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Abstract: Accurate inference of genetic ancestry is crucial for population-based association studies,
accounting for population heterogeneity and structure. This study analyzes genome-wide SNP data
from the Netherlands Twin Register to compare genetic ancestry estimates. The focus is on the
comparison of ancestry estimates between family members and individuals genotyped on multiple
arrays (Affymetrix 6.0, Affymetrix Axiom, and Illumina GSA). Two conventional methods, principal
component analysis and ADMIXTURE, were implemented to estimate ancestry, each serving its
specific purpose, rather than for direct comparison. The results reveal that as the degree of genetic
relatedness decreases, the Euclidean distances of genetic ancestry estimates between family members
significantly increase (empirical p < 0.001), regardless of the estimation method and genotyping
array. Ancestry estimates among individuals genotyped on multiple arrays also show statistically
significant differences (empirical p < 0.001). Additionally, this study investigates the relationship
between the ancestry estimates of non-identical twin offspring with ancestrally diverse parents and
those with ancestrally similar parents. The results indicate a statistically significant weak correlation
between the variation in ancestry estimates among offspring and differences in ancestry estimates
among parents (Spearman’s rho: 0.07, p = 0.005). This study highlights the utility of current methods
in inferring genetic ancestry, emphasizing the importance of reference population composition in
determining ancestry estimates.

Keywords: within-family analysis; genetic ancestry estimation; population structure; principal
components analysis (PCA); ADMIXTURE

1. Introduction

Genetic association studies have become an effective research tool for identifying ge-
netic loci related to complex phenotypes and diseases [1]. A fundamental step of performing
genetic association studies is the detection of and correction for population structure. In this
paper, we focus on population structure created by ancestry divergence and its detection
based on genotype data. In general, strategies for estimating global ancestry from genetic
data can be categorized into two broad groups: algorithmic and model-based approaches.
Commonly employed, each method has been shown to provide reliable inferences of genetic
ancestry in unrelated individuals and to elucidate population structure from genome-wide
data [2].

Algorithmic methods are exemplified by cluster analysis and principal component
analysis (PCA). In genetic datasets, PCA is performed to identify systematic variation
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amongst individuals’ genotypes by a transformation of genotype data into a smaller
group of uncorrelated variables, called principal components (PCs), usually with the
constraint that each PC successively captures less variation in the original data. PCA of
genotypic data yields a series of scores per individual, corresponding to the values of
these PCs. Top PCs typically reflect population structure, allowing inferences of genetic
ancestry. PCA has demonstrated its utility for elucidating genetic ancestry from seemingly
unrelated samples [2], correcting for confounding due to population structure [2,3], and
understanding population ancestry composition and migration [4–7].

The application of PCA in genetic analysis is not without challenges. Care must be
taken to ensure that PCs are unbiased and reflect variation in ancestry and not some other
form of systematic variation. Rather than capturing population structure, some PCs may
reflect linkage disequilibrium (LD) structure. If such PCs are included as covariates in
genome-wide association studies (GWASs), the power of these studies is reduced [6,8–10].
The degree of population structure captured by PCA may also be diminished by batch
effects or family structure. Therefore, commonly employed steps in PCA include determin-
ing unrelated individuals, pruning genetic markers in LD, and excluding outlier samples
that may be indicative of poor genotyping quality or batch effects.

Model-based approaches, such as those embodied by the programs STRUCTURE [11],
fastSTRUCTURE [12], FRAPPE [13], and ADMIXTURE [14], present alternative methods.
These approaches provide relative proportions of ancestry and estimate global individ-
ual ancestry proportions based on parameterized statistical models. Commonly, these
techniques take Bayesian or maximum likelihood estimation approaches to optimize the
probability of observed genotypes by alternatively updating ancestry coefficient and popu-
lation allele frequency matrices. The resulting individual ancestry proportions are thought
to be more directly interpretable than PCs, though careful interpretation is warranted [15].

The two methods appear to have little in common at the surface due to underlying
analytical differences. One involves the explicit definition of a model, while the other does
not. A link between the approaches has been investigated, and strategies for identifying
admixture proportions from PCs of PCA have been proposed [16–19], suggesting ancestry
proportions interpreted from PCA and the results of model-based approaches are consis-
tent [20,21]. Given this congruence, the objective of this study was not to directly compare
the methods. Instead, the focus was on evaluating ancestry estimates obtained from each
method in realistic scenarios where individuals in GWASs possess data from different
genotyping arrays due to the utilization of successive generations of genotyping arrays
over time.

