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Abstract: Background: Although knowledge of the genetic factors influencing kidney disease is
increasing, epigenetic profiles, which are associated with chronic kidney disease (CKD), have not
been fully elucidated. We sought to identify the DNA methylation status of CpG sites associ-
ated with reduced kidney function and examine whether the identified CpG sites are associated
with CKD development. Method: We analyzed DNA methylation patterns of 440 participants in
the Korean Genome and Epidemiology Study (KoGES) with estimated glomerular filtration rates
(eGFRs) ≥ 60 mL/min/1.73 m2 at baseline. CKD development was defined as a decrease in the eGFR
of <60 at any time during an 8-year follow-up period (“CKD prediction” analysis). In addition, among
the 440 participants, 49 participants who underwent a second methylation profiling were assessed
for an association between a decline in kidney function and changes in the degree of methylation
of CpG sites during the 8 years (“kidney function slope” analysis). Results: In the CKD prediction
analysis, methylation profiles of a total of 403,129 CpG sites were evaluated at baseline in 440 par-
ticipants, and increased and decreased methylation of 268 and 189 CpG sites, respectively, were
significantly correlated with the development of CKD in multivariable logistic regression. During
kidney function slope analysis using follow-up methylation profiles of 49 participants, the percent
methylation changes in 913 CpG sites showed a linear relationship with the percent change in eGFR
during 8 years. During functional enrichment analyses for significant CpG sites found in the CKD
prediction and kidney function slope analyses, we found that those CpG sites represented MAPK,
PI3K/Akt, and Rap1 pathways. In addition, three CpG sites from three genes, NPHS2, CHCHD4, and
AHR, were found to be significant in the CKD prediction analysis and related to a decline in kidney
function. Conclusion: It is suggested that DNA methylation on specific genes is associated with the
development of CKD and the deterioration of kidney function.

Keywords: chronic kidney disease; DNA methylation; NPHS2; CHCHD4

1. Introduction

Chronic kidney disease (CKD) is a global public health problem. CKD affects
10–15% of the population worldwide and is now recognized as the most rapidly increasing
contributor to the global burden of disease [1,2]. CKD can be defined as the sustained
presence of a reduced glomerular filtration rate [3]. It is widely recognized that CKD
plays a significant role in the development of cardiovascular disease, metabolic disorders,
hospitalization, and mortality [4–6]. However, despite the clinical significance of CKD, our
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understanding of the biological mechanisms underlying CKD and its progression remains
incomplete. Traditional biomarkers of CKD, including creatinine and proteinuria, are
reliable and easily measured with non-invasive methods. However, their ability to detect
kidney injury in early stages and identify populations at high risk of CKD progression is
limited [7]. Identifying CKD at earlier stages and recognizing the risk of progression are
the key ways to manage and prevent CKD. A lot of studies revealing novel biomarkers for
kidney disease have been conducted [8,9].

CKD is a multifactorial disease associated with various genetic and environmental risk
factors [10]. Recent large-scale genome-wide association studies (GWAS) have discovered
hundreds of common variants associated with CKD risk and kidney function [11,12].
While these GWAS provide insights into the genetic background associated with the
pathophysiology of CKD, they cannot detect longitudinal changes or the environmental
effect. Instead, epigenomic and transcriptomic profiling are required to obtain the complete
picture of CKD regarding the environmental effect.

DNA methylation is one of the main epigenetic mechanisms for the regulation of gene
expression [13,14]. Most CpG islands are found in promoter regions and closely linked to
gene expression. Generally, when CpG islands undergo methylation, they block the access
of several transcription factors involved in gene activation, resulting in the suppression of
gene expression [15].

Previous studies on methylation in association with CKD have been limited by factors
such as small sample sizes, cross-sectional designs, or inclusion of individuals with specific
comorbidities [16–19]. In 2011, a large cohort was analyzed in an epigenetics study of
CKD [17]. However, the definition of CKD in this study was based solely on estimated
glomerular filtration rates (eGFR) <60 mL/min/1.73 m2 measured at a single time point,
which poses challenges in accurately distinguishing it as “chronic” kidney injury. Ad-
ditionally, no previous methylation studies focused on examining temporal changes in
methylation patterns specifically related to renal function.

