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Abstract: The human fovea is a specialized pit structure in the central retina. Foveal hypoplasia
is a condition where the foveal pit does not fully develop, and it is associated with poor vision.
Autosomal dominant isolated foveal hypoplasia (FVH1) is a rare condition of foveal hypoplasia (FH)
that lacks any other ocular manifestations. FVH1 is associated with hypomorphic mutations in the
PAX6 gene that encodes a sequence-specific DNA-binding transcription factor for morphogenesis
and evolution of the eye. We report our findings in 17 patients with PAX6 mutations associated
with FVH1 or FH with aniridia and corneal opacities. Patients with three mutations, p.V78E, p.V83F
and p.R128H, in the C-terminal subdomain of the paired domain (CTS) consistently have severe FH.
Luciferase assays for a single reporter containing a representative PAX6 binding site indicated that
the transcriptional activities of these mutations were significantly reduced, comparable to that of
the truncation mutation of p.G65Rfs*5. Patients with p.P20S in the N-terminal subdomain of the
paired domain, and a patient with p.N365K in the proline-serine-threonine-rich domain (PSTD) had
mild FH. A patient with p.Q255L in the homeodomain had severe FH. The P20S and Q255L mutants
did not affect the transcriptional activity. Mutant N365K has a retained DNA-binding activity but a
reduced transcriptional activity, due to a low PSTD transactivation. These findings demonstrated that
mutations associated with FVH1 underlie a functional divergence between DNA-binding ability and
transcriptional activity. We conclude that a wide range of mutations in the PAX6 gene is not limited
to the CST region and are responsible for FVH1.

Keywords: foveal hypoplasia; FVH1; aniridia; corneal opacity; PAX6; DNA binding; transcriptional
activity; paired domain; proline-serine-threonine-rich domain

1. Introduction

The fovea is a specialized pit structure in the central retina. The presence of a high
density of cones at the bottom of the foveal pit makes it the point with high visual acuity [1].
Foveal hypoplasia is a retinal disorder in which there is a lack of a complete development
of the morphology of the fovea, and it is associated with poor vision. Several disorders
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are known to be associated with foveal hypoplasia, including aniridia (OMIM 106210)
and albinism (OMIM 203200) [2]. It is known that mutations of the PAX6 gene can cause
aniridia. The product of the PAX6 gene is a transcription factor that is essential for the
development of the eyes of vertebrates and non-vertebrates, and it is considered to be a
master regulator for the development of the eye [3]. This transcription factor is essential
for the development of the normal structure of the retinal tissues, as well as other eye
tissues including the lens and corneal epithelium [4]. The PAX6 gene is also expressed in
the central nervous system [5].

There are numerous isoforms of the PAX6 genes, of which two major isoforms, canoni-
cal PAX6 and PAX6(5a), play a pivotal role in the genesis of the eye. The canonical PAX6
protein encodes a protein of approximately 46 kDa consisting of 422 amino acids. The
PAX6(5a) has an additional 14 amino acids inserted between exons 5 and 6. The canonical
PAX6 and PAX6(5a) isoforms have different DNA-binding properties, and serve as a molec-
ular switch that specifies the target genes [6]. The PAX6(5a) isoform is highly expressed
in the fovea, and it is associated with the formation of the fovea by interacting with the
canonical PAX6 isoform [7]. These isoforms have two DNA-binding domains, a paired
domain (PD) and a homeodomain (HD), followed by the proline-serine-threonine-rich do-
main (PSTD) [8,9]. PD is divided into the N-terminal subdomain (NTS) and the C-terminal
subdomain (CTS). These subdomains bind to the DNA sequences of the target genes to
regulate their transcriptional activity [10,11].

Isolated foveal hypoplasia is a rare condition that lacks any other ocular manifestations.
The autosomal dominant form of the isolated foveal hypoplasia (FVH1, OMIM 136520) is
known to be associated with hypomorphic mutations of the PAX6 gene. Patients with FVH1
present with poor visual acuity and nystagmus. At present, approximately 680 different
mutations in the PAX6 gene are known to cause aniridia, while only 12 different mutations
of the PAX6 gene are associated with isolated foveal hypoplasia (Human Gene Mutation
Database, Professional version 2023.1, https://portal.biobase-international.com/hgmd/
pro/star/php, accessed on 1 June 2023). The PAX6 mutations associated with isolated
foveal hypoplasia have been found to be in the CTS region, which suggests the critical role
of the CTS plays in foveal development [12,13]. However, a few mutations were reported to
be located in loci other than the CTS, and their functional relevance remains unknown [14].

We have recently reported our findings on two patients with PAX6 mutations asso-
ciated with FVH1 [15]. Both mutations were located in loci other than the CTS, i.e., one
was in the NTS and the other in the PSTD. The purpose of this study was to determine the
characteristics of nine Japanese families with FVH1 and the other PAX6-related phenotypes
with foveal hypoplasia. The genotype–phenotype correlation of the PAX6 mutations was
investigated using functional studies.

