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Abstract: Squamates include more than 11,000 extant species of lizards, snakes, and amphisbaenians,
and display a dazzling diversity of phenotypes across their over 200-million-year evolutionary history
on Earth. Here, we introduce and define squamates (Order Squamata) and review the history and
promise of genomic investigations into the patterns and processes governing squamate evolution,
given recent technological advances in DNA sequencing, genome assembly, and evolutionary analysis.
We survey the most recently available whole genome assemblies for squamates, including the
taxonomic distribution of available squamate genomes, and assess their quality metrics and usefulness
for research. We then focus on disagreements in squamate phylogenetic inference, how methods
of high-throughput phylogenomics affect these inferences, and demonstrate the promise of whole
genomes to settle or sustain persistent phylogenetic arguments for squamates. We review the role
transposable elements play in vertebrate evolution, methods of transposable element annotation
and analysis, and further demonstrate that through the understanding of the diversity, abundance,
and activity of transposable elements in squamate genomes, squamates can be an ideal model for
the evolution of genome size and structure in vertebrates. We discuss how squamate genomes
can contribute to other areas of biological research such as venom systems, studies of phenotypic
evolution, and sex determination. Because they represent more than 30% of the living species of
amniote, squamates deserve a genome consortium on par with recent efforts for other amniotes (i.e.,
mammals and birds) that aim to sequence most of the extant families in a clade.

Keywords: squamates; genome sequencing; genome assembly; phylogenomics; transposable
elements

1. Introduction

Squamates (Order Squamata) are a near-globally distributed clade of reptiles including
~11,000 extant species of lizards, snakes, and amphisbaenians [1]. The large number of
species and extensive phenotypic variation observed across squamates make them one
of the most diverse and successful of the vertebrate orders. However, as next-generation
sequencing technologies have enabled access to vast genomic datasets for model and non-
model organisms, squamates have been relatively underrepresented in genomic datasets
compared to other groups, such as mammals and birds [2,3], until recently. This has placed
limitations on our knowledge of the genomic mechanisms underlying phenotypic traits
among squamates, the branching order of squamate diversification, and the origins and
extent of genomic variation across different groups of vertebrates. Here, we review major
milestones in squamate genome sequencing, describe limitations and challenges to obtain-
ing genomic data for the group, and discuss promising areas of research using squamate
genomes that can shed light on universal mechanisms in biology. We highlight the need for
orienting future squamate genome sequencing efforts toward targeting a more complete
taxonomic sampling across the order with higher quality assemblies.
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2. What Are Squamates (and “Reptiles” for That Matter)?

Squamates and humans share a common history with birds, mammals, and other
reptiles, which together form a unique lineage on the Tree of Life called amniotes. Amniotes
(Amniota) first appeared during the Carboniferous Period ~318 million years ago (MYA) [4].
The watertight amniotic egg was a key innovation that allowed amniotes to diversify
and thrive on land, and by ~300 MYA amniotes had split into two lineages: sauropsids
(Sauropsida; including living reptiles, birds, and their extinct relatives) and synapsids
(Synapsida; including mammals and their extinct relatives) (Figure 1). Mammals (Class
Mammalia) are the only extant synapsids with around 6400 living species [5], including
the egg-laying monotremes (e.g., platypuses and echidnas), the pouched marsupials, and
placental mammals (eutherians, including humans). Other synapsid lineages, such as
pelycosaurs and therapsids, were diverse and abundant during the Permian and Early
Triassic Periods, but were later replaced by sauropsids in the Mesozoic Era (also known as
the “Age of Reptiles”) [4].

Living sauropsids include all reptiles and birds and are classified into two main lin-
eages [6]. The first is a turtle and archosaur clade (Archelosauria [7]). While the relationship
between turtles and other amniotes was highly debated during the 20th century, genomic
studies confirm a turtle/archosaur sister relationship [7–10]. Archosaurs include the de-
scendants of the most recent common ancestor of all living crocodilians and birds. All
archosaur descendants had split into separate crocodilian and avian lines by the Triassic
Period ~220 MYA, and were supremely successful during the Mesozoic Era [4]. Living
crocodilians (Order Crocodylia) are the only remaining crocodilian-line archosaurs. Avian-
line archosaurs include pterosaurs and all dinosaurs, most of which disappeared from the
fossil record after the end-Cretaceous mass extinction. The ~11,000 extant species of birds
(Class Aves) are the only surviving dinosaurs.

The sister taxon to the archelosaurs are the lepidosaurs, which share several synapo-
morphies including overlapping scales (Lepidosauria; Greek for “scaled lizards”). Within
Lepidosauria there are two extant taxonomic orders: the once-diverse Rhynchocephalia (with
the tuatara, Sphenodon punctatus, as the single living species) and Squamata. Squamates
include all extant lizards, snakes, and amphisbaenians (i.e., worm lizards), with a fossil record
extending to the Early Triassic ~240 MYA [11]. Squamates are by far the most speciose non-
avian reptile clade [1], are found on every continent today except Antarctica, and feature
diverse adaptations involving limblessness, venom systems, parity, carnivory, herbivory, and
marine and aquatic lifestyles. The diversity and familiarity of squamates have enthralled
humans for centuries, taking the cultural roles of both evil mediums [12–14] or venerated
deities [15,16] in folklores around the world. Squamates also serve as integral study organisms
for research in physiology [17], pharmaceutical therapies [18], evolution [11], and animal
behavior [19].
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Figure 1. Phylogenetic relationships and evolutionary history of amniotes. Relationships and ap-
proximate divergence times for the major extant amniote lineages. Amphibians (Amphibia) are the 
outgroup. Amniotes arose ~310 million years ago (MYA) in the Carboniferous Period, and after the 
branching off of synapsids (leading to modern mammals), sauropsids began radiating in the Per-
mian Period. The Lepidosauria emerged ~250 MYA. The only extant nonsquamate lepidosaurian is 
the tuatara (S. punctatus). Most major groups of Squamata (green box, represented here by Gekkota, 
Serpentes, Anguimorpha and the pleurodont and acrodont iguanians) diverged during the Meso-
zoic Era. Divergence time estimates were taken from www.timetree.org [20]. Geological timescale 
is approximate. Animal silhouettes from www.phylopic.org under the public domain. 

3. The Era of Amniote Genomes and The Long Road to Squamate Genome Represen-
tation 

Vertebrate comparative genomics started with a purposeful orientation toward hu-
mans and other mammals. While complete genome sequences were already available for 
model eukaryotes with smaller genomes (i.e., Saccharomyces, Arabidopsis, Caenorhabditis el-
egans, Drosophila) [21–24], the completion of the Human Genome Project [25,26] set off a 
race to further determine the origins of functional elements in the human genome, partic-
ularly genomic regions involved in human diseases. This is because purifying selection 
on functional elements should result in conservation at the sequence level [27], which 
would be made more apparent through comparisons of organisms that share a relatively 
recent common ancestor with humans. 