This study addresses the limitations of previous research by introducing a novel ap-
proach to defining renal dysfunction. We consider both the estimated glomerular filtration
rate (eGFR) levels at a single time point and the rate of change in renal function during
long-term follow-up. Additionally, we analyze the associated changes in methylation
patterns. Our goal is to identify methylation sites that substantially correlate with renal
function decline, as well as the development of CKD. Consequently, our study aims to
identify specific genes that can be targeted for future epigenetic biomarker analysis, thereby
providing valuable insights into the field of kidney research.

2. Materials and Methods
2.1. Study Population

The present study was approved by the institutional review board (IRB) of Korea
University Guro Hospital (IRB no. 2020-0191-01). All participants were recruited from the
Korean Genome Epidemiology Study (KoGES), a longitudinal community-based prospec-
tive study initiated in 2001–2002 with follow-up performed every 2 years until the eighth
follow-up at 16 years. DNA methylation profiling was performed in the baseline study and
reanalyzed at the fifth follow-up point after 8 years. The KoGES cohort consists of Korean
middle-aged general population participants aged between 40 and 69 years. The details of
the study protocol concerning the enrollment and follow-up of participants were presented
previously [20].

2.2. DNA Methylation Profiling

For DNA methylation profiling, genomic DNA was extracted from the buffy coats of
participants isolated within 2 h of blood collection. The sample collection time consisted
of two times: at the time of enrollment in the KoGES study (n = 446) and follow-up after
8 years (n = 50). DNA methylation was measured with the Illumina Infinium Human
Methylation 450 BeadChip system (Illumina, San Diego, CA, USA), which interrogates
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>485,000 CpGs covering 99% of RefSeq genes. The DNA methylation assessment procedure
has been described previously [21,22]. In brief, genomic DNA (500-ng for each sample) was
modified by sodium bisulfite, using an EZ DNA methylation kit (Zymo Research, Orange,
CA, USA) according to manufacturer’s recommendations. Additionally, the extraction of
the intensity values of each site, along with background correction, was carried out using
the GenomeStudio V2011 (Methylation Module, R 2.11) software after passing quality-
control steps. Each methylation datapoint was identified by fluorescent signals, and the
β-value was calculated to signify percent methylation, from 0 to 100%, by the ratio of
signals from methylated and unmethylated alleles. CpGs with more than 1% missing data
across all samples were discarded.

2.3. Analysis Regarding Incidence and Progression of CKD

The demographic and clinical characteristics of the participants, including age, sex,
height, weight, and history of hypertension and diabetes were collected. Laboratory
parameters such as serum blood urea nitrogen, creatinine, and albumin were also measured
at baseline and follow-up visits. The kidney function of participants was evaluated using
eGFR, which was calculated with the Chronic Kidney Disease Epidemiology Collaboration
(CKD-EPI) equation [23]. It takes into account variables such as age, gender, race, and
serum creatinine levels to predict eGFR. The CKD-EPI equation, expressed as a single
equation, is eGFR = 141 × min(Scr/κ, 1)α × max(Scr/κ, 1)−1.209 × 0.993Age × 1.018 [if
female] × 1.159 [if black], where Scr is serum creatinine, κ is 0.7 for women and 0.9 for
men, α is −0.329 for women and −0.411 for men, min indicates the minimum of Scr/κ or 1,
and max indicates the maximum of Scr/κ or 1. The development of CKD was defined as a
decline of eGFR to <60 mL/min/1.73 m2 at any time point in 8 years.

We performed an assessment of the association between methylation profiles and
the decline in kidney function using two separated analyses. First, the logistic regression
analysis for the risk of CKD development in 8 years was performed with baseline methy-
lation profiles (“CKD prediction” analysis). The logistic regression model estimates the
probability of the dependent variable belonging to a particular category or group based on
the values of the independent variables. This model can provide insights into the factors
associated with the likelihood of CKD occurrence. Then, the analysis was performed with
the linear regression analysis between the percent decline in eGFR and the percent change
in β-value in the methylation profile between baseline and follow-up methylation profiles
(“kidney function slope” analysis). The relationship between the longitudinal changes in
eGFR and methylation status was assessed using linear regression. A flow diagram of the
study design is represented in Figure 1. To clarify the progression of kidney dysfunction,
we excluded participants with a eGFR < 60 mL/min/1.73 m2 at baseline.