2. Materials and Methods

This was a multicenter retrospective case series study. The procedures used conformed
to the tenets of the Declaration of Helsinki, and they were approved by the following: the
Ethics Committee of the University of Occupational and Environmental Health Japan
(Project identification code 20-148, approved on 18 January 2021); Nagoya University
(Project identification code 2010-1067, approved on 1 April 2010); the Jikei University
School of Medicine (Project identification code 24-231 6997, approved on 3 December 2012);
and the National Hospital Organization Tokyo Medical Center (Project identification code
R22-046, approved on 28 July 2022). A signed informed consent was obtained from all the
patients or their parents

2.1. Clinical Examination

We studied seventeen patients from nine families (mean age 24 ± 21 years; range 1 to
68 years) and six families were diagnosed with FVH1. The findings of two of these were
reported earlier [15], two families with aniridia with corneal opacities, and one family with
a peripheral corneal opacity and mild iris anomaly (Table 1). The ocular examinations
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included measurements of the refractive error and visual acuity, and examinations using
slit-lamp biomicroscopy, gonioscopy, and ophthalmoscopy. Optical coherence tomographic
(OCT) images were recorded from all patients. OCT angiography (OCTA) images were
obtained from selected patients with good visual acuity, and Patient 7 who underwent
examinations under general anesthesia using SS-OCT (DRI OCT Triton, Topcon, Tokyo,
Japan), and Patient 13 using spectral domain OCT (RTVue XR Avanti, Optovue, Inc.,
Fremont, CA, USA).

Table 1. Mutations in the PAX6 gene and clinical features in patients with foveal hypoplasia.

Patient
Age

(Years),
Sex

Family No. Diagnosis Mutation
(NM_000280.4)

PAX6
Domain

logMAR
Visual
Acuity
(R/L)

Refractive
Error (R/L) Nystagmus

Gonio
Dysgene-

sis

OCT
Grade

1 * 1325, F 1
(proband) FVH1 c.58C>T (p.P20S) PD (NTS) 0.5/0.2 −3.75/−4.0 present present 1b

2 * 34, F 1 (mother) FVH1 c.58C>T (p.P20S) PD (NTS) 0.1/0.1 −0.5/0 absent present 1b

3 * 64, M 1 (grandfa-
ther) FVH1 c.58C>T (p.P20S) PD (NTS) 0.1/0 NA absent present 1b

4 55, M 2
(proband)

aniridia,
corneal opacity

c.150_151insA
(p.G65Rfs*5) PD (NTS) NA NA NA NA NA

5 3, F 3
(proband) FVH1 c.233T>A (p.V78E) PD (CTS) 1.2/1.3 −2.0/−2.0 present NA 4

6 33, F 3 (mother) FVH1 c.233T>A (p.V78E) PD (CTS) 1.0/1.0 −10.25/−12.0 present present 4

7 1, M 3 (brother) FVH1 c.233T>A (p.V78E) PD (CTS) 1.2/1.4 +3.0/+3.75 present present 4

8 6, M 4
(proband) FVH1 c.247G>T (p.V83F) PD (CTS) 0.5/0.4 −7.125/−7.25 absent NA 4

9 10, M 4 (brother) FVH1 c.247G>T (p.V83F) PD (CTS) 0/0.1 −4.5/−3.875 absent NA 4

10 68, M 5
(proband) FVH1 c.383G>A (p.R128H) PD (CTS) 0.2/0.3 NA NA NA 3

11 21, M 6
(proband) FVH1 c.764A>T (p.Q255L) HD 0.3/0.4 +0.75/−1.0 present present 4

12 8, F 7
(proband)

aniridia,
corneal opacity,

secondary
retinal

detachments

c.767T>A (p.V256E) HD LP/1.7 NA/+16.5 NA NA NA

13 36, F 7 (mother) unilateral
partial aniridia c.767T>A (p.V256E) HD NA NA absent absent 1b

14 6, M 8
(proband)

peripheral
corneal opacity,

mild iris
anomaly,
exotropia

c.1032+5G>A PSTD 0.1/0.1 +0.25/+0.5 absent NA 3

15 41, F 8 (mother)

peripheral
corneal opacity,

mild iris
anomaly

c.1032+5G>A PSTD 0.2/0.1 +2.0/−1.25 absent NA 3

16 37, M 8 (uncle)

peripheral
corneal opacity,

mild iris
anomaly

c.1032+5G>A PSTD 0.6/0.5 −2.0/−4.0 absent NA 3

17 * 6, F 9
(proband) FVH1 c.1095T>G

(p.N365K) PSTD −0.2/−0.1 −5.5/−5.75 absent present 1b

* Patients 1, 2, 3, and 17 have been reported in reference [15]. CTS, C-terminal subdomain; F, female; FVH1,
autosomal dominant isolated foveal hypoplasia; HD, homeodomain; M, male; NA, not available; NTS, N-terminal
subdomain; PD, paired domain; PSTD, proline-serine-threonine-rich domain. The visual acuity was measured
with the Teller acuity cards for Patients 5 and 7.

