to investigate the chromatin structure and its
interactions. For example, ChIA-PET, one of the first bioinformatics tools developed in
2010, was designed to automatically analyze the chromatin interactions with paired-end
tag sequencing, enabling the investigation of the 3D organization of the genome [102]. In
Zhu et al. (2021), the ChIA-PET assay and ChIA-PET Utilities, an implemented version of
the ChIA-PET Tool, were used to examine the ecDNA-mediated chromatin contacts in GBM
neurospheres and prostate cancer cell cultures. In the same work, ChIA-Drop assays were
also performed [92]. This method, introduced in 2019, and the bioinformatics analysis tool,
ChIA-DropBox, allows for the study of the interactions between different genomic regions,
including those associated with ecDNAs [103]. Integrating ChIA-PET and ChIA-Drop data,
researchers have proposed that ecDNAs may function as mobile transcriptional enhancers
by recruiting RNA Polymerase enzymes and transcriptional factors that could act in trans
on the gene mapping on cell chromosomes, which may also promote tumor progression
through this peculiar transcription control mechanism [92].

3.3. Analysis of the Transcriptional Landscape Associated with FAs

RNA sequencing (RNA-seq) has been extensively utilized to explore the transcriptomic
consequences of genomic amplifications, including those associated with FAs. Various
studies have demonstrated that FAs lead to the overexpression of genes promoting tumor
progression, increasing genetic heterogeneity and impacting the transcriptional programs
in cancers [92,104,105]. By integrating WGS and RNA-seq data from several cancer cell
lines and TCGA patients, Wu et al. demonstrated that ecDNA-embedded oncogenes were
the most expressed genes when amplified [14]. Intriguingly, Hung et al. revealed that the
overexpression of ecDNA-harbored oncogenes was not only promoted by an increase in
their copy number, but by trans-acting enhancers mapping on different ecDNA molecules.
This event is a result of the clustering of ecDNAs in the cell nuclei, tethered by DNA binding
proteins, such as the BET proteins in the colon cancer (CRC) cell line COLO320-DM [19].

FAs with complex structures are also linked to the genesis of fusion genes, joining genes
from the same or different chromosomes [21,22,106]. To detect the chimeric RNAs tran-
scribed from ecDNA molecules with a single-cell resolution, a recently introduced method
is single-cell extrachromosomal circular DNA and transcriptome sequencing (seEC&T-seq)
developed by Gonzales et al. [55]. This approach consists of simultaneously sequencing
ecDNAs and mRNA from a single cell; hence, it can identify both the ecDNA SVs joining
two genes and their resulting fusion RNAs [55]. Moreover, this method allows for studying
ecDNA-embedded oncogene expression and can document the high heterogeneity often
accompanying ecDNAs among different cells [55].
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Various fusion genes are described as being amplified in human cancer, such as
PAX7::FOX01 and PAX3::FOX01 in alveolar rhabdomyosarcoma [107], BCR::ABL1 in chronic
myeloid leukemia [45], COL1A1::PDGFB in dermatofibrosarcoma protuberans [108],
NUP214::ABL1 in T-cell ALL [109], and PVT1 chimeras in solid tumors and hematological
malignancies [110]

There is much debate in the literature about the role of chimeric genes harbored by
ecDNAs and HSRs: according to some authors, these chimeras have a passenger role
in cancer genesis and progression [111,112]. However, we have recently demonstrated
an oncogenic role in vitro for the PVT1::AKT3 chimera, transcribed from a fusion gene
mapping on an HSR in the MYC-amplified SCLC cell line GLC1HSR [22]. Indeed, its
silencing decreased cell proliferation and increased apoptosis [113].

Amplified gene transcripts can also be involved in the genesis of fusion RNAs without
genomic support (e.g., joining two RNAs from amplified genes not interrupted by SVs or
involving partners transcribed from not amplified genes), as reported by integrating the
WGS and RNA-seq data from 8q24-amplified AML patients [21]. These chimeras could
be derived from post-transcriptional events, such as trans-splicing or cis-splicing between
adjacent genes (cis-SAGe), disclosing a high plasticity of the transcripts from amplified
genes [114,115].

FAs can also lead to the overexpression of circular RNAs (circRNAs). 8q24 amplifica-
tion, harboring PVT1 exon 2, could lead to hsa_circ_0001821 (circPVT1) overexpression, as
documented in AML patients with PVT1-harboring DMs/HSRs in comparison to samples
with a normal karyotype or an amplification of different genes [21]. circPVT1 has been re-
ported as having an oncogenic role in several cancer types [116]. Hence, its overexpression,
linked to its genomic locus amplification, deserves further investigation. Moreover, this
result shows that the transcriptome of cancer cells with FAs can also become more compli-
cated due to the overexpression of oncogenic circRNAs from amplified genes. By shedding
light on these complexities, RNA-seq illustrates its indispensable role in the characterization
of the FA-driven cancer transcriptional landscape, thus deepening our understanding of the
role of FAs in tumorigenesis and guiding future therapeutic strategies [14,19,92,104,105].