One strategy for mitigating concerns of population structure in GWASs is to employ
a family-based design [22–25]. With the inclusion of closely related family members
new questions may arise. For example, when two individuals from genetically diverse
populations mate, their offspring will be admixed, thereby possessing ancestry distributions
that differ from both parents. When a child’s ancestry ‘varies’ from its biological parents, the
child and at least one parent represent potential population outliers in GWASs, resulting in
potential exclusion from the study. Genetic ancestry estimates between the sibling offspring
of diverse parents may show increased variation in calculated ancestry due to the random
assortment of inherited alleles. We assess the conditions under which such situations may
arise by focusing on the sibling offspring of more diverse parents to assess if they are more
dissimilar to each other than those with ancestry-similar parents.

In this paper, we examine genetic ancestry estimates between pairs of family members
across the spectrum of genetic relatedness. We leverage data from the 1000 Genomes
Project (1000 G) [26] and the Genome of the Netherlands (GoNL) [27,28] reference panels
as well as multiple large single nucleotide polymorphism (SNP) datasets from participants
of the Netherlands Twin Register (NTR) [29,30]. The NTR includes nuclear families, mainly
two-generation, forming parent, parent–offspring, dizygotic twin and sibling, and monozy-
gotic twin pairs, all independently genotyped. The NTR also includes SNP datasets of
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individuals who were genotyped on at least two separate genotyping arrays, allowing for
the assessment of genotyping platform effects on genetic ancestry estimates.

2. Materials and Methods

An overview of the analytical strategies employed in this study is shown in Figure S1.

2.1. Sample Selection and Genotyping

All individuals in the study are participants of the Netherlands Twin Register (NTR) [29,30].
The NTR recruits multiples (i.e., twins and high-order multiples) and their parents, siblings,
and spouses to take part in extensive phenotyping and a collection of biological materials for
genotyping. DNA from samples provided by the NTR participants was isolated using stan-
dard protocols [31]. Individuals were genotyped on Affymetrix 6.0 (Affymetrix Inc., Santa
Clara, CA, USA; AFFY6 Nraw individuals = 12,779, Nraw variants = 905,422), Affymetrix Axiom-
NTR [32] (AXIOM Nraw individuals = 3606, Nraw variants = 642,716), or Illumina GSA-NTR [33]
(Illumina Inc., San Diego, CA, USA; ILLGSA Nraw individuals = 14,553, Nraw variants = 669,322)
platforms. Nearly all genotyping was performed at the Avera Institute for Human Ge-
netics (Sioux Falls, SD, USA), with a proportion of those on AFFY6 genotyped at Rutgers
University Genomics Center (New Brunswick, NJ, USA). All genotyping was performed
according to the respective manufacturer’s protocol.

2.2. Dataset Curation

Three platform datasets were created with the backbone and custom content of each
array (AFFY6, AXIOM, and ILLGSA). Sample and SNP quality control was conducted on
each dataset separately using Plink v1.9 [34]. A Harmonized dataset (61,433 overlapping
markers from all three platforms) was created from the cleaned datasets since family
members could be genotyped on different arrays. The four datasets underwent the same
analytical procedures.

2.3. Final Sample Composition

Table 1 describes the final sample after quality control (see Appendix A). Familial
relationships were established with Identity-By-Descent (IBD) sharing. In the Harmonized
dataset, which enabled family relationships across the genotyping platforms, there were
23,086 unique individuals from 6692 families. There were 3406 MZ twin pairs, 8464 DZ
twin or sibling pairs, 16,878 parent–offspring pairs, and 3023 (unrelated) spouse pairs. In
each platform dataset, only relationships where family members were genotyped on the
same platform were considered. Across all per-platform data, the final sample consisted of
21,117 unique individuals belonging to 6361 families. Of the total per-platform data (three
datasets), there were 3258 MZ and 7246 DZ twin or sibling pairs and 13,437 parent–offspring
and 2691 spouse pairs.

Table 1. Final NTR sample description after quality control and filtering.

Genotyping
Platform

Unique
Families

Unique
Individuals

MZ Twin
Pairs

DZ Twin/Sibling
Pairs

Parent–Offspring
Pairs Parent Pairs

AFFY6 2800 7575 1279 2966 2849 438
AXIOM 734 2593 433 591 2222 448
ILLGSA 3562 11,597 1546 3689 8366 1805

Across all platforms 6361 21,177 3528 7246 13,437 2691
Harmonized 6692 23,086 3406 8464 16,878 3023

Of the total available sample, 751 individuals were genotyped on at least two of the
platforms, 35 of which were genotyped on all three genotyping arrays (Figure 1).
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Figure 1. Venn diagram of genotyped NTR individuals according to genotyping platform.

2.4. Reference Dataset

Unrelated individuals in the 1000 G (N = 2487) and GoNL (N = 498) reference panels
were determined using HapMap3 SNPs. After the alignment of alleles between the reference
panels, SNPs present in both datasets were identified (N = 562,607). A final reference set
was created with the overlapping markers and subsequent exclusion of SNPs with a call
rate of less than 98% (final autosomal marker count: 562,447).