2.2. DNA Sequence Analysis

Genomic DNA was extracted from the peripheral blood using DNA extraction kits.
Polymerase chain reaction (PCR) followed by Sanger sequencing and/or whole exome
sequencing was performed on the coding exons of the PAX6 gene. A detailed description
of the sequencing procedures has been presented [15,16]. Reference sequences of PAX6
(NM_000280.4) were used with variations numbered based on its cDNA sequence, with +1
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corresponding to the first nucleotide of the initiation codon (ATG). The allelic frequency of
the variants was searched for in the databases of the Japanese population (Human Genetic
Variation Database, HGVD, and the Tohoku Medical Megabank Organization database,
Tommo3, or other population databases of the 1000 genomes project and the Genome
Aggregation Database, gnomAD [17–20]. A conservation of the amino acid residues among
humans and other species, e.g., rhesus monkey, mice, elephant, chicken, zebrafish, and frog)
was assessed by the UCSC Genome Browser [21]. The pathogenicity of the variants was
predicted by six in silico programs [22–27]. Finally, the pathogenicity of the variants was
determined based on the recommendation of the American College of Medical Genetics
and Genomics (ACMG) standard and guidelines [28].

2.3. Functional Assay
2.3.1. Cell Lines and Culture

The human retinal pigment epithelium cell line, ARPE19/HPV16, the human prostate
cancer cell line, PC3, and the monkey kidney fibroblast-like cell line, COS1, were purchased
from the American Type Culture Collection (Manassas, VA, USA). The immortalized human
dopaminergic neuronal precursor cell line, LUHMES, was obtained from Applied Biological
Materials Inc. (Richmond, BC, Canada). The PC3 cells and the COS1 cells were cultured in
DMEM. The LUHMES cells and the ARPE19/HPV16 cells were cultured in DMEM/Ham’s
F-12 medium with N2 supplement (Cat No. 17502048, ThermoFisher Scientific, Waltham,
MA, USA) and DMEM/F12 (1:1 mixture of Dulbecco’s modified Eagle’s medium and
Ham’s F12), respectively. All media were supplemented with 10% heat-inactivated fetal
bovine serum (FBS) and 1% (v/w) penicillin/streptomycin, and cells were maintained at
37 ◦C with 5% CO2.

2.3.2. Antibodies

The anti-DYKDDDDK antibody (019-22394) conjugated with HRP was obtained from
Fujifilm (Tokyo, Japan). The anti-β-actin antibody (A3854) conjugated with HRP was
obtained from Sigma-Aldrich (Burlington, MA, USA), and the anti-GAPDH antibody (sc-
47724) conjugated with HRP and anti-Lamin A/C antibody (sc-7293) were obtained from
Santa Cruz (Santa Cruz, CA, USA).

2.3.3. Plasmid Preparation

The expression and reporter plasmids of pTA-5aCON-Luc and pCE-Flag-PAX6(5a)
were kind gifts from Dr. Nishina, Department of Development and Regenerative Biology,
Medical Research Institute, Tokyo Medical and Dental University, Tokyo [29]. A DNA
fragment containing a single copy of 5aCON [12], with a minimal promoter excised from
pTA-5aCON-Luc and a poly A signal sequence was inserted upstream and downstream of
nanoluciferase (Nluc), obtained from pNL1.1 (Promega, Madison, WI, USA). The resulting
DNA fragment was then placed in the lentiviral expression plasmid pCDH GFP-T2A-
Puromycin from Sigma-Aldrich. This resulted in the pCDH 5aCON-Nluc G2P plasmid
and, similarly, a DNA fragment containing nine binding sites for GAL4 and adenovirus.

A major late promoter sequence excised from pGL4.35 luc2P 9xGAL4UAS_Hygro
(Promega) and a poly A signal sequence were s inserted upstream and downstream of
nanoluciferase (Nluc), respectively. The resulting DNA fragment was inserted into the
lentiviral expression plasmid pCDH RFP-T2A-Puromycin (System Biosciences, Palo Alto,
CA, USA), resulting in the pCDH 9xGAL4UAS-Nluc R2P plasmid. PAX6(5a) cDNA was
excised from pCE-Flag-PAX6(5a) and inserted into the pcDNA3 RFP plasmid. Each mis-
sense mutant identified in this study, viz.,P20S, V78E, V83F, R128H, Q255L, V256E, N365K
and the other mutants found in a patient with aniridia (G65Rfs*5), were generated using
the PrimeSTAR Mutagenesis Basal Kit (Takara Bio, Kusatu, Japan). To obtain pcDNA3
GAL4-DYK-PAX6-TA(WT) RFP and pcDNA3 GAL4-DYK-PAX6-TA(N379K) RFP, the PSTD
region (269–422 aa) excluding the DNA-binding region was amplified by PCR and added
downstream of GAL4-Flag [30]. The resulting DNA fragment was then placed in the
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pcDNA3 RFP plasmid. Oligonucleotides were used to generate the mutants, and the
deletion constructs are shown in Table 2.

Table 2. Oligonucleotides.

Primer Name Sequence (5’ – 3’)

PAX6 P20S FW GGGCGGTCACTGCCGGACTCCACCC

PAX6 P20S RV GCAGTGACCGCCCGTTGACAAAGAC
PAX6 V78E FW CGAGAGAAGCGACTCCAGAAGTTGT
PAX6 V78E RV GTCGCTTCTCTCGGTTTACTACCAC

PAX6 V83F FW CCAGAATTTGTAAGCAAAATAGCCC
PAX6 V83F RV TTACAAATTCTGGAGTCGCTACTCT

PAX6 R128H FW TTCTTCACAACCTGGCTAGCGAAAA
PAX6 R128H RV AGGTTGTGAAGAACTCTGTTTATTG
PAX6 Q255L FW GAATACTGGTATGGTTTTCTAATCG
PAX6 Q255L RV CATACCAGTATTCTTGCTTCAGGTA

