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Abstract: Long-term natural history studies are important in rare disease research. This study aimed
to assess electrophysiological and fundus autofluorescence (FAF) progression rate in 18 genetically
confirmed Stargardt disease (STGD1) patients with a minimum follow-up of 10 years. Age at the first
and last exams, age at onset, Snellen decimal visual acuity (VA), electroretinography (ERG), and FAF
images were evaluated. Patients were classified into four Fishman stages and three electroretinog-
raphy groups, and areas of definitely decreased autofluorescence (DDAF) were measured. Patients
were further substratified based on genotype, and phenotype-genotype correlations were performed.
The median follow-up was 18 (range 10–26) years. The median yearly VA loss was 0.009 (range
0.002–0.071), while the median progression rate of the DDAF area was 0.354 (range 0.002–4.359)
mm2 per year. Patients harbouring p.(Gly1961Glu) or p.(Asn1868Ile) allele had significantly slower
DDAF area progression when compared to patients with other genotypes (0.07 mm2 vs. 1.03 mm2,
respectively), as well as significantly later age at onset (20 years vs. 13 years, respectively). Results
showed that structural and functional parameters, together with genotype, should be considered
when counselling patients regarding prognosis and monitoring disease progression. Patients harbour-
ing hypomorphic variants p.(Gly1961Glu) or p.(Asn1868Ile) presented with overall milder disease
than patients with other genotypes.

Keywords: long-term follow-up; STGD1; ERG groups; Fishman stages; DDAF area; genotype-phenotype
correlations

1. Introduction

Stargardt disease (STGD1) is an autosomal recessive disease caused by biallelic variants
in the ABCA4 gene [1]. It is the most frequent retinal dystrophy caused by a single gene,
affecting approximately 1 in 8000–10,000 individuals worldwide [2]. Currently, there are
2397 (www.lovd.nl/ABCA4, accessed on 29 June 2023) known disease-causing variants.
Many of them are hypomorphic that are typically very frequent (i.e., minor allele frequency
is up to 7%), manifest only under certain conditions (i.e., when in trans with a severe
variant) and are associated with a later disease onset and a milder phenotype. The most
prominent of these variants is p.(Asn1868Ile), with a minor allele frequency of 7% in the
European population. Some other hypomorphic variants are, for example, p.(Gly1961Glu),
p.(Arg2107His), c.769-784C>T, and c.4253+43G>A [3,4].

In addition to the extremely heterogenous genetic spectrum, there is a large phenotypic
heterogeneity of STGD1 as well. The disease ranges from macular dystrophy to generalized
photoreceptor dystrophy. Onset in childhood or adolescence is most common and is least
frequent in later adulthood, with a worse prognosis usually associated with an earlier
beginning of disease symptoms [1,5,6]. Studies suggest that a significant part of the
phenotypic variability in STGD1 is related to the genotype. However, genotype-phenotype
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correlation studies in STGD1 are complex due to the enormous combinations of ABCA4
variants that patients harbour [1].

Characterization of the natural history of STGD1 is vital to understanding the disease
better, elucidating disease mechanisms, monitoring disease progression, and evaluating
the safety and efficacy of clinical trials and treatments. Therefore, long-term studies are
particularly important in rare disease research. Many retrospective and prospective stud-
ies described disease progression using quantitative assessments of retinal function and
structure, as well as qualitatively by using several classifications [7–17]. Most commonly,
Fishman classification [18] and classification based on electroretinography (ERG) character-
istics (ERG groups) [19] were used.

Unfortunately, there is still no conclusive information about the natural course of
STGD1. Moreover, there is still a need for reliable and sensitive quantitative and quali-
tative structural and functional prognostic parameters. In addition to heterogeneity, the
reason might also be the lack of long-term follow-up studies, where patients would be
systematically evaluated for a decade or more.

The present longitudinal study aimed to better understand the disease and assess the
functional and structural changes in Slovenian patients with a clinical and genetic diagnosis
of STGD1 and a median follow-up of 18 years. This study also provided the association of
progression parameters with molecular genetic findings.