The mouse (Mus musculus) and rat (Rattus norvegicus) genomes were made available 
in 2002 and 2004, respectively [28,29], and the sequencing of the chimpanzee (Pan troglo-
dytes) genome in 2005 and rhesus macaque (Macaca mulatta) genome in 2007 filled some of 
the gaps in mammalian and primate evolution [30,31]. The Broad Institute went on to se-
quence and release 29 mammalian genomes in 2012 [32], and, fueled by group efforts such 
as Genome10K [33] and the Earth BioGenome Project [34], the Zoonomia consortium re-
cently published 200 genomes representing 56% of mammalian families [3,35]. Other en-
deavors such as the DNA Zoo (DNAzoo.org) and the Vertebrate Genomes Project 
(www.vertebrategenomesproject.org) have released their own mammalian genome as-
semblies (Figure 2). 

Figure 1. Phylogenetic relationships and evolutionary history of amniotes. Relationships and
approximate divergence times for the major extant amniote lineages. Amphibians (Amphibia) are
the outgroup. Amniotes arose ~310 million years ago (MYA) in the Carboniferous Period, and after
the branching off of synapsids (leading to modern mammals), sauropsids began radiating in the
Permian Period. The Lepidosauria emerged ~250 MYA. The only extant nonsquamate lepidosaurian
is the tuatara (S. punctatus). Most major groups of Squamata (green box, represented here by Gekkota,
Serpentes, Anguimorpha and the pleurodont and acrodont iguanians) diverged during the Mesozoic
Era. Divergence time estimates were taken from www.timetree.org [20]. Geological timescale is
approximate. Animal silhouettes from www.phylopic.org under the public domain.

3. The Era of Amniote Genomes and The Long Road to Squamate Genome
Representation

Vertebrate comparative genomics started with a purposeful orientation toward hu-
mans and other mammals. While complete genome sequences were already available for
model eukaryotes with smaller genomes (i.e., Saccharomyces, Arabidopsis, Caenorhabditis
elegans, Drosophila) [21–24], the completion of the Human Genome Project [25,26] set off a
race to further determine the origins of functional elements in the human genome, particu-
larly genomic regions involved in human diseases. This is because purifying selection on
functional elements should result in conservation at the sequence level [27], which would
be made more apparent through comparisons of organisms that share a relatively recent
common ancestor with humans.

The mouse (Mus musculus) and rat (Rattus norvegicus) genomes were made avail-
able in 2002 and 2004, respectively [28,29], and the sequencing of the chimpanzee (Pan
troglodytes) genome in 2005 and rhesus macaque (Macaca mulatta) genome in 2007 filled
some of the gaps in mammalian and primate evolution [30,31]. The Broad Institute went
on to sequence and release 29 mammalian genomes in 2012 [32], and, fueled by group
efforts such as Genome10K [33] and the Earth BioGenome Project [34], the Zoonomia con-
sortium recently published 200 genomes representing 56% of mammalian families [3,35].
Other endeavors such as the DNA Zoo (DNAzoo.org) and the Vertebrate Genomes Project
(www.vertebrategenomesproject.org) have released their own mammalian genome assem-
blies (Figure 2).

www.timetree.org
www.phylopic.org
www.vertebrategenomesproject.org
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Figure 2. Genome database representation for amniotes, including squamates, during the 21st cen-
tury. The proportion of extant species of squamate with a complete genome assembly available on 
NCBI as of spring 2023 is far below that for birds and turtles, and, to a greater degree, crocodilians 
and mammals. 

Despite the progress in reptile genomics, a few key squamate lineages were still lack-
ing high-quality genome sequences in early 2023, including members of the dibamids, 
scolecophidians (or “nonadvanced” snakes), amphisbaenians, and most acrodont igua-
nian groups. Lack of sampling from these lineages introduces many phylogenetic gaps 
that encompass important and ancient events in squamate evolution, such as at the root 
of the squamate phylogeny ≤240 MYA [11] and key events in the Earth’s history, such as 
the breakup of Pangea. Several major events in squamate evolution happened in relatively 
quick succession, such as the evolution of venom glands [49] and the advanced snake ra-
diation [50]. These events make useful calibration points for hypotheses about genome 
evolution at deep timescales; however, the long branch lengths associated with sampling 
gaps preclude the ability to capture patterns of genomic variation before and after these 
events. While whole genome sequences for warm-blooded amniotes are close to a 

Figure 2. Genome database representation for amniotes, including squamates, during the 21st
century. The proportion of extant species of squamate with a complete genome assembly available
on NCBI as of spring 2023 is far below that for birds and turtles, and, to a greater degree, crocodilians
and mammals.

A few years, after the publication of the human genome, draft genomes for birds
started to appear on GenBank (Figure 2). The draft genome of a chicken (Gallus gallus)
was released in 2004 to fill the evolutionary gap between mammals and other model
organisms [36]. The next avian genome to be fully sequenced and published was the
songbird model zebra finch (Taeniopygia guttata) in 2010 [37]. The Avian Phylogenomics
Consortium published 48 avian genome assemblies after their “phase I” in 2014, followed
by a 2020 “phase II” analysis of 363 genomes covering 92% of bird families [2,38].

The first available reptile genome sequence was that of a squamate, the green anole
lizard (Anolis carolinensis), published in 2011 [39]; however, additional squamate genomes
were released at a relatively slower rate compared to other amniotes. The first two published
snake genomes were that of the Burmese python (Python bivattatus) and king cobra (Ophio-
phagus hannah) in 2013 [40,41]. After 2019, high-quality assemblies existed for the Komodo
dragon [42], a few geckos [43–45], several species of lateratans, including a tegu [46] and
multiple lacertids [47,48], and several advanced snakes. As of early June 2023 there were
90 genome assemblies for squamates in GenBank, representing 0.82% of squamate species
and 34.7% of squamate families (last accessed 31 May 2023) (Supplementary Materials).