2.4. Statistical Analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Analysis

In baseline characteristics, categorical variables are presented as numbers and percent-
ages and continuous variables are presented as the mean ± standard deviation (SD) values.
To predict the risk of CKD development in 8 years, univariable and multivariable logistic re-
gression analyses were performed. The relationship between changes in eGFR and changes
in methylation profiles was also examined by univariable and multivariable linear regres-
sion analyses. In the multivariable regression analysis, age, sex, hypertension, diabetes, and
eGFR were used as adjustment variables. All significant CpGs found in logistic regression
(CKD prediction analysis) and linear regression (kidney function slope analysis) were repre-
sented with genomic information by annotating with the “IlluminaHumanMethylation450-
kanno.ilmn12.hg19” R package, “getAnnotation” function.

We performed KEGG pathway analyses of the differentially methylated genes with
clusterProfiler version 4.0.5 and the pathview R package. KEGG is an encyclopedia of genes
and genomes [24]. Molecular functions are represented by networks of interactions and
reactions mainly in the form of KEGG pathways and modules. The clusterProfiler package
provides a function, enrichKEGG, to calculate enrichment values for KEGG pathways
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based on hypergeometric distribution [25]. In dotplots for KEGG pathways, the gene ratio
(i.e., ratio of input genes that are annotated in a term) was indicated for top features in
the enrichment test. The “circlize” R package (version 0.4.14) was used for the circos plot
representing the genetic mapping of significant CpGs found in analyses.
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Figure 1. Study design. This study consisted of 2 analysis models; “CKD prediction” was the
logistic regression analysis for CKD development in 8 years and “kidney function slope” was the
linear regression analysis between changes in methylation scores and changes in eGFR for 8 years.
Both analyses were performed with multivariable adjustment, including age, sex, baseline eGFR,
hypertension, diabetes, and serum albumin level. The final aim of this study was to find the common
CpGs and related genes in both analyses. 10Y, 10 years; f/u, follow-up.

p < 0.001 and false-discovery rate (FDR)-adjusted p (q-value) < 0.05 were considered
statistically significant in the univariable and multivariable analyses, respectively [26–29].
All statistical analyses were performed using the R software program (version 4.0.3;
R Foundation for Statistical Computing, Vienna, Austria).

3. Results
3.1. Baseline Characteristics

Of the 446 participants with baseline methylation profiles, 6 participants with an
estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m2 at baseline were excluded.
The baseline characteristics of the remaining 440 participants are shown in Table 1. The
mean age of participants was 52.1 ± 8.4 years, and 48.9% were female. The baseline
creatinine and eGFR values were 0.85 ± 0.17 mg/dL and 91.8 ± 12.8 mL/min/1.73 m2,
respectively.

Table 1. Baseline characteristics of the study participants (n = 440).

Baseline Variables Values

Age, years [M ± SE] 52.1 ± 8.4
Female sex, [abs (%)] 215 (48.9)
Body mass index, kg/m2 [M ± SE] 24.6 ± 3.4
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Table 1. Cont.

Baseline Variables Values

Smoking tobacco, [abs (%)]
Current 121 (27.5)
Ex 65 (14.8)
Never 245 (55.7)
No response 9 (2.1)

Alcohol consumption, [abs (%)]
Current 218 (49.6)
Ex 30 (6.8)
Never 186 (42.3)
No response 6 (1.4)

Hypertension, [abs (%)] 63 (14.3)
Diabetes mellitus, [abs (%)] 43 (9.8)
Dyslipidemia, [abs (%)] 7 (1.6)
Myocardial infarction, [abs (%)] 1 (0.2)
Congestive heart failure, [abs (%)] 1 (0.2)
Cerebrovascular disease, [abs (%)] 4 (0.9)
Systolic blood pressure, mmHg [M ± SE] 121.9 ± 17.8
Diastolic blood pressure, mmHg [M ± SE] 81.2 ± 11.2
eGFR CKD-EPI, mL/min/1.73 m2 [M ± SE] 91.8 ± 12.8
Serum blood urea nitrogen, mg/dL [M ± SE] 14.4 ± 3.4
Serum creatinine, mg/dL [M ± SE] 0.85 ± 0.17
Serum total cholesterol, mg/dL [M ± SE] 193.3 ± 35.0
Blood hemoglobin, g/dL [M ± SE] 13.7 ± 1.6
Serum albumin, g/dL [M ± SE] 4.3 ± 0.4

Abbreviation: eGFR CKD-EPI, estimated glomerular filtration rate calculated with the Chronic Kidney Disease
Epidemiology Collaboration equation.