PAX6 V256E FW TACAGGAATGGTTTTCTAATCGAAG

PAX6 V256E RV AACCATTCCTGTATTCTTGCTTCAG

PAX6 N365K FW GGTGAAGGGGCGGAGTTATGATACC

PAX6 N365K RV CCGCCCCTTCACCGAAGGGCTGGTG

5aCON FW 5-biotin (Biothin) ATCTGAACATGCTCAGTGAATGTTCATTGACTCTC

5aCON RV GAGAGTCAATGAACATTCACTGAGCATGTTCAGAT

TA FW (EcoRI) gaattcGAAAAACTGAGGAATCAGAGAAG

2.3.4. Establishment of Lentivirus and Stable Expression Cells

Non-proliferative lentivirus was packaged using the lentivirus packaging system
purchased from the System Biosciences. Briefly, the pCDH 5aCON-Nluc G2P or pCDH
9xGAL4UAS-Nluc R2P plasmids were mixed with a pPACKH1 plasmid mix consisting of
pPACKH1-GAG, pPACKh1-REV, and pVSV-G (System Biosciences), and then transfected
into COS1 cells using X-tremeGENE 9 DNA Transfection Reagent (Roche, Basel, Switzer-
land). After 36 h, the culture medium was filtered through a 0.45 µm syringe filter and
directly added to the PC3 cells not expressing PAX6. The infected cells were then cultured
with 10 µg/mL puromycin (ant-pr; InvivoGen, San Diego, CA, USA) for more than 2 weeks
to establish the PC3-5aNluc and PC3-9Gal4Nluc cells.

2.3.5. RNA Preparation and Quantitative RT-PCR

Total RNA was purified using the miRNeasy Kit (217084; Qiagen, Germantown,
MD, USA). qRT-PCR was performed as described [31] using the following primer sets:
Hs01088114_m1 for PAX6, and Hs01060665_g1 for β-actin (Applied Biosystems, Foster City,
CA, USA). The values were normalized to human β-actin expression. The comparative
cycle time method was used to quantify the gene expression, and all samples were analyzed
in duplicate.

2.3.6. Transfection of Expression Plasmid

A total of 1 × 105 PC3-5aNluc, PC3-9Gal4Nluc, and PC3 cells were seeded into a 35 mm
dish. The following day, 5 µg of plasmid expressing each PAX6 protein was transfected
into the cells using X-treme GENE 9. After 48 h, the cells were washed twice with PBS
and collected. Samples for the reporter assays and pull-down assays were immediately
analyzed, while the remaining samples were stored at −80 ◦C for Western blot analysis.

2.3.7. Reporter Assay

After collecting the cells, 200 µL of Reporter Lysis Buffer (Promega) was added to the
cell pellet and sonicated for 10 s. The cell lysate was then centrifuged at 10,000× g for 2 min,
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and 100 µL of the resulting supernatant was mixed with 100 µL of the reagent from the
Nano-Glo Luciferase Assay System (Promega) in a 96-well white plate. The light intensity
was measured using a luminometer (Luminescencer JNII RAB-2300; Atto, Tokyo, Japan).

2.3.8. Cell Fractionation and Pull-Down Assay

The cell pellets for the reporter assay were resuspended in 200 µL of hypotonic buffer
A containing 10 mM Hepes–KOH (pH 7.9), 10 mM KCl, 0.1 mM EDTA–NaOH (pH 8.0),
0.1 mM EGTA, 1 mM dithiothreitol (DTT), and 0.5 mM phenylmethylsulfonyl fluoride
(PMSF). The suspension was incubated on ice for 15 min. Nonidet-P40 was added to a final
concentration of 0.25% (5 µL of 10% stock solution), and the cells were gently resuspended
and then centrifuged at 4200× g for 5 min. The resulting supernatant was collected as
the cytoplasmic fraction. For the nuclear pellet, two different methods were used for the
analysis. To determine the nucleoplasmic to cytoplasmic ratio of PAX6 by Western blot,
205 µL of hypotonic buffer was added to the nuclear pellet to equalize the volumes of the
nucleoplasmic and cytoplasmic fractions. Both fractionated samples were sonicated for
15 s and then centrifuged at 21,000× g for 10 min. Then, 40 µL of each supernatant, the
nucleoplasmic (Nuc) and cytoplasmic (Cyt) fractions, were used for Western blot analysis.

For the pull-down assays, three dishes were prepared for one condition. The nuclear
pellet was resuspended in 150 µL of high salt buffer C containing 20 mM Hepes–KOH
(pH 7.9), 0.4 M NaCl, 1 mM EDTA–NaOH, 1 mM EGTA, 1 mM DTT, and 0.5 mM PMSF,
and incubated for 30 min on ice. The suspension was then centrifuged at 21,000× g
for 10 min, and the resulting supernatant was used for the pull-down assay (50 µL) as
well as input (20 µL). Single-stranded oligonucleotides (see Table 2) were annealed, and
biotinylated oligonucleotides were bound to M280 magnetic beads (Veritas) in buffer K,
which contained 100 mM KCl, 10 mM Tris-HCl (pH 7.4), 0.05% NP-40, and 10% glycerol.
The bound oligonucleotides were washed three times with buffer K using a magnetic stand
and mixed with 50 µL of each Nuc fraction and 800 µL of buffer K. After binding for 30 min
at room temperature using a rotating disk device, the samples were washed five times with
buffer K, using a magnetic stand. The resulting pellet was suspended in 40 µL of RIPA
buffer and used for subsequent Western blotting.