2.5. Principal Components Analysis

The largest set of unrelated NTR participants was determined with the KING v2.2.0
software [35] with options --unrelated-degree 2 (i.e., no 1st- or 2nd-degree relationships).
In each dataset, unrelated individuals were further filtered to exclude samples with a call
rate of less than 95% (a more stringent threshold than the first round of quality control).

The generation and selection of the SNPs for PCA and ADMIXTURE from each of the
three platform and Harmonized datasets were determined with the unrelated individual
datasets. Autosomal SNPs were selected and filtered to exclude those with a call rate of less
than 95%, a minor allele frequency (MAF) of <0.01, and a Hardy–Weinberg Equilibrium
(HWE) of p < 0.001. SNPs were pruned for linkage disequilibrium (LD) by removing each
SNP with an R2 value greater than 0.5 with any other SNP within a 250-SNP sliding window
(advanced by one SNP each iteration) using Plink v1.9 [34]. Long-range LD regions were
removed as previously described [8], resulting in a dataset-specific selection of high-quality,
independent SNPs for PCA.
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In total, four analysis datasets were generated (three genotyping platforms and the
Harmonized set). The selected SNPs of each dataset were then merged with the final
reference dataset and filtered to exclude SNPs with a call rate of less than 98% (final
SNP count per dataset: AFFY6 = 193,840; AXIOM = 215,848; ILLGSA = 305,121; and
Harmonized = 50,030).

For each dataset, 10 PCs were calculated with the SMARTPCA software [16], using
1000 G and GoNL reference populations. PCs were calculated for 27 populations (26 global
populations represented in 1000 G plus the GoNL population) and subsequently projected
onto all study individuals. PCs were compared between genetic relatedness groups and
platforms using descriptive statistics, correlations, and Euclidean distances.

2.6. ADMIXTURE Analysis

The cross-validation procedure in ADMIXTURE v.1.3.0 [14,20] was used to identify
the value of K, the optimal number of ancestral populations, in the merged 1000 G and
GoNL reference panels. The reference data were filtered for a MAF of <0.01 and pruned
for LD (SNPs with R2 > 0.5 were excluded using a 250 SNP window, advanced by one
SNP each iteration). The resulting SNP set (N = 394,918) was analyzed with the cross-
validation procedure. The cross-validation method partitions all the observed genotypes
into K roughly equally sized folds. The procedure masks all genotypes for each fold in
turn. For each fold, the resulting masked dataset is used to calculate estimates of P and Q,
the population allele frequencies, and the ancestry proportions, respectively. We varied K
from 3 to 27. Prediction errors, reported as the standard error of the cross-validation error
estimates, were used to select the model with the lowest error. The optimal model was
K = 9, corresponding to the number of distinct ancestral populations (Figure S2).

Study samples were then projected on to the population structure (allele frequencies)
of the nine ancestral populations using the learned clusters and ancestry proportions
from the K = 9 model of the merged 1000 G and GoNL reference dataset. For each study
participant, ancestry proportions of each of the nine demes were calculated (Q1–Q9). The
resulting ancestry proportions were compared between genetic relatedness groups and
genotyping platforms using descriptive statistics, correlations, and Euclidean distances.

2.7. Statistical Analysis

Quantitative evaluation of the genetic ancestry measures was performed on Euclidean
distances calculated between pairs of family members based on the relatedness group. For
each ancestry estimation method, Euclidean distances were used to quantify differences of
the multidimensional data (i.e., 10 PCs or nine ADMIXTURE ancestry proportions) between
pairs of individuals with a singular metric. Within each pair of individuals, differences
in the PCs or ADMIXTURE ancestry proportions were squared and then summed over
all method-specific values. The Euclidean distance was calculated by taking the square
root of the summed squared differences (see Formula (1)). In this manner, smaller Eu-
clidean distances represent more similar pairs across all PCs or ADMIXTURE ancestry
proportions, whereas larger Euclidean distances indicate a greater dissimilarity across the
corresponding values.

Formula (1). Formula for calculating Euclidean distances between pairs of individuals
for ten PCs or nine ancestry proportions.

dx,y =

√√√√ J

∑
j=1

(
xj − yj

)2 (1)

dx,y = Euclidean distance of J between two individuals. x,y = two individuals, representing
a pair within a family. J = PCs 1–10 or Q 1–9.