2. Materials and Methods
2.1. Patients

The study included 18 patients (13 females and 5 males) with a clinical and molecular
diagnosis of STGD1 and a minimum follow-up duration of 10 years. The panel included
2 sibling pairs. All patients were recruited from the Slovenian registry of 1157 patients
with inherited retinal diseases and examined at the Eye Hospital, University Medical
Centre Ljubljana, Slovenia. The patients were further substratified based on genotype.
It was previously shown that patients with p.(Asn1868Ile) and p.(Gly1961Glu) exhibit
milder, often overlapping, phenotypes [4]. Therefore, we compared patients harbouring
hypomorphic variants p.(Gly1961Glu) or p.(Asn1868Ile) (i.e., “hypomorphic group”) to
patients with all other genotypes. As the disease was very much symmetrical between the
two eyes, the right eyes were chosen for the analysis.

2.2. Clinical Analysis

The phenotypic analysis included age at the first and the last exams, age at onset, best-
corrected visual acuity (BCVA), electroretinography (ERG), and fundus autofluorescence (FAF).

Age at onset was defined as the age at which patients first noted decreased visual
acuity (VA). Disease duration was calculated from the age at the exam and the age at onset.
The follow-up period was defined as the time between the first and the last exam. BCVA
was measured using Snellen charts. In some patients, at their last visit, Snellen vision
was determined using Tabletop Refraction System TS-610 (Nidek Co., Ltd., Gamagōri,
Japan). VA at the first and last exam was evaluated and the rate of VA decline per year
was calculated. A threshold equal to or below 0.1 represented legal blindness. A slit lamp
fundus examination was conducted after pupil dilation.

2.3. Analysis of Electroretinography

ERG was used for the quantification of macular (pattern ERG; PERG) and generalized
(full-field ERG; ffERG) retinal function. The recordings were made according to the stan-
dards of the International Society of Clinical Electrophysiology of Vision (ISCEV) [20,21].
The recording electrode was an HK loop placed in the fornix of the lower eyelid [22], the
silver chloride reference electrode was placed on the ipsilateral temple, and the ground elec-
trode was positioned on the forehead. First, the PERG was elicited with a 0.8◦ checkerboard
pattern with 99% contrast and temporal frequency of 1.8 Hz, presented on a 30.7 × 23.6
(large field PERG) [23] cathode ray tube screen stimulator using an Espion (Diagnosys
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LLC, Lowell, MA, USA) visual electrophysiology testing systems. Two different recording
systems were used to measure ffERG: Espion (Diagnosys LLC, Lowell, MA, USA) or RETI
scan (Roland Consult Stasche & Finger GmbH, Brandenburg an der Havel, Germany). Rod
system function was assessed with dark-adapted (DA) 0.01 ERG b−wave and DA 3 ERG
a−wave amplitudes. The cone system function was tested with light-adapted (LA) 30 Hz
ERG and LA 3 ERG b−wave amplitudes.

Based on ERG abnormalities, our STGD1 patients were classified into 3 groups (see
Figure 1), designed by Lois et al. [19]: ERG group 1 had an abnormal macular func-
tion, ERG group 2 had an abnormal macular function and generalized cone dysfunction,
and ERG group 3 presented with abnormal macular function and generalized cone and
rod dysfunction.
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Figure 1. Classification based on electroretinography (ERG). Examples of ERG group 1 (Table S1:
Patient 1), ERG group 2 (Table S1: Patient 5) and ERG group 3 (Table S1: Patient 2) are shown. Pattern
ERG (PERG) represents the macular function, dark-adapted (DA) 0.01 ERG b−wave and DA 3 ERG
a−wave amplitudes represent the rod system function, and light-adapted (LA) 30 Hz ERG and LA 3
ERG b−wave amplitudes represent the cone system function.
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2.4. Analysis of Fundus Autofluorescence Images

FAF imaging was performed using Heidelberg Spectralis (Heidelberg Engineering, Heidel-
berg, Germany) and Topcon retinal camera TRC-50DX (Topcon Corporation, Tokyo, Japan).