3.2. Baseline Methylation Profiles Associated with CKD Development in 8 Years (CKD
Prediction Analysis)

During the 8-year follow-up period, CKD developed in 67 (15.2%) patients. We
obtained and assessed methylation profiles, including 403,129 CpGs of 440 participants, to
find the genes associated with CKD development. In the univariable logistic regression
analysis, 2187 CpGs were associated with the risk of CKD development, and 457 CpGs
remained significant in the multivariable logistic regression analysis adjusted with age,
sex, baseline eGFR, hypertension, diabetes mellitus, and serum albumin level. Blue and
red dots in the volcano plot in Figure 2 represent decreased and increased odds for CKD
development with increasing methylation at each site found in the multivariable analysis.
Among the 457 significant CpGs, increased methylation in 268 CpGs was associated with a
greater risk of CKD, while increased methylation in the other 189 CpGs correlated with a
decreased risk of CKD. Among the significant CpG sites in the CKD prediction analysis,
CpGs included in specific genomes are shown in Table S1.

3.3. Relationship between Methylation and eGFR Changes over Time (Kidney Function
Slope Analysis)

Among the 440 participants, second follow-up methylation profiles were examined
in 49 participants after 8 years. To find the association between changes in eGFR and
methylation status, we calculated the percent change in eGFR as well as percent changes
in methylation levels from baseline to follow-up. Among the 431,651 CpGs that remained
after filtering for quality control, the change in methylation levels in 1181 CpGs was
associated with the change in eGFR in the univariable linear regression analysis. In the
multivariable linear regression analysis adjusted with age, sex, baseline eGFR, hypertension,
diabetes mellitus, and serum albumin level, 913 CpGs still continued to have a significant
relationship with eGFR changes. Increased and decreased methylation levels in 298 and
615 CpGs from baseline to 8 years of follow-up were associated with a rapid decline in
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eGFR over time, respectively. Among the significant CpG sites in kidney function slope
analysis, CpGs included in specific genomes are shown in Table S2.
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above than horizontal dashed line represent statistically significant values (p < 0.001). Blue and red
dots represent significant CpGs in the multivariable-adjusted analysis, and they indicate decreased
and increased odds for CKD development according to elevated methylation at each site, respectively.

3.4. Functional Enrichment Features and Common Significant CpG Sites in CKD Prediction and
Kidney Function Slope Analyses

We further performed a functional enrichment profile analysis with Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathways related to significant CpGs found in the
CKD prediction and kidney function slope analyses, respectively (Figure 3). In the top
20 significant KEGG pathways, multiple pathways related to signal transduction, such
as MAPK signaling, PI3K/Akt signaling, and Rap1 signaling pathways, were commonly
included in both analyses.

We combined the results from CKD prediction and kidney function slope analyses
to find common CpG sites for both analyses. Three CpGs (cg13931925, cg16463573, and
cg16535332) were consistently significant in both analyses (cg13931925: multivariable
logistic q = 0.043 and multivariable linear regression q = 0.019; cg16463573: multivariable
logistic q = 0.017 and multivariable linear regression q = 0.04; cg16535332: multivariable
logistic q = 0.027 and multivariable linear regression q = 0.026). We found three genes,
NPHS2, CHCHD4 and AHR, associated with these CpG sites, which were significantly
associated with the decline in kidney function. Greater methylation of CpG sites in NPHS2
at baseline was associated with a higher risk of CKD development during follow-up, and



Genes 2023, 14, 1489 7 of 13

the increased methylation level of CpG sites in NPHS2 for 8 years correlated with a more
rapid decline in eGFR. On the other hand, the methylation of CpGs in CHCHD4 and AHR
showed an opposite relationship with NPHS2 in CKD development and the degree of eGFR
decline (Figure 4). That is, hypermethylation of CHCH4 and AHR was not only associated
with a lower risk of developing CKD, but was also associated with slower eGFR decline. In
addition, combined results for each significant CpG site were plotted on a Circos genomic
map (Figure S1).
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of the selected genes in this analysis/count of pathway genes.
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Figure 4. Scatter plots and linear regression lines illustrate the methylation changes at three CpG sites
of three genes (NPHS2, CHCHD4, and ARH from left to right) associated with the progression of renal
dysfunction and the development of CKD. The solid black lines represent the fitted linear regression
lines, and the gray areas indicate the 95% confidence intervals. The x-axis represents the percentage
change in methylation from baseline to follow-up measurements: (follow-up methylation—baseline
methylation)/baseline methylation × 100. The y-axis represents the percentage decline in eGFR
from baseline to follow-up measurements: (baseline eGFR—follow-up measurement eGFR)/baseline
eGFR × 100.
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4. Discussion

In this study, using two different methods we demonstrated that DNA methylation
profiles were significantly associated with CKD. Methylation sites associated with MAPK,
PI3K, and Rap1 signaling pathways were commonly found in both analyses. We discovered
that the degree of methylation and changes over time of three genes, NPHS2, CHCHD4,
and AHR were associated with both the development and progression of CKD.