We employed a non-parametric Kruskal–Wallis permutation test (10,000 permutations
of relatedness group labels) to assess if there was a difference in ancestry estimates across
the four relatedness groups (MZ twins, DZ twins/siblings, parent/offspring, and parent
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pairs) for each estimation method (PCA and ADMIXTURE). A Kruskal–Wallis test was
employed due to the unequal sample sizes of the relatedness groups and the non-normal
distributions of the Euclidean distances, particularly in the MZ twin group. A post-hoc
Dunn test was used to determine which familial group(s) differed. Using the MZ twin group
(genetic control due to being genetically identical), we again implemented the Kruskal–
Wallis permutation scheme to evaluate if there were ancestry estimation differences due to
the genotyping platform (AFFY6, AXIOM, ILLGSA, and Harmonized) for each estimation
method. A post-hoc Dunn test was used to determine which platform(s) differed. We used
the same statistical strategy to evaluate differences in ancestry estimates from individuals
genotyped on two platforms for both estimation methods. Here, the analysis was based on
three groups (individuals with genotypes obtained from AFFY6 and AXIOM, AFFY6 and
ILLGSA, or AXIOM and ILLGSA).

3. Results
3.1. Principal Components Analysis

Table S1 contains descriptive statistics of the PCs. In general, the PCs between plat-
forms are comparable but are not identical since the input SNPs of each dataset varied.
Thus, we observed minimal variation in mean values and ranges.

Visualization of the projected PCs 1–10 can be found in Figure S3. To a large extent,
the scatter distributions of PCs 1–2 across platforms are nicely superimposed, confirming
the similarity of calculated PCs independent of the genotyping platform. Although the
same analytical procedures were applied to each dataset, the set of input SNPs for PCA
varied. Therefore, the shift of plotted PCs likely reflects differences in input SNPs across
genotyping platforms. Shifts are more pronounced in the plots of PC3 vs. PC4 and PC5 vs.
PC6. These PCs may be capturing variation attributable to platform-specific SNPs. For the
axes showing the most variation, it is plausible that the ILLGSA axes are simply reversed
compared to AFFY6 and AXIOM.

To examine the relationship of PCs across datasets representing distinct genotyping
arrays, we calculated correlations of PCs 1–10 within and between datasets using the results
of array-mimicked reference populations as the input. Correlations of PCs 1–10 within
each genotyping platform show no correlation, reflecting the inherent statistical property
of PCs in that they are uncorrelated (Figure S4). The correlations of the same PC across
platforms are near unity. Negative correlations become apparent for PC3 and PC4 between
the AFFY6/AXIOM and ILLGSA platforms. Further divergence of correlations is observed
between PCs 6–8, potentially attributable to variation of the platform SNPs.

We next assessed the differences in PCs between the MZ twin and DZ twin/sibling
pairs. Since siblings have the same parents, it was expected that the differences in PCs
between siblings would be near zero. Since MZ twins arise from the same fertilized
egg, the expectation for their PC differences is zero, with non-random values reflecting
measurement errors or post-splitting/somatic mutations [36]. The results of comparisons
for the MZ twin pairs and DZ twin/sibling pairs are shown in Tables S2 and S3. Mean
differences in PCs between the MZ twins were near zero across all ten PCs, irrespective of
the genotyping array. The mean differences between the DZ twins/sibling pairs were also
near zero across all genotyping platforms. The absolute mean differences in PCs between
the MZ twins were less than the DZ twin/sibling pairs across all 10 PCs and genotyping
platforms, with few exceptions. The standard deviation of the PC differences in the MZ
twins are always smaller than the DZ twins/siblings, reflecting slightly increased variation
in PC estimates between non-identical twin siblings.

According to the relatedness group and dataset, Euclidean distance measures of the
PCs are shown in the bar plots in Figure 2 (right panel). There were significant differences in
Euclidean distances among all familial groups (empirical p < 0.001 and Dunn test p < 0.001
for all familial group comparisons). Across all datasets, Euclidean distances were inversely
related to the genetic relatedness between the pairs, as expected (Figure S5). That is, highly
genetically similar/identical individuals (MZ twin pairs) have smaller Euclidean distances



Genes 2023, 14, 1497 7 of 16

than those that are less genetically similar, such as the DZ twin/sibling pairs. Parent pairs,
assumed to be unrelated, have the largest Euclidean distances.
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Using the MZ twin group as a genetic control to assess platform effects on genetic ances-
try estimates, we observed statistically significant differences across genotyping platforms
(empirical p < 0.001). Significant differences were observed between platforms produced
by different manufacturers (Affymetrix vs. Illumina) and compared to the Harmonized
dataset (Dunn test p < 0.001 for AFFY6/ILLGSA, AXIOM/ILLGSA, AFFY6/Harmonized,
AXIOM/Harmonized, and ILLGSA/Harmonized). There were no significant differences
between Euclidean distances in the MZ twins genotyped on AFFY6 and AXIOM (Dunn
test p = 0.497).