Despite the progress in reptile genomics, a few key squamate lineages were still
lacking high-quality genome sequences in early 2023, including members of the dibamids,
scolecophidians (or “nonadvanced” snakes), amphisbaenians, and most acrodont iguanian
groups. Lack of sampling from these lineages introduces many phylogenetic gaps that
encompass important and ancient events in squamate evolution, such as at the root of the
squamate phylogeny ≤ 240 MYA [11] and key events in the Earth’s history, such as the
breakup of Pangea. Several major events in squamate evolution happened in relatively
quick succession, such as the evolution of venom glands [49] and the advanced snake
radiation [50]. These events make useful calibration points for hypotheses about genome
evolution at deep timescales; however, the long branch lengths associated with sampling
gaps preclude the ability to capture patterns of genomic variation before and after these
events. While whole genome sequences for warm-blooded amniotes are close to a complete
representation of their respective diversity, at least at the family level, a genomic Age of
Reptiles has yet to truly begin.
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3.1. Sequencing and Assembly Quality Impact the Utility of Genomes

The green anole genome put forth by the Broad Institute was one of the last of the
“old generation” 7X Sanger-sequenced projects [39]. Next-generation sequencing (NGS,
or second-generation sequencing) has significantly lower costs per megabase through
its massively parallel sequencing design, and many available squamate genomes have
been sequenced using Illumina platforms. While NGS provides genome coverage (i.e.,
100X), which is a necessary step for a quality assembly, shorter NGS reads of 100–150 bp
have difficulty spanning many types of interspersed repeats. This presents a problem
for squamate genomes in particular, since they are rich in repetitive elements such as
nonlong terminal repeat (non-LTR) retrotransposons [51,52]. Due to their naturally high
repetitive content, squamate genomes assembled using only Illumina reads tend to be
highly fragmented (Figure 3 and Supplementary Materials).

Genes 2023, 14, x FOR PEER REVIEW 5 of 25 
 

 

complete representation of their respective diversity, at least at the family level, a genomic 
Age of Reptiles has yet to truly begin. 

3.1. Sequencing and Assembly Quality Impact the Utility of Genomes 
The green anole genome put forth by the Broad Institute was one of the last of the 

“old generation” 7X Sanger-sequenced projects [39]. Next-generation sequencing (NGS, 
or second-generation sequencing) has significantly lower costs per megabase through its 
massively parallel sequencing design, and many available squamate genomes have been 
sequenced using Illumina platforms. While NGS provides genome coverage (i.e., 100X), 
which is a necessary step for a quality assembly, shorter NGS reads of 100–150 bp have 
difficulty spanning many types of interspersed repeats. This presents a problem for squa-
mate genomes in particular, since they are rich in repetitive elements such as nonlong 
terminal repeat (non-LTR) retrotransposons [51,52]. Due to their naturally high repetitive 
content, squamate genomes assembled using only Illumina reads tend to be highly frag-
mented (Figure 3 and Supplementary Materials). 

 
Figure 3. Comparison of genome assembly size, scaffold N50, percentage of complete and single-
copy BUSCO genes, and percentage of total interspersed repeats across major Squamata clades with 
colors organized by clade, based on 83 publicly available genome assemblies. Assembly size and 
scaffold N50 are reported from NCBI metadata. Total interspersed repeat content is from de novo 

Figure 3. Comparison of genome assembly size, scaffold N50, percentage of complete and single-
copy BUSCO genes, and percentage of total interspersed repeats across major Squamata clades with
colors organized by clade, based on 83 publicly available genome assemblies. Assembly size and
scaffold N50 are reported from NCBI metadata. Total interspersed repeat content is from de novo
RepeatMasker output. Mean squamate assembly size is 1,696,615,317 bp (1.70 Gbp) with a standard
deviation of 322,492,546 bp. MYA = millions of years ago.
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Long-read sequencing platforms (or third generation) from Pacific Biosciences (PacBio,
Menlo Park, CA, USA) and Oxford Nanopore Technologies (ONP, Oxford, United Kingdom)
have significantly decreased in cost [53]. With reads in the tens of thousands of bases in
length, these technologies are especially useful in spanning repetitive regions and lead to
better estimates of interspersed repeat content in genomes [54,55]. Because long reads have
higher error rates than NGS, sequencing the same genome with both short- and long-read
technologies is becoming the gold standard [56], with several recent squamate genomes
assembled using this hybrid approach [57,58].

All sequenced genomes must be assembled to align and merge reads into a full genome
representation. Usually, short or long reads are assembled into stretches of contiguous
sequence called contigs, which are then properly ordered and oriented during a process
called scaffolding. Building genome scaffolds starts by sequencing read pairs which span
longer insert sizes than the typical NGS library. Scaffolding libraries can include Illumina
mate-pair libraries that span a few thousand base pairs (mate pair library sizes of 3 kb,
10 kb, and 25 kb are common), while other methods like Hi-C often result in insert sizes of
hundreds of thousands of base pairs [59]. Hi-C libraries that are sequenced with Illumina
short read pairs can effectively join contigs to form fully or near-chromosome-length
scaffolded genome assemblies for many nonmodel organisms [60]. An additional step may
include optical mapping (i.e., BioNano, San Diego, CA, USA), which can effectively map
scaffolds to physical chromosomes [61].

To ensure high assembly quality, important decisions must be made early on in the
project, in particular what coverage or “depth” of sequencing will be obtained. Coverage is
an estimate of the number of times each site in the genome is represented by a sequenced
read. Higher coverage improves the chances that sequencing errors will be corrected.
Postassembly, genomes are evaluated mainly using three metrics: contiguity, completeness,
and correctness. Contiguity is quantified using the N50 statistic, which is similar to a
weighted median length. Starting with the largest contig (or scaffold), the contig lengths are
added together until the cumulative sum is half of the total assembly length, and the N50 is
the length of shortest contig in that list. Long read assemblies result in much higher contig
N50s, making them useful for capturing structural variation and longer genic regions,
which are typically fragmented in Illumina-based assemblies.

Completeness can be assessed with BUSCO (Benchmarking Universal Single-Copy
Orthologs), a tool that measures the amount of clade-specific conserved orthologs in
an assembly compared to the expected amount for the taxon of interest [62]. If a high
proportion of complete and single-copy BUSCOs are found in an assembly relative to what
is expected, then the assembly is likely to contain a large degree of quality genic information.
The third metric is more difficult to quantify: correctness refers to the accurate order and
location of contigs reflecting that of the true genome. The amount of misjoins, translocations,
and the number of duplicate BUSCOs have been used to describe correctness [63].