According to the appearance of FAF images, STGD1 patients were classified into
4 Fishman stages (see Figure 2) [18]: stage I was characterised by a central, atrophic-
appearing macular lesion with or without flecks inside vascular arcades, stage II had
numerous flecks, extending outside vascular arcades and nasally to the optic, stage III
with most diffused flecks resorbed and choriocapillaris atrophy within the macula, and
stage IV had diffusely resorbed flecks, atrophy of the retinal pigment epithelium (RPE) and
extensive choriocapillaris atrophy throughout the posterior pole.
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Figure 2. Fishman classification. Examples of Fishman stage I (Table S1: Patient 11), Fishman stage II
(Table S1: Patient 3), Fishman stage III (Table S1: Patient 1) and Fishman stage IV (Table S1: Patient 2)
are shown. Scale bars: 200 µm.

Images were additionally processed using our own custom-written codes in MATLAB
(The MathWorks, Inc., Natick, MA, USA). As FAF images were taken with different degree
objective lenses on different occasions, all images were cropped to 30◦. If possible, consec-
utive images were aligned. The manual alignment included only rigid transformations:
rotation and horizontal and vertical translation without scaling or shearing. Images were
then filtered with a 2-by-2-pixel median filter to reduce noise and corrected for uneven illu-
mination. Our approach for the determination of the definitely decreased autofluorescence
(DDAF) area, representing RPE atrophy, was based on the ProgStar criteria [8]. Areas with
at least 90% darkness between the healthy retina (0%) and dark reference (100%) were deter-
mined as DDAF. For the black reference point, the main blood vessel near the optic disc or
optic disc was chosen. Choosing the reference point for a healthy retina was, however, more
challenging. In some cases, we had to use optical coherence tomography (OCT) images to
help us find the unaffected part of the retina. In cases with almost complete atrophy on 30◦

images, we found the grey reference point on 55◦ images. As fundus abnormalities increase
with age, the positions of both reference points were determined on the latest image and,
if possible, the same positions were chosen on all prior images. The optic disc and blood
vessels were excluded manually. Black pixels were then automatically summated and the
area was converted into square millimetres (mm2). The internal reference was used for
the determination of single-image pixel size in most cases. When not, we used a scale bar
on the image. The described image analysis algorithm enabled us to measure even the
smallest DDAF areas on the whole FAF image, even in cases with uneven illumination of
the periphery. The smallest area we could detect was defined by single-image pixel size
and was on average 138 µm2. DDAF area at the first exam and DDAF area at the last exam
were analysed, and the rate of DDAF area progression per year was calculated.

2.5. Genetic Analysis

Peripheral venous blood samples were obtained, and genomic DNA was extracted
from blood samples according to the standard procedure. Sequencing of the ABCA4 gene
in 3 patients was performed using Illumina Nextera Coding Exome capture protocol, with
subsequent sequencing on Illumina NextSeq550 (Illumina, San Diego, CA, USA). In 9 pa-
tients, sequencing of the entire ABCA4 genomic locus was performed using single-molecule
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molecular inversion probes (smMIPs) library preparation, and the Illumina NextSeq500 se-
quencing platform [24]. Six patients were screened by the ABCR400 chip [25]. The variants’
segregation with the disease in available families was analysed by Sanger sequencing.

2.6. Statistical Analysis

Data were analysed using IBM SPSS Statistics software version 27.0 (IBM Corp. Ar-
monk, NY, USA). Mann—Whitney U Test was applied to compare selected parameters
between the first and the last exams and for genotype-phenotype analysis, where parame-
ters between different genotype groups were studied. p < 0.05 was considered to indicate
statistical significance.

3. Results
3.1. Clinical Findings

The clinical characteristics of patients are presented in Supplementary Table S1. The
median age at the first visit was 22 (range 7–46) years, and the median age at the last visit
was 40 (range 17–72) years. The median age at onset of symptoms was 16 (range 7–46)
years, with a median follow-up of 18 (range 10–26) years. About 7/18 (39%) patients were
observed for 20 years or more. The duration between the onset and the first exam was
1.5 (range 0–30) years. The median Snellen decimal BCVA at the first exam was 0.25 (range
0.10–0.8) and 0.04 (range 0.02–0.30) at the last exam. The median DDAF area at the first
exam was 0.38 (range 0.00–13.70) mm2, and at the last exam, it was 8.80 (range 0.03–78.61)
mm2. At baseline, patients had significantly better VA (p < 0.001) and smaller DDAF area
(p = 0.002) than at the end of our study.