For individuals with genetic data from multiple genotyping platforms (N = 751; 35
of which were genotyped on all three platforms—see Figure 1), we calculated Euclidean
distances of PCs within individuals across the genotyping array (Figure 3, right panel).
We expected Euclidean distances near zero, like those between the MZ twins; however,
differences of slightly larger magnitude were observed. Statistically significant differences
existed between all groups (empirical p < 0.001 and Dunn test p < 0.001 for all group
comparisons). The smallest distance values were obtained for individuals with genotypic
data from the AFFY6 and AXIOM platforms. Larger Euclidean distances were observed for
individuals with data from each of the array manufacturers: Affymetrix (either AFFY6 or
AXIOM) and Illumina (ILLGSA). Because the platform SNPs on which the PCs are based
are not identical, the observed differences can be attributed to input SNP variation.

3.2. ADMIXTURE Analysis

A global representation of the nine identified ancestral populations (APs) is illustrated
in Figure S6. AP1 represents an amalgam of Colombia, Italy, Puerto Rico, and Spain.
AP2 predominately reflects Chinese regions (Beijing and Xishuangbanna) and Vietnam.
AP3 captures the Finnish population and AP4 represents England, Scotland, and the
Netherlands. AP5 and AP6 reflect Peruvian and Mexican populations and Western African
populations from Gambia and Sierra Leone, respectively. AP7 symbolizes South Asia,
namely Bangladesh, India, Pakistan, and Sri Lanka. AP8 mirrors African populations from
Kenya and Nigeria, and AP9 represents East Asian countries, primarily from Japan but
also from Beijing, China.
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To estimate individual ancestry in the NTR samples, we projected them onto the
population structure (allele frequencies) derived from the 1000 G and GoNL reference
datasets by specifying K = 9. Descriptive statistics of the ancestral population proportions
(Q1–Q9) from the three platform and Harmonized datasets of the NTR participants are
shown in Table S4. Across datasets, there was little variation in mean ancestry proportions.
AP4/Q4 represents the majority of the NTR individuals, indicating that most of the genetic
ancestry corresponds to the 1000 G and GONL reference data obtained from Northern and
Western Europeans and the Netherlands.

The stacked bar charts in Figure S7A–D display the ancestry proportion estimates
of each NTR individual per genotyping platform and in the Harmonized dataset. Each
stacked bar reflects a single individual and their ancestry fractions for the nine populations,
arranged in increasing order of AP4. The average Q of AP4 is 0.695, 0.687, 0.687, and 0.694
from AFFY6, AXIOM, ILLGSA, and Harmonized data, respectively. Across all data, there
is a modest amount of ancestry captured by AP1 with average Q estimates of 0.187, 0.191,
0.191, and 0.188.

As observed in the stacked bar charts, the ancestral fractions of all the NTR individuals
are nearly indistinguishable from each other for across platforms. This finding highlights
a relatively similar population composition of individuals genotyped on each platform.
Comparatively, PCs can reveal more fine-grained differences between the same individuals,
such as North–South or East–West clines. Within each platform dataset, a small number
of genetically diverse and admixed individuals are shown on the left side of each figure.
These individuals show stark variation in the ancestry proportions relative to the bulk of
the NTR sample population, indicating more heterogenous ancestry and deviation from
the majority Northern and Western Europe origin as captured by AP4. Similar admixture
and population heterogeneity patterns among the NTR samples were observed in the PCs
(Figure S3F–J).

Correlations of ancestry proportions within and between genotyping platforms for all
the NTR participants are shown in Figure S8. Within each ancestral population (Q1–Q9),
the estimates are strongly correlated between the genotyping arrays. For values of Q
within the genotyping platforms, ancestry estimates are mostly negatively correlated or
not correlated at all. Between values of Q and between the genotyping platforms, estimates
are also mainly negatively correlated or not correlated at all. Exceptions include positive
correlations between Q2 and Q7 as well as Q2 and Q9, reflecting a moderate overlap in the
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South and East Asian populations. There were also slightly positive correlations between
Q5 and Q8, and Q6 and Q8 obtained from the AXIOM and ILLGSA arrays. The moderately
strong correlation between the Q6 and Q8 correlation is likely due to the overlap of the
African populations comprising each ancestral population.

We compared the estimates between the MZ and between DZ twins/sibling pairs to
examine the ancestry proportions in more detail. The results are shown in Tables S5 and S6.
Mean differences between the MZ twins were near zero across all ancestry proportions and
genotyping arrays. The same was true for the DZ twins/siblings, but the mean differences
are nearly always smaller between the MZ twins than between the DZ twins/siblings.