2.3.9. Western Blot and Slot Blot

Next, 10 µL of 2× loading buffer and 3 µL of 1 M DTT were added to the sample
prepared for the reporter assay, cell fractionation, and pull-down analysis. The mixture was
boiled for 5 min and then subjected to SDS-polyacrylamide gel electrophoresis (SDS-PAGE).
The separated proteins were transferred onto polyvinylidene difluoride (PVDF) membranes,
and the respective primary antibodies, anti-Flag-HRP, anti-β-HRP, anti-GAPDH-HRP, and
anti-Lamin A/C, were diluted as follows: anti-Flag and anti-β-actin antibodies were diluted
1/10,000, anti-GAPDH antibody was incubated at 1/1000 dilution for 1 h, and anti-Lamin
A/C antibody was incubated at 1/1000 dilution for 1 h. Secondary anti-mouse IgG antibody
conjugated HRP against anti-Lamin A/C antibody was diluted at 1/7500 and incubated
for 45 min. Bound antibodies conjugated with the target proteins were detected using a
chemiluminescence kit (GE Healthcare Bio-Sciences, Chicago, IL, USA). The signal intensity
was measured with the LAS 4000 Mini and Multi Gauge software version 3.0 (Fujifilm).

3. Results
3.1. Genetic Findings and Clinical Features

Sequence analysis of the PAX6 gene revealed seven heterozygous mutations, c.150_151insA
(p.G65Rfs*5), c.233T>A (p.V78E), c.247G>T (p.V83F), c.383G>A (p.R128H), c.746A>T (p.Q255L),
c.767T>A (p.V256E), and c.1032+5G>A. In addition, mutations c.58C>T (p.P20S) and c.1095T>G
(p.N365K) were reported in our earlier study [15] (Table 3). All were novel mutations except
for c.383G>A (p.R128H), which was reported in a family with mild aniridia [32]. None of the
mutations was found in population databases of HGVD, Tommo3, the 1000 genomes project,
or gnomAD. All corresponding codons were located at residues conserved among humans
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and other species, e.g., rhesus monkey, mouse, elephant, chicken, zebrafish, and frog,
according to the UCSC Genome Browser. Pro20 and Gly65 were in the NTS; Val78, Val83,
and Arg128 were in the CTS; Gln255 and Val256 were in the HD; and c.1032 (Gln344) and
Asn365 were in the PSTD. The in silico programs predicted varying scores for pathogenicity
for all variants (Table 3). Based on the ACMG criteria, all variants were taken to be
pathogenic.

Table 3. Pathogenicity assessment of the mutations in the PAX6 gene.

Nucleotide
Change

Amino
Acid

Change

Polyphen2
HumDIV [13]
(cutoff = 0.85)

GERP++ [14]
(cutoff = 2)

REVEL [15]
(cutoff = 0.5) *

M-CAP [16]
(cutoff = 0.025)

CADD
Phred [17]

(cutoff = 15) **

SIFT [18]
(cutoff = 0.05)

Pathogenicity
(Evidenced Criteria

Points) ***

c.58C>T p.P20S 0.980 4.48 0.927 0.939 23.900 0.010 Pathogenic
(PS = 1, PM = 2, PP = 4)

c.150_151insA p.G65Rfs*5
Pathogenic

(PVS = 1, PS = 1,
PM = 2, PP = 1)

c.233T>A p.V78E 1.000 5.35 0.979 0.957 28.600 0.000 Pathogenic
(PS = 1, PM = 3, PP = 4)

c.247G>T p.V83F 1.000 5.35 0.942 0.916 29.800 0.000 Pathogenic
(PS = 1, PM = 2, PP = 4)

c.383G>A p.R128H 0.997 3.83 0.933 0.786 28.100 0.000 Pathogenic
(PS = 2, PM = 3, PP = 3)

c.764A>T p.Q255L 0.999 5.47 0.984 0.822 34.000 0.000 Pathogenic
(PS = 1, PM = 2, PP = 3)

c.767T>A p.V256E 1.000 5.53 0.976 0.824 32.000 0.000 Pathogenic
(PS = 2, PM = 3, PP = 3)

c.1032+5G>A -
Pathogenic

(PVS = 1, PM = 2,
PP = 2)

c.1095T>G p.N365K 0.736 NA 0.499 0.145 8.266 0.020 Pathogenic
(PS = 2, PM = 2, PP = 2)

Underlined values are “pathogenic” according to the cutoff values (refs. [22–27]). NA: not available. * 75.4% of
disease mutations but 10.9% of neutral variants, ** ≤1% percentile highest scores, *** based on the reference [28]:
PVS, very strong; PS, strong; PM, moderate; PP, supporting.