The median yearly loss of VA was 0.009 (range 0.002–0.071), while the median increase
of the DDAF area was 0.354 mm2 (range 0.002–4.359 mm2) per year. During the time of the
follow-up, we found out that VA deteriorated in 17/18 patients. The worsening of the VA
and DDAF area with time is shown in Figures 3–5.Genes 2023, 14, x FOR PEER REVIEW 6 of 19 
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Figure 5. Increase in the DDAF area, shown in pink, in Patient 15 over the period of 12 years. Note
the progression of the DDAF area in the image periphery. Scale bars: 200 µm.

To evaluate whether we can predict legal blindness (VA ≤ 0.1) from RPE atrophy, the
relationship between longitudinal VA and DDAF area data for each patient was studied.
We showed that a DDAF area of 12 mm2 or more indicated legal blindness in most patients
(Figure 6).
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or below 0.1 represented legal blindness. Patients with p.(Gly1961Glu) or p.(Asn1868Ile) allele are
marked with a star (*).

3.2. Electrophysiological and Fundus Autofluorescence Progression

Graphical representations of ERG progression and progression of FAF changes are
available in Supplementary Figures S1 and S2.

To compare the progression of structural and functional changes over the follow-up
period, we analysed the representation of Fishman stages within ERG groups at the first
and last exams (Figure 7). At baseline, three patients with no ERG abnormalities belonged
to Fishman stage I (flecks inside vascular arcades) and two to Fishman stage II (flecks
outside vascular arcades). Five patients in ERG group 1 (abnormal macular function)
were in Fishman stage I and one in Fishman stage II. Of four patients in the ERG group
2, (abnormal macular function with generalized cone dysfunction), one patient was in
Fishman stage I, one in Fishman stage II, and two in Fishman stage III (resorbed flecks and
macular choriocapillaris atrophy). Two patients in ERG group 3 (with abnormal macular
function with generalized cone and rod dysfunction) were in Fishman Stage II, and one
patient was in Fishman stage III. No patients were in Fishman stage IV.
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At the end of our follow-up, three patients had normal ERG. Two of them belonged
to Fishman stage I and one to Fishman stage III. Two patients in ERG group 1 were in
Fishman stage I and the other two patients in Fishman stages II and III. All four patients in
ERG group 2 belonged to Fishman stage III, whereas two patients in ERG group 3 were in
Fishman stages I and II, four patients in Fishman stage III, and one patient in ERG group
3 belonged to Fishman stage IV (diffusely resorbed flecks and extensive choriocapillaris
atrophy). This is the patient with generalized photoreceptor dysfunction and the worst
retinal structure.

The progression of structural and functional changes in representative patients is
shown in Figures 8 and 9. When using Fishman classification to measure structural pro-
gression and ERG classification to measure functional progression, we found out that in
two patients, FAF stayed stable while ERG progressed (e.g., Figure 8: Patient 3). In contrast,
in four patients, ERG stayed stable and FAF progressed (e.g., Figure 8: Patient 8). Six
patients showed progression of ERG as well as FAF (e.g., Figure 8: Patient 9 and Figure 9).
Interestingly, there were six patients whose ERG and FAF were stable over the follow-up
period of 18 years (Figure 8: Patient 10).