Consistent with the evaluation of PCs, we calculated Euclidean distances over the
nine ancestry proportions within family pairs according to Formula (1). Comparable to the
Euclidean distances of PCs, the distances in ancestry proportions increased as the degree of
relatedness between the pairs of individuals became less (Figure 2, left panel). There was
a statistically significant difference between all familial groups (empirical p < 0.001 and
Dunn test p < 0.001 for all familial group comparisons).

Again, using the MZ twins as a genetic control group, we compared Euclidean dis-
tance measures as a function of the genotyping platform within this group. Overall, we
observed statistically significant differences (empirical p < 0.001). The individual platform
comparisons all yielded statistically significant differences (Dunn test p < 0.001), except for
the comparison between the AFFY6 and Harmonized platforms.

We also investigated the ancestry proportions of individuals genotyped on multiple
platforms. Except for the AFFY6_ILLGSA and AXIOM_ILLGSA group comparison (Dunn
test p = 0.404), statistically significant differences existed for all group comparisons (empiri-
cal p < 0.001 and Dunn test p < 0.001). Like the Euclidean distances of PCs of individuals
genotyped on multiple arrays, the smallest distances were observed for those with genetic
data obtained from the Affymetrix platforms (Figure 3, left panel). Larger distances were
observed when individuals were genotyped on the Affymetrix and Illumina platforms.

3.3. Ancestry Outliers—PCA vs. ADMIXTURE

Ancestry outliers were identified by defining thresholds based on minimum and
maximum PC and ancestry proportion values of CEU or GoNL reference populations.
For PCA, thresholds were defined for each platform and the Harmonized set. PCs from
the CEU and GoNL individuals were calculated with datasets mimicking the content of
each platform or the Harmonized dataset. CEU and GoNL platform-specific thresholds
were not possible for ADMIXTURE since the nine populations were determined with an
LD-pruned dataset of markers present in both 1000 G and GoNL panels. Each NTR dataset
was projected onto the reference populations.

Ancestry outliers were defined as having PCs or ADMIXTURE proportions less than
or greater than reference (i.e., CEU or GoNL) minima or maxima, respectively. The NTR
individuals with values greater than or equal to the reference minimum or less than or
equal to the reference maximum were considered inliers. Outliers were determined for
each PC and each value of Q. The total number of outliers across all PCs and values of Q
was determined by identifying unique individuals.

Table 2 shows the number of outliers and inliers per dataset with thresholds deter-
mined by the CEU or GoNL reference populations. The number of outliers between the
PCA and ADMIXTURE are very similar when thresholds were defined by the larger GoNL
reference population (N = 498). A larger deviation in outlier counts is observed for CEU
(N = 99)-defined boundaries, which is a smaller and more ancestrally variable popula-
tion than GoNL. Regardless of the reference population, there is more variation in outlier
counts in the Harmonized dataset, likely due to the smaller number of markers used in the
calculations.
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Table 2. Outliers and inliers from PCA and ADMIXTURE based on two reference datasets.

Min. and Max. Thresholds Determined by GoNL 1

Common
Outliers 5

Min. and Max. Thresholds Determined by CEU 2

PCA 3 ADMIXTURE 4 PCA 3 ADMIXTURE 4 Common
Outliers 5

Dataset
(N)

Outliers
(%) Inliers (%) Outliers

(%) Inliers (%) Outliers
(%) Inliers (%) Outliers

(%) Inliers (%)

AFFY6
(8744) 525 (6.0%) 8219

(94.0%) 695 (7.9%) 8049
(92.1%) 457 818 (9.4%) 7926

(90.6%)
2419

(27.7%)
6325

(72.3%) 704

AXIOM
(3361) 249 (7.4%) 3112

(92.6%) 341 (10.1%) 3020
(89.9%) 224 451 (13.4%) 2910

(86.6%) 896 (26.7%) 2465
(73.3%) 382

ILLGSA
(13,686) 933 (6.8%) 12,753

(93.2%) 954 (7.0%) 12,732
(93.0%) 809 1169 (8.5%) 12,517

(91.5%)
2501

(18.3%)
11,185

(81.7%) 891

Harmonized
(25,005) 1794 (7.2%) 23,211

(92.8%)
5617

(22.5%)
19,388

(77.5%) 1584 3438
(13.7%)

21,567
(86.3%)

12,501
(50.0%)

12,504
(50.0%) 2796

1 Sample size is 498. 2 Sample size is 99. 3 Min. and max. thresholds determined within each dataset (498 GONL
and 99 CEU reference samples mimicking the content of each dataset). 4 Min. and max. thresholds determined
from entire reference dataset (GONL and CEU) and not within each dataset. 5 Number of outliers is shared
between each method.