The associated phenotypes were FVH1 for p.P20S, p.V78E, p.V83F, p.R128H, p.Q255L,
and p.N365K (Figures 1–3), aniridia with corneal opacity for p.G65Rfs*5 and p.V256E, and
peripheral corneal opacity with mild iris anomaly for c.1032+5G>A (Table 1). In the family
with p.V256E (Family 7), the proband who had bilateral aniridia with corneal opacity and
cataract also had retinal detachments after cataract or glaucoma surgery on both eyes.
The mother with the same mutation had no visual symptoms, and was later found to
have unilateral partial aniridia (Figure 4). She had mild foveal hypoplasia with reduced
foveal pits in both eyes. Regardless of the genotype, all examined patients had bilateral
foveal hypoplasia detected in the OCT images. Three patients from Family 1 (p.P20S), the
mother of Family 7 (p.V256E), and Patient 17 had mild foveal hypoplasia of Grade 1b,
according to the classification by Thomas et al. [33,34]. However, the other patients had
severe Grade 3~4 foveal hypoplasia (Table 1). Regardless of the genotype, goniodysgenesis
was observed in seven (88%) of the eight patients who underwent gonioscopy. For sixteen
patients from nine families, the corrected visual acuity ranged from light perception to −0.2
logMAR units. Myopia ranging from −2.0 D to −12.5 D (median −4.3 D) was observed
in sixteen of the examined patients. Nystagmus was present in five (36%) of the fourteen
examined patients.

3.2. Functional Assays
3.2.1. Expression Analysis of PAX6

The expression of PAX6 was analyzed using three types of cells, ARPE19/HPV16,
LUHMES and PC3. The expression of the mRNA of PAX6 increased LUHMES by 2.25 times
when ARPE19/HPV16 was set to 1, but PC3 was not expressed (Figure 5). The PC3 cells
that were transfected with Flag-PAX6 and Flag-PAX6(5a) and immunoprecipitated with
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Flag were analyzed by Western blotting using three kinds of commercially available anti-
bodies (ab238527; Abcam Cambridge UK, 42-6600; Invitrogen, and sc-81649; Santa Cruz).
These antibodies recognized Flag-PAX6, but the sensitivity and specificity of recognizing
endogenous PAX6 was too low to assess (Supplementary Figure S1). These results sug-
gested that ARPE19/HPV16 and LUHMES expressed PAX6, but it was not determined
which isoform they expressed.
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Figure 2. Clinical findings of Family 2 (Patients 5, 6, 7) carrying the p.V78E mutation in the PAX6 gene.
OCT images of all patients show no foveal pit ((A), Patient 5; (B), Patient 6; (C), Patient 7). The 1-year-
old brother (Patient 7) underwent examinations under general anesthesia which showed an absence
of the foveal avascular zone in the superficial layers of the OCTA image (D) and goniodysgenesis (E).
The OCT scan images were taken at a level across the presumed foveal region.
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Figure 3. Clinical findings of Patient 11, the 21-year-old male patient with the p.Q255L mutation
in the PAX6 gene. Fundus photographs shows normal retinal appearance (A). OCT image shows
no foveal pit (B). Slit-lamp photograph shows no obvious changes in the iris surface, and slight
cataract (C). Gonioscopic photograph shows goniodysgenesis (D). The OCT scan image was taken at
a level across the presumed foveal region.
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Figure 4. Images of a 36-year-old mother of an aniridia patient with p.V256E mutation in the PAX6
gene. The images of the iris of the right eye are normal (A) but with partial aniridia in the left
eye (B). OCT and the superficial layers of OCTA images show reduced foveal pit (C,D) and no foveal
avascular zone (E,F). The OCT scan images were taken at a level across the presumed foveal region.
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Figure 5. PAX6 expression. Total RNA was extracted from ARPE19/HPV16, LUHMES, and PC3 cells,
and the expression level of PAX6 mRNA was analyzed by qRT-PCR (∆∆CT method). The expression
level of ARPE19/HPV16 was set to 1 (n = 1).

3.2.2. PAX6 Mutants and Transcriptional Activity via 5aCON

5aCON is a consensus site to which PAX6(5a) binds, and PAX6(5a) is known to increase
the promoter activity with 5aCON. We generated different PAX6 mutants and transfected
these mutants and the wild type into 5aCON-Nluc stably transfected PC3 cells. First, we
examined whether there was any change in the expression level between the wild-type
PAX6 and its mutants, using a Flag antibody. Because the total number of amino acids in
the PAX6 mutants, other than G65Rfs*5, was the same as that of the wild type, the signals
were observed at the same molecular weight positions (Figure 6A). However, G65Rfs*5
was not observed (see Figure 6A) because its molecular weight was less than 10 kDa even
with a Flag tag, due to a frameshift mutation. Because the molecular weights of PAX6 WT
and G65Rfs*5 differed significantly and were expected to have different transcriptional
abilities, the proteins were directly immobilized on a PVDF membrane using a slot blot
apparatus. Although the signal was weak, it was possible to determine the expression ratio
with the wild type (Figure 6B). Because the specificity of the anti-Flag antibody was high,
we believe that the detected signal was derived from the Flag fusion protein. The results of
normalizing the expression level of Flag with the expression level of β-actin are shown in
Figure 6C. The expression ratio of PAX6 mutants varied greatly, and ranged from 0.6- to
2.9-fold.