Two patients had the longest follow-up of 26 years (Table S1: Patients 1 and 12). They
are harbouring p.(Gly1961Glu) or p.(Asn1868Ile) in trans with a severe allele. Both showed
VA decline, as well as structural and functional progression. However, none of them
reached the final ERG group 3 or Fishman stage IV. An example of Patient 1 is presented in
Figure 9.
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Figure 8. Distinct progression of functional and structural changes in Stargardt disease (STGD1)
patients. Patient 3: An example of a patient with a stable fundus autofluorescence (FAF) appearance.
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Electrophysiologically, the patient presented with abnormal macular function at the beginning, and
at the last exam, the patient progressed into ERG group 3. Patient 8: An example of a patient without
flecks and almost normal FAF, while ERG analysis already showed abnormal macular function
and generalised cone dysfunction at the first exam. According to ERG, rods were still preserved at
the last exam, and the patient stayed in ERG group 2. On the other hand, the FAF image showed
major progression into Fishman stage III. Patient 9: An example of a patient with a follow-up of
16 years who progressed from Fishman stage I to stage II. ERG also showed progression from
normal ERG to ERG group 1. Patient 10: An example of a patient with no structural and functional
changes of the retina described by Fishman and ERG classifications over the period of 20 years.
Interestingly VA majorly declined from 0.8 to 0.2, and RPE atrophy increased from 0.30 mm2 to
0.71 mm2. Note the different progression of FAF changes between Patients 3, 9, and 10 harbouring
p.(Gly1961Glu) or p.(Asn1868Ile) and Patient 8 with p.(Cys230Ser) and c.4539+2T>C variants. Patients
with p.(Gly1961Glu) or p.(Asn1868Ile) allele are marked with a star (*). A white square on 55◦ FAF
images indicates a 30◦ area from the first exam. Scale bars: 200 µm.
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Figure 9. Patient with a follow-up of 26 years, harbouring p.(Gly1961Glu) in trans with p.(Gln1412*).
Pathological fundus changes and ERG progressed with time. The absence of DDAF in the fovea at
the age of 46 years might indicate the presence of foveal sparing. A white square on 55◦ FAF images
indicates a 30◦ area from the first two exams. Scale bars: 200 µm.
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3.3. Genotype-Phenotype Correlations

All patients had genetically confirmed biallelic ABCA4 variants. The most common
variant in our cohort was p.(Asn1868Ile), present in 9/18 (50%) patients. In three patients,
it was present in trans with a severe allele, while six patients had it in cis with other
variants (i.e., c.5461-10T>C, p.(Thr1726Aspfs*61), p.(Pro640Ala)). Variant p.(Gly1961Glu)
was present in 5/18 (28%) patients, p.(Arg681*) in 4/18 (22%) patients, c.5714+5G>A in
4/18 (22%) patients, p.(Thr1726Aspfs*61) in 3/18 (17%) patients, and c.5461-10T>C in 3/18
(17%). For a representation of other variants, see Supplementary Table S1.

Patients with the p.(Gly1961Glu) or p.(Asn1868Ile) allele had a significantly later age
at onset and, therefore, later age at exams than patients with other genotypes. The median
age at the onset of three patients harbouring p.(Asn1868Ile) was 20 (range 20–30) years,
while the age at the onset of five patients with p.(Gly1961Glu) was 19 (range 7–46) years.
The duration of the follow-up was comparable between the two groups. The DDAF area at
the first exam did not differ significantly. However, at the last exam, the DDAF area in the
hypomorphic group was significantly smaller, leading to a significantly slower yearly rate
of DDAF area progression. Contrary, VA progression per year did not differ significantly
between the two groups. For more information see Table 1.

Table 1. Differences between Hypomorphic Group and Other Patients.

Parameter Hypomorphic Group (n = 8)
(Median, Range)

Other Patients (n = 10)
(Median, Range)

Mann–Whitney Test
(p-Value)

Age at the first exam [years] 28 (20–46) 17 (7–31) p = 0.016

Age at the last exam [years] 47 (35–72) 33 (17–54) p = 0.009

Age at onset [years] 20 (7–46) 13 (7–25) p = 0.043

Duration of follow-up [years] 20 (13–26) 12 (10–25) p = 0.055

The time between onset and the
first exam [years] 1 (0–30) 3 (0–14) p = 0.633

DDAF area at the first exam
[mm2] 0.25 (0.00–2.43) 1.17 (0.03–13.70) p = 0.122

DDAF area at the last exam [mm2] 1.41 (0.03–9.43) 16.96 (3.09–78.61) p = 0.001

The yearly rate of DDAF area
increase [mm2] 0.07 (0.0017–0.30) 1.03 (0.16–4.36) p < 0.001

VA at the first exam [Snellen] 0.40 (0.20–0.80) 0.23 (0.10–0.80) p = 0.122

VA at the last exam [Snellen] 0.16 (0.02–0.30) 0.03 (0.02–0.20) p = 0.068

The yearly rate of VA loss
[Snellen] 0.02 (0.0025–0.035) 0.01 (0.0020–0.07) p = 0.740

Statistical significance is defined as a p-value < 0.05.