4. Methods to Detect Genomic Amplification in Liquid Biopsies

Advances in the detection of cell-free DNA (cfDNA), circulating tumor cells (CTCs),
and Extracellular Vesicles (EVs) in the blood, as well as in other body fluids (urine, saliva,
and sperm), have improved the non-invasive testing potential for cancer diagnoses and
follow-ups.

Applying such approaches for eccDNA detection in liquid biopsies would represent an
important new instrument, not only for the rapid detection of cancers harboring genomic
amplification, but also for patient response monitoring after a specific therapy to promptly
identify the development of possible resistance mechanisms. Moreover, as genomic ampli-
fication contributes significantly to tumor heterogeneity, which is the main cause of a lack
of response to cancer therapies [18], the setup of circulating eccDNA detection methods
would offer novel biomarkers that could be used in clinical practice more effectively than
traditional molecules. Much effort should be spent to ensure the protocols dedicated to
detecting eccDNA in liquid biopsies are more applicable at a large-scale level, particularly
to improve the sensitivity and specificity of their identification.

Unfortunately, the literature on the early detection of eccDNA in liquid biopsies is
limited to a few current reports.

In particular, the release of eccDNAs has been documented in the blood circulation
and urine of humans [117,118]. The presence of eccDNA of maternal and fetal origin has
also been documented in the plasma of pregnant women [119]. In cancer patients, eccDNA
is detected at high levels in their serum and plasma before surgery and at lower levels
15 days after a tumor resection surgery [120]. Therefore, their detection and investigation
via molecular approaches aimed at identifying the amplified oncogenes on ecDNAs could
be a promising approach for diagnosing and monitoring cancer in clinical practice.
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A method for detecting and characterizing eccDNAs in normal and tumor plasma
samples employed the treatment of cfDNA with ATP-dependent DNase digestion to
remove the linear DNA and subsequent Multiple Displacement Amplification (MDA), in
order to amplify the undigested circular DNAs. The amplified DNAs were then used to
prepare sequencing libraries and a custom program called “split-align” was utilized to
identify the sequences with split reads, which are indicative of eccDNAs [117,120].

Interestingly, recent evidence has indicated that a ChIP-seq analysis of the H3K36me3
histone modification from plasma cell-free nucleosomes (cfChIP-seq) was successfully
performed on samples from metastatic colorectal carcinoma (mCRC), non-small-cell lung
cancer (NSCLC), and SCLC patients, identifying amplified oncogenes, such as HER2 in
mCRC patients, as showing the highest H3K36me3 enrichment [56,121]. These results
suggest that ecDNAs can non-invasively be detected in patient plasma, opening up new
scenarios for the diagnostic approaches to mCRC, NSCLC, SCLC, and other cancer types.

5. Clinical Significance of Genomic Amplification Detected in Tumor Samples

The clinical significance of FAs in tumor samples has emerged as a critical area of
investigation in cancer research, with an impact on cancer diagnosis, prognosis, and
treatment (Figure 4) [18].
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Identifying FAs and their contribution to increased gene copy numbers has paved
the way for advancements in cancer diagnostics, mainly for early tumor diagnosis and
patient stratification for more effective treatment. Indeed, FAs can identify specific cancer
subtypes. For example, HER2-amplified breast cancers, characterized by aggressive tumor
growth and a high tumor recurrence, specifically respond to trastuzumab and pertuzumab
monoclonal antibodies [122]. Both therapies have been shown to impact the survival rates
and disease progression in patients, highlighting the importance of accurately identifying
such FAs upon diagnosis. In addition, as already described in the previous paragraph, non-
invasive approaches focused on identifying the circulating ecDNAs in liquid biopsies could
offer new diagnostic tools for detecting early-stage tumors. However, these approaches are
still far from being used in clinical practice.

FAs have been shown to influence the prognoses of various cancer types. In NB,
FA-driven MYCN amplification is one of the genomic aberrations that has been reported
in high-risk patients, associated with a poor overall survival [123]. Moreover, among
MYCN-amplified patients, those also showing rearrangements involving amplified chro-
mosomal regions present a worse overall survival than patients lacking such additional
alterations [30]. In GBM, FAs carrying EGFR and its variant EGFRvIII play a crucial role
in patient prognoses and targeted therapy resistance. Nathanson et al. [9] demonstrated
that EGFR amplification mediated by FAs is associated with a worse overall survival and
higher tumor recurrence. Their study revealed that the dynamic regulation of extrachro-
mosomal mutant EGFR DNA contributes to the development of resistance to targeted
therapy, emphasizing the need for new strategies to overcome these challenges in GBM
treatment. Despite growing evidence supporting the predictive value of FAs, several chal-
lenges remain. The heterogeneity of FAs and their variable presence across cancer types
and subtypes necessitate further investigation to establish their clinical utility as reliable
prognostic markers [124]. Additionally, developing standardized methods for detecting
and quantifying FAs in clinical samples will be crucial for their implementation in routine
clinical practice [14].