3.2. Where Does the Availability and Quality of Squamate Genomes Currently Stand?

At the beginning of 2023 there were 83 squamate species with available genomes
on NCBI, representing ~0.75% of living species (Figure 3), and by June of that year, the
number increased to over 90. The taxonomic distribution and quality of publicly available
squamate genomes as of this writing (last accessed 31 May 2023; collected from NCBI and
other databases, Supplementary Materials) ranges drastically for each major squamate
clade (Figure 3). Several squamate families were completely absent from the whole genome
databases (i.e., all of Dibamidae, Amphisbaenidae and several families of Scolecophidia).
There is a relative overabundance of genomes available for some snake families, such
as Viperidae, for which scaffold N50 and BUSCO completeness vary widely (Figure 3).
The same applies to Elapidae and Colubroidea, likely reflecting interest by researchers
studying venom evolution [41,64,65]. By early June 2023, an amphisbaenid genome became
available on NCBI via the Vertebrate Genomes Project, reflecting a rapidly changing field of
squamate genomics.
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We analyzed the relationships between assembly metrics of 91 publicly available
squamate genomes in terms of their assembly size in bp, scaffold N50, and the proportion
of single-copy BUSCOs found in the genome (accessed 15 April 2023; Figure 4 and Supple-
mentary Materials). For the squamate genomes, N50 was highly predictive of gene content
as measured by the proportion of found single-copy BUSCOs (p = 1.8× 10−11; R2 = 0.4).
N50 was also predictive of interspersed repeat content (p = 06.1 × 10−7; R2 = 0.25). In
the meantime, predicted gene content predicted interspersed repeat content but without a
large effect (p = 0.00014; R2 = 0.15). We also found that while assembly size did not have a
strong effect on predicted gene content (p = 0.007; R2 = 0.079), assembly size did predict
interspersed repeat content (p = 1.9 × 10−11; R2 = 0.4), highlighting the fact that repetitive
DNA, and not the number of protein-coding genes, plays an important role in determining
genome size [66]. It is worth noting that measured genome size from the Animal Genome
Size Database [67] predicted assembly size for squamates, although experimental error in
genome size estimation or the inability of some sequencing projects to capture the entire
genome likely reduces the effect size of this relationship (R2 = 0.24). Our analysis suggests
that N50, particularly for contigs, should be a prioritized metric in order to maximize
detection of both coding and noncoding regions of the squamate genome.
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Figure 4. Relationships between genome assembly metrics across 91 squamate genomes. We analyzed
contiguity (N50), assembly size (bp), gene completeness (% BUSCOs), and repetitiveness (% total
interspersed repeats). (a) Assembly contiguity predicts gene completeness. (b) Assembly contiguity
predicts interspersed repeat content. (c) Genome assemblies with high predicted gene content contain
a similarly greater interspersed repeat content. (d) Larger genomes do not contain a larger percentage
of complete genes. (e) Larger genomes contain more interspersed repeats. (f) A positive significant
relationship between estimated genome size from the Animal Genome Database and assembly size.
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When planning a squamate genome project and depending on its goals, it may be best
to initially focus on quality contig assembly from long reads for initial analysis to maximize
genic coverage followed by the possibility of acquiring scaffolding libraries (i.e., Hi-C) that
increase contiguity as the model system develops and new questions arise. For instance,
the genome of the brown anole lizard (Anolis sagrei) has been improved to the chromosome
level [68] in order to support its development as the first reptile to be successfully used in
CRISPR-Cas9 genome editing experiments [69] (see below).

The next sections will highlight areas of research that stand to benefit the most from
squamate whole genome data. The first is phylogenomics. We will review the major
disagreements in deciphering the squamate phylogeny, methods of high-throughput phy-
logenomics and their effects on the inference of squamate relationships, and the promise
whole genomes carry to settle or sustain persistent phylogenetic arguments in squamates.
Then we will explain how squamate genomes provide opportunities to understand the
evolution of genome size and structure in vertebrates via transposable elements. We
will cover methods of transposable element annotation and analysis and how squamates
in many ways make ideal models for understanding transposable element evolution.
We will also discuss how squamate genomes can contribute to venomics research, stud-
ies of phenotypic evolution (including CRISPR and evo–devo studies), and sex determi-
nation research.

4. Putting the “Genomics” in Squamate Phylogenomics

Phylogenies can be used to visualize evolutionary relationships, understand trait
evolution, and form the foundation of many predictive models in biomedical research for
drug development, forensics, and gene function [70,71]. Phylogenetic methods rely on
inferred homology of characters and the distributions of character states across species in
order to make inferences on relationships between organisms [72]. The advancement of
NGS technologies has enabled phylogenetics to evolve into a newer field, often referred
to as “phylogenomics”. Several comparative genomic studies of vertebrates have shed
light on the relationships among the major branches of amniotes, such as the placement of
turtles in the amniote phylogeny [8–10,73], and to determine that DNA substitution rates
are correlated with phenotypic or species diversity among reptiles [74,75], although this is
a topic still under debate [76]. Here, we will discuss how complete and accurate genomes
will be extremely useful for the testing of several hypotheses about squamate phyloge-
netic relationships.

Genome-wide studies of squamate relationships have the potential to resolve long-
standing debates about squamate diversity. The earliest cladistic analyses of squamates
used morphological, fossil, ecological, and behavioral data, supporting two main squamate
lineages [77]: Iguania, which comprises ~2000 living lizard species as diverse as iguanas,
anoles, and chameleons; and Scleroglossa, within which all limbless and limb-reduced
groups formed a subclade consisting of the dibamids, amphisbaenians, and all snakes
(i.e., Serpentes). In contrast, the first phylogenetic studies of squamates to use molecular
data disagreed with the Scleroglossa–Iguania dichotomy [78], and led to an alternative
hypothesis of squamate evolution. In most of these studies, either Dibamia or Gekkota
were placed at the root of the squamate phylogeny, followed by Scincoidea (i.e., Scincifor-
mata), Lacertoidea (i.e., Laterata), and a clade that included Anguimorpha (varanids, Gila
monsters, and glass lizards), Iguania, and Serpentes [79,80]. This disagreement between
morphologists and molecular biologists studying squamates led to a classic schism in
systematics [81].
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A strong argument for the molecular hypothesis of squamate evolution was the
discovery of Toxicofera, or the “venom clade” [49]. Several snake species from previously
classified nonvenomous clades were found to actually harbor venom proteins, which
originated from venom genes that are shared not only among snakes but also iguanians
and anguimorphs [49]. This required a revision of the widely accepted theory that venom
had multiple independent origins across squamates. Instead, venom was an ancestral state
followed by subsequent losses (such as in the nonvenomous iguanians). Toxicofera unites
three major squamate groups—about 60% of living squamate species—and agrees with
the consensus of molecular phylogenies of squamates: there is no molecular support for
Iguania as the sister taxon to all other squamates nor for a Scleroglossa clade [82].