Bull’s eye maculopathy (BEM) phenotype was found in all patients with p.(Gly1961Glu)
or p.(Asn1868Ile) allele (e.g., Figure 8: Patients 3, 9, 10 and Figure 9), while none of the
patients with other genotypes exhibited BEM lesions (e.g., Figure 8: Patient 8.) No patients
with hypomorphic variants progressed into Fishman stage IV and only one progressed into
ERG group 2 and one into ERG group 3 (see Supplementary Table S1). Of six patients with
stable ERG group and Fishman stage, four had p.(Gly1961Glu) or p.(Asn1868Ile) allele.

Patients 14, 15, and 16 with two null alleles (belonging to the group of patients with
other genotypes) had the most severe clinical presentation (see Figures 3 and 4); however,
the group was too small to make reliable genotype-phenotype correlations. This also
applies to other patients with specific genotypes (from the group of patients with other
genotypes), as there were too many combinations of different variants.
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3.4. Analysis of Siblings

The first sibling pair (Patients 6 and 7) were carrying c.5714+5G>A and p.(Thr1726Aspfs*61)
(;)(Asn1868Ile). Patient 6 had the age at onset of 18 years, while the onset in Patient 7 was
at 25 years of age. They were both followed for 11 years. They were in the same ERG group
and Fishman stage at baseline. However, at the last exam, only ERG in Patient 7 progressed
from group 2 to group 3. Initial VA was better in Patient 7 and the follow-up showed that
her yearly VA deterioration was 2.1 times greater compared with Patient 6. Initial RPE
atrophy (measured by DDAF area) was very similar between the sisters; however, the
DDAF area progression per year was 4.7 times greater in Patient 7.

That degree of discordance was not found between Patient 14 and Patient 15, repre-
senting the second sibling pair. They were homozygous for p.(Arg2149*). In Patient 14 the
age at onset and duration of follow-up commenced two years earlier than in Patient 15. At
the first exam, Patient 14 was already in the final ERG group 3, while, according to fundus
appearance, she was only in Fishman stage II, which did not progress over the follow-up
time. At the first exam, Patient 15 was in ERG group 2 and Fishman stage II, which both
progressed for one group/stage at the last exam. VA at baseline was 0.1 in Patient 14, while
in Patient 15, it was 0.3. The yearly VA deterioration in Patient 14 was 3 times lesser than in
Patient 15. The baseline DDAF area in Patient 14 was 0.03 mm2 and 0.91 mm2 in Patient 15,
whose yearly DDAF area progression was 1.4 times greater.

4. Discussion

To our knowledge, this is the first study that systematically analysed STGD1 patients
with a very long follow-up, enabling us to better understand disease evolvement and
identify factors that correlate with disease progression. In our study, disease progression
was characterized by VA, qualitative evaluation of ERG, and qualitative and quantitative
assessment of FAF images. Results show that ERG attributes and fundus abnormalities
complement one another and that genotype significantly affects progression rates.

The median follow-up of our group of patients was 18 years, with the longest follow-up
of 26 years in Patient 1 (Figure 9) and Patient 12. In 7/18 (39%) of patients, the follow-up was
20 or more years. Even though there are descriptions of individual cases with a follow-up
longer than 20 years [17,26–28], all other published cohort studies on STGD1 patients had a
shorter duration of follow-up, which ranged between 1 to 11 years [7–9,11,13–17,26–30].

4.1. Electrophysiological and Fundus Autofluorescence (FAF) Progression Rate

As it is still unclear whether the disease occurs primarily in the RPE, photoreceptors or
both [31–35], it is necessary to address structural and functional changes to determine the
patient prognosis. In 2/18 (11%) of our patients, FAF stayed stable while ERG dysfunction
progressed. Approximately 4/18 (22%) of them showed stable ERG and FAF progression.
About 6/18 (33%) of patients represented simultaneous ERG and FAF progression, while
in 33%, both parameters remained stable. Patients without progression had a median
follow-up of 18 years, half with a follow-up of 20 or more years.

Classifications normally give robust and quick information on disease progression,
but a year-to-year deterioration is lost, which is why quantitative analysis of functional
and structural changes has become indispensable. We could not perform a quantitative
analysis of ERG parameters as the protocols and measuring systems differed between
the first and last exams. However, in a cross-sectional study, we defined biomarkers for
electrophysiological assessment of subgroups of patients with STGD1, which could be used
for disease progression assessment [36].