3.4. Assessment of Within-Family Diversity

Using the calculated PCs and ADMIXTURE ancestry proportions, we also assessed if
the sibling offspring (non-MZ) of diverse parents were more dissimilar to each other than
those with parents of similar ancestry (Figure 4). Euclidean distances of the DZ twin and
sibling offspring were averaged within a family to avoid inflating the number of compar-
isons in families with multiple offspring. We found small positive correlations between
Euclidean distances of parent pairs (i.e., father and mother) and averaged distances of all
DZ twin and sibling pairs within a family (ADMIXTURE Spearman’s rho 0.07, p = 0.005;
PCA Spearman’s rho 0.04, p = 0.122). Overall, the Euclidean distances calculated from the
PCs were smaller in magnitude than those derived from ADMIXTURE ancestry proportions.
Though the ADMIXTURE comparison yielded a statistically significant correlation, it was a
very weak positive relationship. Thus, the sibling offspring of more diverse parents show
slightly more variation in ancestry to each other compared to the sibling offspring with
parents of similar genetic ancestry. However, this weak relationship appears to depend on
the method used for calculating ancestry estimates. Regardless of the method, the near-zero
relationship indicates that the sibling offspring of more diverse parents are slightly more
dissimilar than the progeny of parents of similar genetic ancestry.
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4. Discussion

We examined ancestry estimates as a function of the genotyping array and genetic re-
latedness within nuclear families and evaluated estimates of genetic ancestry obtained from
PCA and ADMIXTURE in twin pairs and their family members based on whole-genome
SNP data from three genotyping platforms and a harmonized dataset. Utilizing reference
data from 1000 G and GoNL as global population surrogates, we demonstrated that PCs
across genotyping arrays are not the same despite identical analytical strategies. We as-
cribe this finding to differences in platform SNPs. Across familial groups, the Euclidean
distance measures of PCs were inversely related to the degree of genetic similarity between
individuals. The greater the genetic relatedness between two individuals, the smaller the
Euclidean distances of their respective PCs. Given that the twin/sibling offspring have
the same parents and possess a genetic profile derived from the same pool of segregating
alleles, this finding is in line with theoretical expectations. However, statistically significant
differences were observed between all familial groups, even between the DZ twin/siblings
and parent/offspring pairs, which would be expected to be ~50% similar. These differences
might also be explained by the fact that within pairs of a familial group, there are variable
numbers of ancestry outliers. This intrinsic difference would result in greater variation in
the Euclidean distance measures.

We used ADMIXTURE, a model-based ancestry estimation method, to detect the
optimal number of ancestral populations in the global reference data. Ancestral population
4 was the major ancestry fraction of the NTR participants, representing Northern and
Western Europe and the Netherlands. The differences in ancestry proportions of the nine
populations were near zero between the MZ twins and DZ twins/siblings. Consistent
with the evaluation of PCs, the Euclidean distance measures of ancestry proportions were
inversely proportional to the amount of allele sharing between family members.

Given the uniqueness of the NTR data, we evaluated estimates of genetic ancestry
from genotypic data from the independently genotyped MZ twins. Importantly, within-
platform differences of the MZ twins were non-zero. Although measurement error may
play a role, differences within the MZ twin pairs cannot simply be ascribed to measurement
error alone. One DNA sequencing study showed in a 40- and a 100-year-old MZ twin pair
that somatic mosaicism leads to differences within pairs [37], and more recently, germline
differences were shown in a large Icelandic study of the genomes in pedigrees of MZ
twins [36]. The relative contribution of germline differences and measurement errors as
sources of variation in ancestry estimates for MZ twins remains to be determined.

We examined ancestry estimates of individuals genotyped on multiple arrays and
observed the largest Euclidean distances between the Affymetrix (AFFY6/AXIOM) and
Illumina (ILLGSA) platforms. These variations can be attributed to array manufacturer
differences, including array design, chemistry, and platform-specific genotype calling
algorithms. The bar plots of the Euclidean distances for the MZ twins, who should be
genetically identical, also exhibit these differences. It is crucial to consider the unequal
sample sizes per platform, the variability in the composition of genotyped individuals,
and the limited number of samples with genotypes from multiple arrays, which impose
limitations on the study’s findings. Regardless of the ancestry estimation method and
familial group, the Euclidean distances for individuals genotyped on the ILLGSA platform
are smaller than the other platform datasets. This finding is consistent with the fact that
the Illumina GSA-NTR array includes an improved backbone for capturing population
variation and was further customized to include additional content to aid in population-
specific GWASs [33]. Perhaps the inclusion of these additional population-relevant markers
enhances the input into PCA and ADMIXTURE, in turn providing better population
resolution at the level of the individual. This platform enhancement reflects the small(est)
observed differences in ancestry estimates in MZ twins, which would be expected to be
essentially zero.