Genome-scale datasets that have been used to reconstruct the squamate tree of life in-
clude anchored hybrid enrichment loci [82], protein-coding genes [83], and ultraconserved
elements [84], often containing hundreds of markers and tens of thousands of aligned base
pairs. However, while some of these studies boast very high statistical support for their
resulting topologies, areas of phylogenetic uncertainty remain, including the relationships
between the major Toxicoferan groups and the placement of either Dibamia or Gekkota
at the root of the squamate tree. This pattern of generally high certainty within but dis-
agreement between studies suggests that while a large number of loci lower the overall
sampling variance in support of a split in the tree, it will not reduce gene tree–species
tree discordance, which is when the topologies of individual gene trees conflict with the
underlying species tree [85,86].

Phylogenomic discordance can be driven by biological factors, such as incomplete
lineage sorting and introgression (i.e., “true” discordance), and also artifactual factors such
as model violations and issues with data quality. Multilocus phylogenetic methods such as
“supergene” concatenation most often assume that all sampled loci can be explained by
the same underlying tree [87], and so are not equipped to account for discordance. Many
“species tree” approaches are consistent with the multispecies coalescent and can account
for discordance from incomplete lineage sorting. Species tree methods typically entail
summing over a large number of individual gene trees followed by their incorporation into
a species tree [87].

Interestingly, squamates may present a “perfect storm” of problems commonly found
to drive discordance in molecular phylogenetic datasets. For instance, the phylogenetic
signal for older divergences (such as the Triassic or Jurassic-aged divergences of most
squamate suborders) may be reduced by genetic saturation, where multiple substitutions
at the same site accumulate over time, which most substitution models for phylogenetic
analysis are not equipped to handle [88,89]. Also, the failure of molecular phylogenetics
to recover Scleroglossa suggests that limblessness and limb reduction are convergent
traits that evolved numerous times across the history of squamates. Convergence has
had profound problems for many criteria-based methods in phylogenetics that rely on
maximum parsimony, such as those in most morphological analyses [90]. In addition, rapid
evolutionary radiations, such as many splits within squamates, are often associated with
short internodes and long descendant branches, which create an “anomaly zone” where
gene trees inconsistent with the species phylogeny are more probable [91,92].

Despite a large number of markers, phylogenomic methods used for squamates still
have largely relied on reduced representations of the genome, and are less likely to incor-
porate differential evolutionary patterns and rates such as across coding and noncoding
regions. The future of squamate phylogenomics, therefore, lies in the ability to sample
the entire genome, encompassing the widest possible range of coalescent histories and
substitution rates, and the ability to parse the signal from the noise in phylogenomic re-
construction. These methods have already been applied to other amniote groups. For
instance, an analysis of millions of orthologous parsimony-informative sites across anno-
tated features of the mammalian genome showed that coding regions were predominant
drivers of discordance while noncoding regions contained far more data that agreed with
the species tree [93]. A recent phylogenomic analysis based on the complete genomes of
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turtles revealed strong support for the species tree across coding and noncoding regions,
yet a considerable amount of discordance that could be explained by genetic saturation at
more ancient branches and incomplete lineage sorting and/or introgression at more recent
branches [8]. These studies benefit from a large number of potential sites or loci that allow
strict filtering without loss of signal.

To demonstrate the utility of complete genome assemblies in reconstructing the squa-
mate tree of life, we downloaded 91 squamate genome assemblies—plus human, chicken,
alligator, and the tuatara as outgroups. We then assessed each genome for the presence of
7453 single-copy orthologous protein sequences from the sauropsid orthoDB database with
BUSCO v5 and computed multiple sequence alignments for each ortholog with MAFFT [94].
We relied on protein sequences for this analysis to minimize the effects of saturation, which
is less prominent in protein compared to nucleotide sequences. We retained only align-
ments ≥100 amino acids in length, >75% taxa representation, and with fewer than 15%
gaps using AMAS [95], resulting in 6050 genes for downstream analysis. We computed
gene trees for each accepted alignment in IQ-TREE2 [96] using model testing, and used
the resulting genealogies in a species tree analysis with ASTRAL-III [97], assessing branch
support with local posterior probabilities [98]. Gene concordance factor is a measure of
the proportion of gene trees supporting a split in the species tree, while site concordance
factor represents the proportion of variable sites in an alignment supporting the split [86].
To measure gene tree–species tree discordance, we computed gene and site concordance
factors for each branch in the squamate species tree with IQ-TREE2.

We obtained complete local posterior support for all splits in the squamate species
tree (Figure 5), except for internal branches within colubrid (0.99 posterior support) and
elapid (0.69 posterior support) snakes. The overall topology was consistent with most
molecular phylogenetic studies of squamates. However, concordance factors were highly
variable across the squamate phylogeny, in particular at key branches including the branch
leading to lateratans (Lacertoidea), as well as the ancestral branch of the three toxicoferan
clades (Iguania, Anguimporha, and Serpentes) and the branch uniting the snake families
Colubridae and Elapidae.

Our analysis of a large number of protein sequences reveals that there is much dis-
agreement among gene genealogies for squamates. By employing these genome-wide
approaches, squamate comparative genomics may yield resolutions to these longstand-
ing conflicts, as well as causal explanations for the underlying disagreements about the
topology of the squamate tree of life. For instance, machine learning techniques can help
decipher between biological and artefactual discordance [99], and for squamates in partic-
ular, artificial neural networks have been used to determine the properties of individual
genes that disagree with the species tree [82]. Also, the inclusion of fossil lineages in
total evidence based analyses results in more robust estimates of divergence times and
evolutionary rates in squamates [76,100]. With the sequencing of additional genomes that
can help fill the phylogenetic gaps in squamate evolutionary history, squamates will con-
tinue to be a dynamic model for studying how genome-wide heterogeneity affects phylog-
enetic results.
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Figure 5. Species tree reconstruction and discordance analysis of 91 squamate species based on
6050 protein sequences extracted from complete genome assemblies. We downloaded publicly
available genome assemblies for 91 squamates, and extracted orthologous protein sequences and
aligned and filtered sequences according to Gable et al. (2022) [8]. Gene trees were inferred with IQ-
TREE2 using model testing, and a species was constructed given the gene trees using ASTRAL-III [97].
All branches received 100% posterior support except where indicated. Gene and site concordance
factors were computed in IQ-TREE2 [86].