Next, we measured the Nluc activity, to evaluate the transcriptional activity of PAX6
dependent on 5aCON. Because the Nluc activity is affected by the expression level of PAX6,
it was normalized using the expression ratio obtained from the data shown in Figure 6C.
While P20S and Q255L did not affect the transcriptional activity, all of the other mutants
reduced the transcriptional activity (Figure 6D). More specifically, the mutants of CTS,
V78E, V83F, and R128H, significantly decreased the transcriptional activity, as well as the
truncation mutant of G65Rfs*5.

3.2.3. Nuclear Translocation Analysis of PAX6 Mutants

We first examined the nuclear location of each PAX6 mutant, because some mutants
were unable to activate the 5aCON-dependent transcriptional activity. PC3 cells expressing
each mutant were fractionated into nuclear and cytoplasmic fractions, and the expression
level of PAX6 in each fraction was determined by Western blotting (Figure 7). To evalu-
ate the accuracy of the PVDF, we also examined the expression levels of lamin A/C and
GAPDH in the nuclear and cytoplasmic fractions. As expected, lamin A/C was almost
always detected in the nuclear fraction, while GAPDH was mainly detected in the cy-
toplasmic fraction. Based on these results, we examined whether the cytoplasmic and
nuclear fractions could be effectively separated. We examined the subcellular localization
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of PAX6 under these fractionation conditions. We found that most of the G65Rfs*5 mutants
remained in the cytoplasm and did not translocate into the nucleus, while the other mutants
had translocated into the nucleus.
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Figure 6. Expression of exogenous PAX6. (A) Flag-tagged wild-type PAX6 and its mutants were
transfected into PC3-5aNluc cells, and the cells were harvested after 48 h. Cell lysates were examined
by SDS-PAGE, and the membrane was blotted with anti-Flag antibody to detect the expression of the
transfected PAX6 constructs. An anti-β-actin antibody was used as a loading control to normalize
the protein expression levels (n = 2). (B) Cell lysates expressing wild-type PAX6 and G65Rfs*5 were
blotted onto membranes using slot blotting, and then blotted with anti-Flag antibody (n = 2). (C) The
results from A and B were normalized using the common signal which was the wild-type PAX6. The
expression ratio of Flag to β-actin was calculated, and the value of the wild type was set to 1 (n = 2).
(D) 5aCON-Nluc activity induced by each PAX6 protein was measured, and normalized by β-actin
expression levels in the cells (A,B).

3.2.4. Binding Analysis of PAX6 Mutants and 5aCON

The pull-down analysis adopted in this analysis is a method of mixing the extracted
nuclear proteins and oligonucleotides, recovering the oligonucleotides with magnetic beads,
and detecting the proteins bound thereto by Western blotting. This method enables quanti-
tative analysis of proteins bound to oligonucleotides. On the other hand, the traditional gel
shift assay similarly mixes extracted nuclear proteins and radiolabeled oligonucleotides,
electrophoreses the mixture, and analyzes the signals with a delayed migration signal. The
delayed migration signal contains bound oligonucleotides and proteins, but it is not known
which proteins among the extracted nuclear proteins are bound. Therefore, it is necessary to
add a specific antibody, in this case the anti-Flag antibody, against protein, and perform the
supershift assay. However, when the amount of added antibody is small, it is not possible
to supershift all the signals bound by the target protein. Therefore, quantitative analysis
is difficult with the supershift assay, and it is considered to be a qualitative analysis. For
these reasons, we adopted a pull-down analysis that allows quantitative analysis and did
not use radiation.
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Figure 7. Subcellular localization of wild-type PAX6 and its mutants. Plasmids expressing the
wild-type PAX6 and its mutants were transfected into PC3 cells, and the cells were harvested. The
harvested cells were fractionated into nucleoplasm and cytoplasm, and lysed in equal amounts.
Equal volumes of the cell lysate were aliquoted, subjected to SDS-PAGE, and then transferred onto
a membrane. The membrane was probed with anti-Flag antibody to detect the expression of the
transfected PAX6 constructs. Lamin and GAPDH were also blotted as loading controls to confirm
the accuracy of the fractionation procedure. The total of each expression level was set to 1, and the
ratio of nucleoplasm to cytoplasm was determined (n = 2). Nuc and Cyt indicate nucleoplasm and
cytoplasm, respectively.

Because we found that mutants other than G65Rfs*5 could translocate into the nucleus,
we next examined whether these mutants could bind to 5aCON. We mixed an oligonu-
cleotide containing the sequence of 5aCON immobilized on magnetic beads with nuclear
protein extracted from the nucleus of each cell, and analyzed the PAX6 protein bound to
5aCON by Western blotting. P20S and Q255L, which had normal transcriptional activity,
bound to 5aCON as much as, or even more than, the wild-type PAX6 (Figure 8A). In
addition, V78E, V83F, R128H, and V256E, which have low 5aCON transcriptional activ-
ity, had low binding to 5aCON. On the other hand, N365K had a 50% reduction in the
transcriptional activity of 5aCON, but bound more to 5aCON than to the wild-type PAX6.