4.2. Progression of Definitely Decreased Autofluorescence Area

A measurement of RPE loss by determining the DDAF area is also crucial for moni-
toring STGD1 disease progression, as well as for the prediction of VA and legal blindness,
as demonstrated in Figure 6. In this study, areas of DDAF from 30◦ FAF images were
measured using our custom-written codes, which made it possible to detect the smallest
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DDAF areas, DDAF areas at the edge of the image periphery, and also DDAF areas on
nonhomogeneous FAF images. Comparisons of our methods and results with other studies
are challenging owing to different applications of statistical methods, cohort selection,
inclusion and exclusion criteria, lack of genotype-phenotype correlations, distinct image
acquisition, and processing and analysis. Other studies did not consider DDAF areas in
the periphery and very small DDAF areas [8,9,15,29,37–41], even though they contribute to
the understanding of STGD1 progression. In addition, in most reports, DDAF lesions were
selected manually and subjectively [8,9,29,37,39,41], which might cause some unintentional
human errors.

In our study, the DDAF area at baseline was 0.380 mm2 with 0.354 mm2 DDAF area pro-
gression per year. The baseline DDAF area in other studies was bigger [8,9,15,29,37,39,40],
which means that our patients were included in the study very early after experiencing the
first visual problems (i.e., 1.5 years) when the structural changes were still discrete. Four pa-
tients were included as young children less than 10 years of age. Moreover, the rate of RPE
atrophy progression, measured by the DDAF area, was much faster in other studies when
compared with ours. A wide range of growth rates was suggested, from 0.45 mm2 [15] per
year to 1.58 mm2 per year [41] The differences in RPE atrophy progression rate might be due
to the specific structure of patients in the cohorts and their varying entry time in the study,
as the lesions might not grow at the same rate all the time. Previous studies with shorter
follow-ups suggested that the progression rate depends on initial lesion size, meaning the
bigger the initial lesion, the faster the progression [8,9,15,37–39,42]. A possible explanation,
as the lesions in STGD1 expand centrifugally [43], might be that a larger initial lesion has a
larger surface area for further growth and, therefore, a faster rate of progression [8]. On
the contrary, our study did not show this correlation. When we stratified our cohort into
two groups, a hypomorphic group and a group of patients with other genotypes, we found
that the baseline DDAF area was a match between the two groups. This is even more
valuable information when knowing that patients from both groups were examined after a
comparable duration of the disease. The DDAF area at the last exam and growth rate were
significantly different between the two groups, with a slower progression rate in patients
with p.(Gly1961Glu) or p.(Asn1868Ile) allele. Therefore, we concluded that the progression
rate varied even among patients with similar initial DDAF areas, meaning that the initial
lesion does not unequivocally indicate progression and should not be taken as the only
predictor of the growth rate. Considering our analysis, we propose that genotype should
always be considered when predicting the disease progression and prognosis.

4.3. Visual Acuity Decline

Over a median period of 18 years, VA in our cohort of patients significantly declined,
which is in accordance with previous studies with shorter follow-ups [16,39,44]. However,
as it decayed very slowly (i.e., 0.009/year), we found that it was not sensitive enough
to show a clinically relevant progression of the disease. In the course of follow-up, VA
improved in only one patient (i.e., Patient 11), which might be due to improved fixation,
optimal prescription glasses, test variability, and patient performance [44]. We did not
notice any differences in VA progression rate between patients with p.(Gly1961Glu) or
p.(Asn1868Ile) allele and patients with other genotypes, suggesting that genotype does not
influence VA decline rate. Moreover, we found that patients in the hypomorphic group had
an onset 7 years later but did not show significantly better VA. This is in contrast with other
studies, where younger age of disease onset was associated with worse VA [13,16,44].