Genes 2023, 14, 1387 12 of 24

5. Transposable Elements in Squamates and Other Amniotes

What applies to squamate species and phenotypic diversity equally applies to their
genomic diversity [101]. Across vertebrates, only a small fraction of the genome comprises
protein-coding genes, while the rest is made up of vast regions of repetitive noncoding DNA
such as transposable elements (TEs). Found in all eukaryote genomes, TEs are parasitic
DNA sequences that move about the genome via a process known as transposition [102] and
are major drivers of genome size, accounting for ≥60% of the human genome [103]. Studies
of squamate TEs have revealed a complex level of biological organization with its own
set of dynamics and distinct evolutionary history [39,51,52,101,104,105]. Understanding
these TE evolutionary dynamics in squamates will shed light on fundamental processes
governing genome size, structure, and function.

TEs are divided into two main classes based on their mechanism of transposition.
Class I elements are the retrotransposons, which use a copy-and-paste method via an RNA
intermediate that is reverse transcribed into a new DNA locus. Retrotransposons are further
classified into those containing “long terminal repeats” (LTRs) and those lacking repetitive
flanks (non-LTRs), and are the dominant elements across most eukaryotic genomes [106].
Within the non-LTR retrotransposons are the fully autonomous Long Interspersed Nuclear
Elements (LINEs), such as LINE-1 found in human and most other amniotes, which encode
an endonuclease and reverse transcriptase required to generate and insert a copies of
themselves into the host genome. Most of these LINE inserts are inactivated through
truncation during reverse transcription [107]. The other group of non-LTR retrotransposons
are the nonautonomous Short Interspersed Nuclear Elements (SINEs), which rely on LINEs
for their replicative machinery.

Class II elements are the DNA transposons. The “cut-and-paste” transposons include
a transposase that removes the transposon and inserts its sequence at a different genomic
location. DNA transposons are particularly abundant in nonavian reptilian genomes [101],
with 23 superfamilies each with numerous subfamilies [108]. Helitron elements likely
mobilize via rolling-circle replication [109] and the mechanism of Mavericks/Polintons is
still unknown.

Methods for Analysis of Transposable Elements

Determining the diversity and abundance of TEs in the genomes of squamates and
other vertebrates requires bioinformatics tools capable of detecting and analyzing TEs in
sequence data. RepeatMasker is a popular software that can use TE consensus sequences
as queries in BLAST searches against the genome, outputting annotated lists of repetitive
DNA [110]. TE consensus sequences are often calculated using majority-rule based on
DNA alignments of individual insertions from specific TE families or subfamilies, and
can be found in databases such as RepBase [108] and Dfam [111]. Repeat databases
are dominated by model organisms like Drosophila, human, chicken, and house mouse,
leading to ascertainment biases that underestimate species-specific or clade-specific TEs in
nonmodel organisms [112].

One approach to repeat findings in nonmodel organisms is to model repeat consensus
sequences de novo with RepeatModeler [113], which uses the repetitive structure of TE
copies, identifies conserved regions of verified TE classes, and builds a library of genome-
and species-specific consensus repeats. Many genome assembly algorithms erroneously
collapse repetitive regions into contigs [60], and some de novo repeat-finding methods
model TE consensus sequences based on repetitive kmers found in sequence reads rather
than relying on potentially error-prone genome assembly as a first step [114]. Once repeat
consensus sequences are obtained from a genome via any of these de novo methods,
RepeatMasker can then use them in BLAST queries of RepBase or Dfam to classify and
annotate TEs.

The initial analysis of the green anole genome revealed a repeat-rich squamate genome
with a high diversity of Class I and II TEs, many of which are recently active and producing
copies [39,51,104,105]. One analysis showed that total TE content varied considerably
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more than expected across snakes, yet TE families were present at similar proportions [40].
Across squamate genomes, total interspersed repeat content, which is driven by TEs, ranges
from 25% to >50% of the genome (Figure 3 [52]).

The range in TE abundance across squamates is in stark contrast to relative uniformity
in terms of repeat content within mammals and birds, respectively [52,115]. For instance,
across most avian genomes studied only ≤10% of genomic content has been attributed
to TEs, mostly truncated CR1 retrotransposons [115,116]. One interesting exception to
this is woodpeckers and their relatives, which experienced a significant lineage-specific
CR1 amplification to comprise ~20% of the genome [117]. Mammalian genomes are TE-rich
yet tend to be dominated by LINE and SINE retrotransposons, such as LINE-1 and Alu
elements that alone contribute to >30% of the human genome [25], with the exception of
vesper bats, which experienced a notable expansion of DNA transposons [118,119].

To visualize the diversity in TE content across squamate genomes, we downloaded the
assemblies from 91 squamate species representing 24 families (Supplementary Data) and
modeled repeat family consensus sequences de novo for each assembly using RepeatMod-
eler2.0, followed by repeat family consensus sequence classification for each genome with
RepeatMasker v4.1. For each genome, we then used the classified repeat family consensus
sequences in a second RepeatMasker analysis in order to determine the distribution of the
relative abundances (in terms of the proportion of the total genome) of LINEs, SINEs, LTR
retrotransposons, and DNA transposons across each analyzed squamate family.

We found considerable variation in TE content across squamate genome assemblies,
mirroring previous results based on short read datasets [52]. For instance, we observed
a relative overabundance of SINEs in the genomes of all geckos analyzed (six species;
families Gekkonidae, Sphaerodactylidae, and Eublepharidae) as well as in the five species
of phrynosomatid (Figure 6a). The abundance of LINEs also differs greatly among squamate
genomes; in particular we found a range of ~7–~25% of genomic proportions attributed to
LINEs within colubroid snakes alone. We also observed relative overabundances of both
LTR retrotransposons and DNA transposons in elapid snakes, while LTR retrotransposons
were nearly absent in the python genome.
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The long-term patterns of TE accumulation and loss in squamate genomes have
been measured in numerous ways, including comparisons of TE abundance and diversity
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between genomes above the species level [52,75,104,105], and population genetic-level
analysis of TE insertion polymorphisms that measure the relative roles of drift and selection
in determining the fate of TEs in a genome [120,121]. Most of these methods rely on
pairwise sequence divergence between each TE insertion and its family consensus sequence,
which is used as a proxy of element age [122]. Specifically, divergence is calculated as the
percentage of base substitutions relative to the consensus sequence, with low divergence
implying a younger TE and high divergence pointing to an older TE [123]. A histogram
plotting the proportion of the genome composed of each TE family according to different
levels of divergence is referred to as a repeat landscape, and the repeat landscapes of
multiple genomes can be compared to shed light on differing dynamics of TE activity
across species [124].