As our knowledge of FAs constantly evolves, exploring their potential applications
as therapeutic targets becomes increasingly important. For example, recent studies have
demonstrated that eliminating FAs in NB can enhance drug sensitivity [125]. One strategy
for targeting FAs involves disrupting their maintenance and replication in cancer cells.
Several studies have demonstrated the potential of various treatments to eliminate or reduce
the extrachromosomal DNA and amplified oncogenes in different types of cancer cells,
such as hydroxyurea [126,127], inhibitors of poly (ADP-ribose) polymerase (PARP) and
dimethyl sulfoxide [128], and ionizing radiation [129]. A study by Von Hoff et al. showed
that treating human tumor cells with low concentrations of hydroxyurea accelerated the
loss of extrachromosomally amplified oncogenes, such as MYC, which was correlated
with a dramatic reduction in tumorigenicity [127]. Moreover, in CRC, using DNA-PKs
or PARP inhibitors affecting NHEJ decreases the chromothripsis-mediated genesis of
DMs [104]. Similarly, Meng et al. found that inhibiting NHEJ can prevent the formation of
DMs in methotrexate-resistant CRC [130]. Another approach to exploiting FAs in cancer
therapy is to target the oncogenic signaling pathways activated by amplified oncogenes.
For example, in CRC, MET amplifications have been associated with a poor prognosis
and resistance to anti-EGFR therapies, including the anti-EGFR cetuximab monoclonal
antibody [131,132]. Bardelli and colleagues found that MET inhibitors, such as crizotinib
and cabozantinib, restored the sensitivity to cetuximab in MET-amplified patient-derived
CRC xenografts [131]. Another example regards MYC-amplified tumors: in this case, using
MYC small-molecule inhibitors, such as BET inhibitors, could be a more effective treatment
strategy than conventional chemotherapy [133].

FAs can also inform personalized treatment decisions by predicting therapy response
and resistance. Tumors harboring FAs are often characterized by an increased genetic
heterogeneity, which can lead to therapy resistance [134]. For example, in NSCLC, FA-
driven EGFR amplification has been associated with a resistance to EGFR tyrosine kinase
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inhibitors, such as erlotinib [135]. In these cases, alternative targeted therapies, such as
osimertinib, which has shown efficacy in patients with T790M-mutated EGFR, may be
more effective [136]. In MET-amplified NSCLC, MET amplification represents a resistance
mechanism to EGFR tyrosine kinase inhibitors. MET-targeted therapies, such as gefitinib,
could represent the best therapeutic choice for these patients [137]. FA events also play
a crucial role in shaping the immunotherapy decision making in various cancers. Zhang
et al. [138] found that MET amplification in lung cancer patients attenuated the tumor
response to immunotherapy by inhibiting the STING levels and reducing the antitumor
T-cell infiltration, suggesting that combining MET inhibitors with an immune checkpoint
blockade could help overcome resistance. Deng et al. [139] discovered that a RAD21
amplification in ovarian cancer led to the epigenetic suppression of interferon signaling,
promoting immune evasion and highlighting RAD21 as a potential target and biomarker
for precision immunotherapy. Xu et al. [140] investigated the genomic and transcriptional
heterogeneity of multifocal hepatocellular carcinoma, revealing that it could influence the
clinical responsiveness of patients to targeted drugs and immunotherapies, underlining the
importance of personalized treatment strategies. Finally, in Massó-Vallés et al. [141], the
potential targeting of MYC, MYCN, and MYCL in lung cancer was discussed, emphasizing
that a combination of MYC inhibitors with immunotherapies might represent a promising
strategy for improving treatment outcomes, particularly given the role of MYC in immune
suppression.

6. Conclusions

Despite the potential clinical implications of FAs in cancer, numerous challenges per-
sist, including developing selective and effective FA-targeting therapeutic agents. For this
reason, a deeper understanding of the molecular mechanisms responsible for FA genesis,
maintenance, and replication is required. For instance, investigating chromothripsis and the
role of replication stress in FA formation can unveil unique DNA repair vulnerabilities and
druggable targets in cancer cells. Advanced technologies, such as single-cell and long-read
sequencing and RNA-seq-based techniques, will enhance the detection and characterization
of FAs, allowing for a more comprehensive understanding of their role in cancer biology
and the development of efficient therapeutic strategies. However, the potential off-target
effects and toxicity of FA-targeting therapies should also be rigorously assessed to ensure
patient safety.

Moreover, improving the methods and tools for detecting FAs in liquid biopsies
could offer significant advantages in cancer diagnoses and patient follow-ups, such as
non-invasive sample collection, the real-time monitoring of treatment responses, and the
ability to detect minimal residual disease.

For all the reasons mentioned above, ongoing investigations into FA are indispensable
for disclosing the potential of this powerful tool in the fight against cancer.
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