DNA methylation, in concert with other regulators, is a major epigenetic factor influ-
encing gene activities [30,31]. Methylation of CpG motifs in promotor regions is generally
associated with transcription repression. Previous epigenome-wide association studies
(EWAS) have identified compound correlations between DNA methylation levels at indi-
vidual CpG sites and diseases such as cancer [32,33], type II diabetes [34], and Alzheimer’s
disease [31,35].

In the area of kidney disease, EWAS have also been conducted, but their sample sizes
and longitudinal study design are limited. In a Swedish study of global methylation in
155 CKD patients compared to 36 healthy controls, no association was found between the
total DNA methylation ratio and eGFR [36]. In another cross-sectional study comparing
255 CKD and 152 controls using the Infinium® HumanMethylation450 BeadChip system
(Illumina, San Diego, CA, USA), 23 differentially methylated CpG sites were identified in
blood samples of 255 CKD participants compared to controls [37]. Another study compared
baseline methylation status between participants with rapid disease progression and stable
kidney function but involved only a small number of participants (20 participants in each
group) [16]. Furthermore, the majority of participants in that study already had eGFR
values below 60 mL/min/1.73 m2 at baseline, suggesting that they were predominantly in-
dividuals with CKD. Therefore, direct comparison of their results with our study would not
be appropriate. To overcome the weakness of previous studies, we adopted a longitudinal
design study that could estimate the causal relationship between methylation and kidney
function more specifically, as well as evaluated two consecutive methylation statuses in the
same participants to ensure consistency and reliability of the results.

In the present study, we demonstrated significant CpG sites of three genes. The first
gene, NPHS2, is located on chromosome 1q25-q31 and was initially mapped through
linkage analysis in families affected by autosomal recessive steroid-resistant nephrotic
syndrome [38]. This gene is responsible for encoding the 42 kD integral membrane protein
known as podocin, which is expressed in both fetal and mature kidneys. Podocin is
situated at the foot process of podocytes within the slit diaphragm, a critical site governing
the filtration’s size and charge selectivity [39]. Podocin-deficient NPHS2 knockout mice
present with massive proteinuria at birth [40]. In humans, it was reported that autosomal-
recessive steroid-resistant nephrotic syndrome is associated with NPHS2 mutations, and
podocin mutations result in changes in the distribution of nephrin and other proteins
in podocytes [38,41]. In this study, we showed that NPHS2 is associated with podocin
dysfunction not only by mutation but also by abnormal hypermethylation.

AHR (aryl hydrocarbon receptor) is another gene that has been implicated in kidney
disease, although its role is not as extensively studied yet. AHR is a ligand-activated
transcription factor that plays a crucial role in xenobiotic metabolism and the regulation of
various biological processes, including immune responses and cellular differentiation [42].
Studies have shown that AHR activation is involved in the pathogenesis of several renal
diseases, including renal fibrosis and glomerular injury.

Studies using animal models have demonstrated the involvement of AHR in kidney
injury and disease progression. For example, in a mouse model of unilateral ureteral
obstruction, AHR activation was shown to exacerbate renal inflammation and fibrosis,
whereas AHR deficiency attenuated these pathological changes [43]. Furthermore, in
a murine model of diabetic nephropathy, AHR activation contributed to macrophage
infiltration, extracellular matrix accumulation and mesangial cell activation [44]. In human
studies, AHR has been associated with kidney-related outcomes. In a cohort of patients
with diabetic nephropathy, higher AHR expression levels were found to be associated with
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more severe renal pathology and worse renal function [45]. These findings suggest that
AHR may play a role in the pathogenesis of kidney disease by contributing to inflammation,
oxidative stress, and fibrosis.

Contrary to NPHS2 and AHR, which is a well-known gene involved in kidney function,
the role of CHCHD4 in kidney disease has not been studied as much. CHCHD4, a redox-
sensitive mitochondrial protein, has been shown to regulate aspects of the basal cellular
oxygen consumption rate, including hypoxia signaling and HIF-1α stability [46–48]. Stabi-
lization of HIF-1α, a key regulator of tissue response to hypoxia in the kidneys, has been
shown to ameliorate tubulointerstitial injury [49]. It was suggested to assume that methy-
lation of CHCHD4 might be related to a reduction in kidney function through regulating
HIF-1a after hypoxic injury [50].