The differences in TE abundance and diversity between squamate genomes may be
driven by stark lineage-specific differences in TE activity. To understand the differences
in TE activity between major groups of squamates, we generated repeat landscapes for
representatives of six major squamate clades (Gekkota, Lacertoidea, Anguimorpha, Iguania,
Serpentes; Figure 6b). First, we ran RepeatMasker on each genome using the species-specific
de novo consensus library with the -a flag to generate alignments of each TE insertion
to its family consensus sequence, and the calcDivergence.pl script, which estimates the
Kimura 2-parameter (K2P) sequence divergence of each TE insertion to its family consensus
sequence. We then plotted histograms of the proportion of each genome consisting of each
TE type (LINE, SINE, LTR retrotransposon, DNA transposon) in bins of 1% divergence.

We found evidence of several lineage-specific recent TE expansions across the represen-
tative squamates. For instance, a large proportion of DNA transposons ≤15% divergence
in the genome of the elapid snake Laticauda colubrina is consistent with a relative over-
abundance of DNA transposons that appear to be unique to this group of snakes [125]
and, therefore, may be the result of a relatively recent burst of DNA transposon activity.
Meanwhile, there is a spike of recent LINE activity at ≤10% in the gymnopthalmid Calyp-
tommatus sinebrachiatus, as well as recent activity of all TE types in Shinisaurus crocodilurus,
Diadophis punctatus, and Daboia siamensis. Our analysis of squamate repeat landscapes
reveals that many squamate genomes are highly transpositionally active.

The movement of TEs in squamate genomes can have profound effects on genome
structure and function. While most TE-induced mutations are deleterious or nearly neu-
tral [126], some TE activity can lead to beneficial outcomes for the host, including TE
domestication [127], exaptation by existing protein-coding genes, insertion and subsequent
impact on regulatory regions [128], and TE-mediated increased genome plasticity [129].
Squamates have an overabundance of TEs at loci within the organized HOX gene clusters,
which help govern body axis orientation during development. These TEs may cause ex-
pression changes in the Hox13 and Hox10 genes controlling the expansion of the caudal
and thoracic skeletal regions in the corn snake Pantherophis guttatus [130]. In addition, the
accumulation of TEs in HOX regions were associated with speciation rate estimates as well
as changes in morphological traits known to be important in the adaptive radiations of
Anolis lizards [131].

Novel TEs can be horizontally transferred between unrelated species, where a lack
of TE-specific silencing mechanisms by the host leads to bursts of novel TE activity. Gal-
braith et al. (2021) identified a lineage-specific autonomous DNA transposon from the
Harbinger family in the snake genus Laticauda, a group of highly venomous sea krait
species [125]. The Harbinger–Snek transposon was horizontally transferred, likely from a
sea urchin genome, which allowed the transposon to proliferate through the krait genome
unchecked given their new host lacked any defense mechanisms to halt TE activity. Inser-
tion time estimates places the insertion event just prior to the divergence of the Laticauda
crown group, and analysis of Harbinger–Snek insertion locations suggests that this TE likely
played a role in the genus’s adaptation to an amphibious marine environment through
altered gene expression.
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The abovementioned study also identified a key difference in TE dynamics at the
species level, finding evidence for the accordion model between the two Laticauda genomes.
In this model, the mechanism of DNA loss of recently expanded TEs is explained by nonal-
lelic homologous recombination events (NAHR, also called unequal crossing over), where
sequences with high similarity from different locations in the genome recombine [132].
NAHR is one of the most common mechanisms leading to deletions and rearrangements,
and high-copy TE families are an ideal substrate to promote such events. In the Laticauda
kraits, evidence suggests that the L. laticaudata genome underwent a series of NAHR dele-
tions following mass transposon expansion, allowing the species to retain a genome size
similar to related terrestrial species [125].

Large-scale differences in TE dynamics have been shown between major vertebrate
clades as well; a positive correlation between DNA gain and DNA loss was found in birds,
but not in mammals, suggesting that the avian genome structure is governed by deletions
more so than mammals [115]. Regarding dynamics and size impact, some researchers
support the theory that genome size is an adaptive trait influenced by selective pressures,
while others argue that genome size is simply the result of neutral evolution, as pointed
to by an “accordion model” of genome size evolution [66]. Although genome size varies
more than 60,000 fold among eukaryotes [133], genome size is tightly conserved across
squamates [67]. Previous estimates found an average ~0.2-fold size variation in genome
assembly length for squamates [52]; with our expanded taxon sampling we find even less
variation with a ~0.14-fold difference in assembly length across squamates (Figure 2). The
fact that squamate genomes show significantly more variation in TE content and activity
than bird genomes [115] suggests that lineage-specific TE-host dynamics in squamates help
to constrain genome size in the face of TE activity.

Genome assembly quality can greatly affect the estimation of genomic repeats. As
previously mentioned, short reads sequencing can make accurate characterization of TE
content difficult due to the short read lengths and highly repetitive makeup of TEs, par-
ticularly when the focal element is longer than the read length (e.g., LINEs). Long-read
sequencing technology not only improves the quality of assemblies but also allows reads to
span full repetitive regions and increase TE annotation accuracy. Even in gold standard
reference assemblies of model organisms, long reads increased TE insert detection by
26–57% and identified hundreds of new TE variants associated with adaptive evolu-
tion [134]. These methods should be applied to the repeat-rich genomes of squamates
in order to fully capture order-wide genomic variation.

6. Genomic and Phenotypic Evolution in Squamates

Linking genomic and phenotypic evolution has expanded from early efforts of sim-
ple genotype–phenotype mapping to the use of genome-wide loci and comparative ge-
nomics [135]. Many traits vary across squamates, showing rapid turnover, such as parity
modes [136] and asexual reproduction (i.e., parthenogenesis [137,138]), while others are
unique lineage-specific features like the ballistic tongue of chameleons [139]. To under-
stand the genotype–phenotype–fitness relationship, particularly for complex, polygenic
traits, requires integrating genomic and phenotypic data, collecting in situ population-level
experiments, and quantifying fitness effects [140]. These resource-heavy studies have
been limited to reduced representation genomic data [141] or to a handful of species with
available genome and transcriptome data [17]. Validating functional effects of identified
mutations is logistically easier in a laboratory setting, which explains why many available
squamate genomes are docile species common in the pet trade (e.g., Pogona vitticeps, Euble-
pharis macularius, Gekko gecko, Salvator merianae, Shinisaurus crocodilurus) [142]. However,
artificial selection and laboratory experiments do not account for the role of demographic
and selective impacts of evolution in natural populations, which may influence genomic
architecture (see [143]).