3.2.5. Transcription Activity Analysis Using Gal4 System

Although N365K was able to bind to 5aCON, its 5aCON-mediated luciferase activity
was low. The GAL4 one hybrid transcription system was used to determine the reason
for this. The GAL4 protein is a transcription factor that binds to a specific DNA sequence
known as the upstream activating sequence (UAS), which is located upstream from the
target gene. The binding of GAL4 to UAS recruits other transcription factors including the
general transcription factors such as the TATA-binding protein (TBP) and RNA polymerase
II, to form a pre-initiation complex that initiates transcription of the target gene. Luciferase
activity is affected by the DNA-binding and transcriptional activities of transcription
factors. That is, if the mutants have different DNA-binding abilities, luciferase activity
cannot be used to evaluate transcriptional activity. Therefore, using the GAL4 one hybrid
system, in which the DNA-binding ability is equivalent, we compared the transcription
activity of the wild type and the mutant. In this assay, only the PSTD region, a putative
transactivation domain, was fused to GAL4. The protein expression levels from transfection
were quantified (Figure 8B), and the Nluc activity was normalized for protein abundance
(Figure 8C). The results showed that the PSTD transcriptional activity of N365K was found
to be 32% of that of the wild type.
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Figure 8. 5aCON binding activity and PSTD transcriptional activity. (A) The upper panel shows the
results of pulling down the indicated wild-type PAX6 and mutant PAX6 with immobilizing 5aCON
on magnetic beads. The expression level of each Flag-PAX6 in the cell lysate used for the pull-down
is shown in the lower panel. The numbers at the bottom of the panel indicate each signal intensity
ratio when WT is set to 1. (B) PC3-9Gal4Nluc cells were transfected with GAL4-Flag-tagged PTSD
of the wild type or N365K, and harvested after 48 h. Cell lysates were separated by SDS-PAGE and
transferred to a membrane for Western blotting using an anti-Flag antibody to detect the expression
of each construct. β-actin was used as a loading control to normalize protein expression levels. (n = 2).
(C) 9xGAL4UAS-Nluc activation by PSTD WT and N365K was measured and normalized byβ-actin
expression levels in cells (B).

4. Discussion

We analyzed patients with not only FVH1, but with foveal hypoplasia associated with
varying degrees of corneal opacities and aniridia, viz., Family 2 with p.G65Rfs*5, Family
7 with p.V256E, and Family 8 with c.1032+5G>A. In these three families, the responsible
mutations were at loci other than the CTS. Interestingly, Family 7 showed remarkable
phenotypic variations, i.e., the proband had typical aniridia with severe corneal opacity,
whereas the mother had unilateral partial aniridia and bilateral foveal hypoplasia with
preserved BCVA. The functional assay showed that the truncation p.G65Rfs*5 mutation
had no transcriptional activity. The transcript of the truncation mutation could possibly
be degraded by nonsense-mediated decay. This was supported by the phenotype of the
patient, which could be caused by haploinsufficiency of the PAX6 gene. Nonetheless, when
translated, the protein would not function because it did not translocate into the nucleus.
p.V256E had low 5aCON transcriptional activity. We did not analyze the c.1032+5G>A, be-
cause the putative transcript of this splicing mutation was uncertain. However, the mutant
can be transcribed as one of other minor transcripts, e.g., p.S346N for NM_001310159, and
further studies are needed to determine the effects of this mutation on the formation of
the fovea.

The remaining families had a consistent FVH1 phenotype, all of which had missense
mutations. However, the severity of the foveal hypoplasia differed among the families. In
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Families 3, 4, and 5, their responsible mutations, p.V78E, p.V83F and p.R128H, were in the
CTS, and they consistently showed severe foveal hypoplasia of Grade 3 or 4. Earlier studies
showed that most of the mutations causing FVH1 were found in the CTS [12,13]. From our
results on the mutations other than the CTS, the clinical severity was divided into mild
foveal hypoplasia (p.P20S and p.N365K) [15], and severe foveal hypoplasia (p.Q255L). Our
results showed that the functional impairments associated with the mutations were diverse.
The mutants P20S in the NTS and Q255L in the HD did not affect the transcriptional activity,
suggesting a different action from mutants in the CTS that induce hyperactivation of the
NTS [6]. Mutant N365K can bind more to the 5aCON than the wild-type PAX6; however,
it had a reduced transcriptional activity. To determine the reason for this discrepancy, we
used the GAL4 transcription system in the PSTD, which is known to have transactivation
actions [35]. We found that the transactivation of PSTD by N365K was reduced to 32%.
This supports the idea that the transactivation by PAX6 was dependent on the location of
the mutation and type of the DNA-binding site [36].

There are limitations in this study. An important limitation was that only the mutations
we found were evaluated, and the number of patients with the mutations was small.
However, isolated foveal hypoplasia is a rare condition, and only a few mutations have
been analyzed functionally. Thus, there is limited information on the characteristics of
foveal hypoplasia. The other limitations include lack of information of genes directly and
indirectly dysregulated by PAX6 and PAX6(5a) in human fovea. We cannot explain why
the phenotypically significant mutants of P20S and Q255L showed a comparable level for
the expression, nuclear translocation, transcriptional activity, and binding to 5aCON, to the
wild-type PAX6.

5. Conclusions

The results showed that mutations associated with foveal hypoplasia underlie a func-
tional divergence from the DNA-binding ability to the transcriptional activity. Mutations in
the CTS consistently cause severe foveal hypoplasia. Widely distributed mutations in the
PAX6 gene, not limited to the CST region, were responsible for isolated foveal hypoplasia.
Our study expands the mutation spectrum of foveal hypoplasia, which will be helpful for
genetic counseling and provides information that helps in the understanding of the fovea.
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