The accuracy of ancestry inference methods depends on various factors, including the
distribution of human genetic variation across geographic regions, the types and number
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of genetic markers used, the sampled population, the choice of reference populations,
and the statistical methods for interpreting variation patterns [38]. Ancestry exists on a
continuum due to the complexity of human evolution and migrations [39]. In this study,
the spectrum of ancestry considered is limited to the diversity represented in the global
surrogate samples from the 1000 G and GoNL projects. As more extensive and diverse
genetic datasets become available [40,41], finer resolution estimates of genetic ancestry will
be achievable.

When investigating genetic ancestry, a variety of statistical tests have been recom-
mended for selecting the number of PCs (e.g., Tracy–Widom statistics [16]) or ancestral
populations from ADMIXTURE (e.g., Bayesian information criterion [20]). Meanwhile,
others advise that these decisions be made based on the knowledge of the history of the
study population(s) [21] or additional investigative analysis [7]. The top 10 PCs of the
PCA method are often included in association studies for adjusting for the population
structure [42–45], which is the number of PCs we considered in this project. It is possible
that further examination of ancestry estimates derived from PCA, will lead to utilizing
additional PCs. Future studies examining ancestry estimates from genotype data that are
coordinated and aggregated via imputation would also be of merit.

For many years, PCA has been widely used in genetic association studies to address
population stratification confounding. However, recent scrutiny has raised concerns about
potential biases associated with this technique in population genetic research [46] and
GWASs [47]. In this study, we employed a projection-based PCA approach, and our
results highlight the utility of this method. Importantly, our PCA findings demonstrate
consistency with the results obtained from ADMIXTURE and align well with theoretical
expectations, particularly when evaluating genetic ancestry within family members. While
acknowledging the potential pitfalls associated with PCA in population genetic studies [7],
our research emphasizes the relevance of the projection-based PCA approach and provides
valuable insights into the estimation of genetic ancestry in familial contexts.

Overall, we show genetic ancestry inference methods can provide reliable estimates
of individual genetic ancestry across the genetic relatedness spectrum from genetic data
from various genotyping arrays. The consistency of the estimates is contingent upon
the inclusion of necessary proxies of global population diversity and proper analytical
execution. Genetic relatedness can confound individual ancestry estimates in the absence
of appropriate reference population samples [45]. Several methods for handling relatedness
in PCA have been proposed [48,49] that rely on performing PCA on diverse unrelated
individuals first with subsequent PC prediction based on genetic similarities. To mitigate
the concern of genetic relatedness, we utilized projection strategies to select independent
SNPs for PCA and ADMIXTURE analyses based on unrelated individuals from globally
diverse reference populations. We demonstrated that PCs and ancestry proportions from
ADMIXTURE show minor differences between closely related pairs of individuals (i.e.,
MZ twins) and that these differences are not consistent between genotyping platforms.
Though platform differences were apparent, relatively consistent results were observed
from PCA and ADMIXTURE. From a population genetics perspective, ancestry proportion
estimates may be more favorable than PCA since they are more easily interpretable. That is
because ADMIXTURE returns proportions of membership to surrogate global ancestral
populations, whereas PCA simply reveals axes of variation in the data. Regardless of
the preferred method, the performance of PCA and ADMIXTURE for estimating genetic
ancestry is comparable for downstream analyses including family members genotyped on
multiple platforms.
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Appendix A

Details of sample and SNP quality control procedures.
Samples were excluded if phenotypic sex did not match the genotypic sex (indicating

potential sample swap) (N = 271; 0.88%), if the Plink heterozygosity F value was <−0.10
or >0.10 (N = 292; 0.94%), or if the sample call rate was less than 90% (N = 16; 0.05%).
Within families, pairwise identity-by-descent (IBD) was estimated with Plink v1.9 [34], and
samples were removed if they did not match the expected familial relations (indicating
potential sample swap) (N = 312; 1.00%). NTR samples present in GoNL or related to GoNL
participants were excluded (N = 51; 0.16%).

Next, SNPs were evaluated in each platform and were excluded if they fit any of the
following criteria: minor allele frequency (MAF) < 0.005, HWE p-value < 0.00001, SNP call
rate <95%, or Mendelian error rate >2%. SNPs were also removed if they were palindromic,
A/T or C/G alleles, with an allele frequency between 0.40–0.60. All platform data were
aligned to build 37 of the Human Genome (hg19), and alleles were flipped to the plus
strand if needed. SNPs were also removed if the allele frequencies differed more than 0.10
with the GoNL reference panel (AFFY6 N = 81 of 640265 [0.01%], AXIOM N = 52 of 589258
[0.01%], GSA N = 233 of 497095 [0.05%]).
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