Using whole genome assemblies, researchers can identify both the specific genes con-
trolling traits of interest as well as their position, contextualizing the genomic architecture
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of trait evolution as was recently performed for pit viper chemoreception [144]. Outside
of coding regions, conserved noncoding regulatory elements are a main contributor to
phenotypic diversity across the animal kingdom through controlling gene expression [145].
A recent study examining regulatory elements controlling limblessness in squamates found
that the convergence of this trait likely resulted from lineage-specific changes in similar
molecular pathways [146]. Most associations between conserved noncoding elements and
impacted phenotypes are unknown (especially in squamates), but convergent evolution of
regulatory elements is linked to loss of flight in paleognath birds, and “reverse genomics”
methods show great promise in mapping genome-wide regulatory elements to a large set
of phenotypes [147,148].

The latest advances in genomics, such as CRISPR, have now developed genome-wide
screening methods to target thousands of genes in a single injection [149]. Phenotypic
analyses in squamates using any CRISPR/Cas9-mediated knockout methods are difficult
due to unique reproductive characteristics in squamates such as pliable eggshell and a
lack of airspace. However, two recent studies successfully produced the first genetically
modified reptiles using an anole (Anolis sagrei) and gecko species (Paroedura picta) [69,150],
opening the door to a new frontier of gene function testing and evolutionary-development
model systems.

7. The Contribution of Squamate Genomics to Other Diverse Fields of Research
7.1. Venomics

Venom delivery systems are a complex phenotypic trait present in anguimorph lizards
in the genera Heloderma (beaded lizards, Gila monster) [151] and Varanus (although this
is still debated; see [152,153]), as well as the medically important Viperidae, Elapidae,
and Colubroidea snake clades [154]. Venom is composed of varying amounts of pep-
tides, larger proteins, and other organic molecules, mainly employed for predation or
defense [155,156]. Venom systems provide a unique model for studying predator–prey
coevolution, complex genotype–phenotype mapping, and evolution of multigene fam-
ilies [157,158]. Because of the high target specificity unique to venom toxins, venoms
are also a promising source of novel compounds for new drug therapies and biotechno-
logical innovations [159]. The highly cited success of the blood pressure drug captopril
developed from Bothrops jararaca venom peptides in 1981 triggered a wave of interest in
venom-derived pharmaceuticals [160], including the popular obesity and type 2 diabetes
drugs, semaglutide (e.g., Wegovy, Ozempic), modeled after a hunger-regulating hormone
in Heloderma suspectum venom [161].

The king cobra (Ophiophagus hannah) was the first venomous snake to have its genome
sequenced, revealing and providing genome-wide support for the importance of gene
duplication of housekeeping genes followed by recruitment into snake toxin-producing
functions (i.e., co-option of venom genes) [41]. However, the lack of comparative whole
genome analyses across venomous and nonvenomous taxa leaves the underlying genomic
mechanisms of these recruitment events unknown. Whole genome studies may com-
plement transcriptome and proteome data for venomous species, improving accuracy
of functional annotation and allowing for gene variant identification. Noncoding DNA
harbors information on cis-regulatory functions implicated in controlling venom composi-
tion [158,162]. In addition to duplication–recruitment events, gene loss has also been found
to impact venom evolution, driven by TE invasion [163]. Identification of the underlying
genomic basis and mechanisms producing unique peptide and compound structures will
support biomedical research in novel treatments. Unraveling the evolutionary history of
squamate venom will require comparative genomic approaches with dense sampling across
venomous and nonvenomous species.

7.2. Sex Determination

The developmental and evolutionary basis for various forms of sex determination
across vertebrates is an active area of research, with direct implications to issues of
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climate change and conservation [164]. Squamate diversity possesses the three main
forms of sex determination systems: genotypic sex determination with female heteroga-
mety (ZZ/ZW; [165,166]), male heterogamety (XX/XY; [167]), and temperature depen-
dence [168]). Some species have mixed systems with both genotypic and environmental
sex determination, such as the snow skink (Niveoscincus ocellatus), which transitions to a
temperature-dependent system in certain climates [169]. Multiple evolutionary transitions
between the three forms occurred during squamate evolution [170]; however, the mecha-
nisms controlling sex chromosome evolution, turnover, and gene dosage remain largely
unknown due to a lack of high-quality assemblies and annotations of squamate autosomes
and sex chromosomes.

Recently, a reannotation of the Sphaerodactylus townsendi (Puerto Rican Sandy Geckolet)
genome enabled the identification of the candidate primary sex-determining gene that has
independently evolved in two fish clades [44]. Reference genomes submitted to public
databases (e.g., NCBI) typically do not include either sex chromosome because haplotype-
resolved genomes require long sequence reads with low error rates. Furthermore, many
species with unique patterns of sex determination lack genomic representation, including
scindoidean lizards and many gekkotan families. Squamates are an ideal model system for
sex chromosome research, with inter- and intraspecific variation and a complex history of
sex chromosome evolution. Due to the diversity and high amount of transitions between sex
determination systems in squamate evolution, generalized conclusions based on a chosen
reference species is not possible. High-quality (ideally haplotype-resolved) assemblies
and annotations as well as broader taxonomic sampling are required to understand this
complex life history trait in squamates and amniotes at large.

8. Conclusions

Squamates are an important taxon representing a large proportion of extant amniote
diversity, and recent advances in DNA sequencing technologies have enabled access to
complete genome information for the group that was not possible at the onset of the
era of the human genome. We have found that despite a growing number of complete
genomes for squamates in the public databases, there is not only considerable variety in
genome assembly quality but also gaps in the taxonomic distribution of available genomes
for squamates. We suggest that effort should be placed toward obtaining high-quality
contigs for key lineages of squamates such as dibamids and amphisbaenians. The fact that
an amphisbaenid genome became available at the time of this writing reflects a rapidly
changing squamate genomics field which portends many promising future discoveries.

Targeted genome projects for squamates will help establish ancestral states in genome
evolution and allow greater accuracy in the reconstruction of squamate evolutionary
history. In addition, we assert that squamates deserve a genome consortium on par with
Zoonomia for mammals [3,35] and the Avian Phylogenomics Consortium for birds [2,38],
in order to coordinate the genome sequencing, assembly, and whole genome alignment
for a large number of species representing a majority of squamate families. Harnessing
the rich evolutionary history and phenotypic diversity of squamates will continue to shed
light on the genomic mechanisms underlying processes of interest to several important
subfields of biomedical research, as well as to uncover patterns of diversification for a
group with a ~240-million-year fossil history. As ~20% of extant squamate species are
threatened with extinction according to recent estimates [171], the time is right for a targeted
sequencing initiative that would benefit the conservation of Earth’s most speciose terrestrial
vertebrate order.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes14071387/s1, Supplementary Data (genome accession numbers
used in this study). Supplementary Data S1. Genomes, accession numbers, and metadata including
assembly metrics for the genome assemblies used in this study.
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