In pathway analyses, we found common associations with PI3K/Akt, MAPK, and
Rap1 pathways in both analyses. Evidence for the role of the PI3K/Akt signaling pathway
in renal damage has been offered by recent studies. One study reported that down-
regulation of the PI3K/Akt signaling pathway reduces profibrotic interstitial cells and the
potential number of tubular cells, which is associated with excessive interstitial matrix
production [51]. Another study revealed that pharmacologic inhibition of PI3K reduced
proliferation in fibroblasts in rat unilateral ureteral obstruction models [52]. In addition,
alteration of MAPK signaling with activation by Ras or Rap1 has been reported in various
kidney diseases [53–55]. In a unilateral ureteral obstruction model, NF-kB and MAPK
signal pathways are activated to switch on the inflammatory response to aggravate kidney
fibrosis [55]. One study demonstrated in vivo and in vitro ischemic–reperfusion injury
induced an increase in phospho-MAPK, and fibrosis markers were decreased following the
addition of MAPK inhibitor [54]. Consistent with these previous studies, the present study
suggested that epigenetic changes in genes related to these pathways may be associated
with renal dysfunction in the general population.

To our knowledge, this is the first study to evaluate the association between specific-
site DNA methylation and CKD with serially obtained methylation datasets. Previous
studies on DNA methylation have made efforts to identify biomarkers for chronic kidney
disease. However, to the best of our knowledge, no study has investigated the association
between methylation changes in both the initial assessment and follow-up examinations
and changes in renal function, as our study did. In our research, we first identified
methylation sites associated with the occurrence of CKD in a general population. Among
these sites, we selected those that exhibited concurrent changes in methylation levels
along with changes in renal function over time. Essentially, by employing two distinct
approaches—CKD occurrence and progression—we were able to pinpoint common methy-
lated sites. This enabled us to uncover more reliable indicators of the association between
methylation and renal function.

Although our study provided novel evidence of potential epigenomic biomarkers for
CKD, it is important to acknowledge several limitations. In our study, we utilized a less
conservative approach in the initial screening stage, known as univariable analysis, by set-
ting a threshold of p < 0.001, which is higher than the typical significance level in epigenetic
studies. This decision was made to validate genes that were consistently identified across
two different designs and were concomitant. However, this less conservative approach may
raise concerns regarding the statistical robustness of the findings. Furthermore, it is impor-
tant to note that the DNA methylation analysis conducted in our study was performed on
whole blood samples rather than kidney tissue. However, emerging research suggests that
differentially methylated regions relevant to specific traits in blood may exhibit similar asso-
ciations in the target tissues, as supported by recent publications [56,57]. A previous study
has reported associations between DNA methylation of certain CpG sites related to eGFR
in blood cells and renal fibrosis when DNA methylation was measured in renal tissue [58].
This suggests a potential translation of DNA methylation patterns observed in blood to
kidney tissue. This assumption finds support in the physiological role of the kidneys,
which involves the filtration of waste products from the blood, as well as the involvement
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of immune cell-related pathophysiology in certain kidney diseases. Another limitation of
our study is the potential for unadjusted variables in the multivariable adjustment analysis,
which could introduce residual confounding and impact the observed associations. In
addition, DNA methylation was quantified in whole blood, which represents a mixture
of various cell types. It is important to acknowledge that DNA methylation patterns can
vary across different cell types [59], and studying methylation in whole blood may not
capture cell type-specific differences. Further investigations are warranted to address
these limitations and explore the cell type-specific DNA methylation patterns associated
with kidney disease in future studies. Since this study was conducted only in Korea, its
application in other ethnic groups may not be suitable. Further investigations using a larger
number of CpG sites and various ethnicities in larger populations are needed to allow
specific epigenetic biomarkers to be established.

5. Conclusions

Epigenomic and transcriptomic profiling, coupled with protein and metabolite analy-
sis, may give a more complete picture of CKD. Genomic and epigenomic biomarkers may
not only provide information on the etiology and mechanisms underlying CKD progression
but may also be used for early diagnosis and appropriate treatment selection, enabling
therapy to be personalized. Through this effort to move daily practice toward a precision-
medicine approach, early identification of high-risk populations for CKD could ultimately
guide the clinician towards a better assessment of manageable kidney risk factors and to
improve patient outcomes.
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