4.4. Disease Course in Patients Harbouring p.(Gly1961Glu) or p.(Asn1868Ile) Allele

It is known that patients harbouring p.(Gly1961Glu) or p.(Asn1868Ile) allele share
some common clinical characteristics and present with a milder disease phenotype than
patients carrying other alleles [1,4,45–47]. This was also confirmed by our study. Never-
theless, according to Fishman and ERG classifications, patients with p.(Gly1961Glu) or
p.(Asn1868Ile) exhibit variable disease progression. Of eight patients in the hypomorphic
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group, four stayed in the same ERG group and Fishman stage from the beginning to the
last exam (e.g., Figure 8: Patient10). In three patients, both the ERG group and Fishman
stage progressed (e.g., Figure 8: Patient 9 and Figure 9), while in one patient, only the ERG
group progressed (e.g., Figure 8: Patient 3).

A typical feature of patients with p.(Gly1961Glu) is BEM, which is otherwise present
in around 20% of all STGD1 patients [48]. All our hypomorphic patients had BEM, which
was not expressed in any patients with other genotypes. None of our patients harbouring
p.(Gly1961Glu) or p.(Asn1868Ile) showed progression into Fishman stage IV and seemed
to have preserved generalized photoreceptor function, as only two patients progressed
into ERG group 2 or 3. Therefore, our long follow-up observations confirmed cross-
sectional reports that described the limitation of the disease to the macula in patients with
p.(Gly1961Glu) or p.(Asn1868Ile) [1,46]. Even though foveal sparing was reported in 85%
of cases harbouring p.(Asn1868Ile) [4], all our cases with this allele had foveal atrophy. Age
at onset in our patients with p.(Asn1868Ile) was earlier than described before [4,45], while
age at onset for patients with p.(Gly1961Glu) was in line with other studies [46–48].

4.5. Variable Disease Courses among Siblings

Especially challenging is predicting patient prognosis in phenotypically discordant
siblings carrying the same genetic variants in the ABCA4 [26,49–51]. Patient 6 and Patient 7
were intriguingly different in the DDAF area progression rate, which was almost 5 times
faster in Patient 7 than in her sister. VA decline was also greater in Patient 7, with the age
at onset 7 years later than in Patient 6. In contrast, they had similar initial DDAF area,
FAF appearance, disease duration, and similarly affected retinal function. Differences in
functional visual outcomes and DDAF area between siblings with STGD1 were already
observed by Valkenburg et al. [26] and Heath Jeffery et al. [51]. This is interesting to note
and suggests a role of potential environmental factors [52,53] and modifier variants in and
outside the ABCA4 locus [3,54–56].

4.6. Study Strengths and Limitations

The main strength of our longitudinal study was a very long follow-up of STGD1
patients, as only the patients with a follow-up of 10 or more years were included. Some
of them were included as young children. In addition, DDAF areas on 30◦ FAF images
were quantitatively measured using custom-written codes, which made it possible to detect
year–to–year deterioration. Another strength was the correlation of specific genotypes with
progression parameters.

This study also has potential limitations. OCT imaging technique was not accessible
when patients were first examined, which is why we did not use it for additional retinal
structure analysis and, therefore, were not able to assess photoreceptor impairment. Even
though it is one of the main problems in inherited retinal disease research, the second
limitation was the small cohort number with the heterogeneous genetic structure, limiting
the analysis of genotype-phenotype correlations. Larger multicentric longitudinal studies
with a follow-up of 10 or more years, including patients with specific ABAC4 genotypes and
more structural and functional parameters analysed, would best describe the progression
and substantiate our findings.

5. Conclusions

In summary, the study provided a median follow-up of 18 years and determined the
importance of very long-term natural history studies in STGD1 patients. We shared funda-
mental, sensitive, and reliable information on disease progression needed for counselling
patients regarding prognosis and the selection of appropriate and efficient endpoints, which
are necessary for clinical trial design, as well as treatment safety and efficacy evaluation.
We showed that structural and functional parameters should be addressed together as they
complement each other. Moreover, genotype should be considered an important prognostic



Genes 2023, 14, 1394 15 of 17

parameter, as patients harbouring hypomorphic variants p.(Gly1961Glu) or p.(Asn1868Ile)
were presented with overall milder disease and slower progression.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes14071394/s1, Figure S1: representation of electroretinography
(ERG) groups at the first and last exams; Figure S2: representation of Fishman stages at the first and
last exams; Table S1: clinical characteristics.
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