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Abstract: The emergence of next-generation sequencing (NGS) technology has greatly influenced
microbiome research and led to the development of novel bioinformatics tools to deeply analyze
metagenomics datasets. Identifying strain-level variations in microbial communities is important to
understanding the onset and progression of diseases, host–pathogen interrelationships, and drug
resistance, in addition to designing new therapeutic regimens. In this study, we developed a novel
tool called StrainIQ (strain identification and quantification) based on a new n-gram-based (series of
n number of adjacent nucleotides in the DNA sequence) algorithm for predicting and quantifying
strain-level taxa from whole-genome metagenomic sequencing data. We thoroughly evaluated our
method using simulated and mock metagenomic datasets and compared its performance with existing
methods. On average, it showed 85.8% sensitivity and 78.2% specificity on simulated datasets. It
also showed higher specificity and sensitivity using n-gram models built from reduced reference
genomes and on models with lower coverage sequencing data. It outperforms alternative approaches
in genus- and strain-level prediction and strain abundance estimation. Overall, the results show that
StrainIQ achieves high accuracy by implementing customized model-building and is an efficient tool
for site-specific microbial community profiling.

Keywords: n-grams; StrainIQ; metagenomics; microbiota; DSEM; strain-level; site-specific

1. Introduction

Human microbiota form complex ecological communities that discretely inhabit vari-
ous body parts. They play a critical role in human health and metabolism, where alterations
in these microbial compositions could lead to various human diseases. The gastrointestinal
(GI) tract and mouth are the largest ecological environments in the human body, with
several distinct habitats supporting the dynamic growth of highly heterogeneous microbial
species [1–3]. Most of the resident microbial communities in a healthy host contribute to
various metabolic, physiological, and immune functions of the host. However, dysbiosis
in the human microbiome (imbalance in composition and relative abundance of taxa) is
associated with various human diseases or disorders [4]. Dysbiotic microbial communities
influence the cellular processes of the host through altering the gut barrier functions and
releasing bioactive metabolites and immune targets [5–9].

Hence, it is essential to understand the composition of microbial communities in
human health and disease [10]. Extensive research on the human microbiome has shown
its links with human pathologies, especially obesity [11,12], cancer [13], mental health
issues [14], allergies, celiac disease, autism, type 2 diabetes mellitus, inflammatory bowel
disease [11], gingivitis and periodontitis [3], which are associated with alterations (also
referred to as dysbiosis) in microbial communities. The traditional approach limits micro-
biome research to exclusively study species that can be successfully cultured in the lab.
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Although some individual microbial species can have drastic effects on human health, it has
now been identified that the microbial community plays a crucial role in the overall effect
on the host’s health [11]. With the advent of next-generation sequencing technologies, our
ability to identify microbial communities’ composition and function has increased rapidly.
These technological advancements paved the way for the identification of several novel
microbes, and have guided researchers to study the effects of human microbiota on various
human diseases, such as inflammatory bowel disease [15], cancer [13], liver diseases [16],
metabolic diseases [17], the effect of a mother’s microbiome on the infant’s microbiome [18],
brain disease [19], infertility [20], gingivitis, periodontitis [21,22], and more.

Traditionally, bacterial genomes have been reconstructed by sequencing deoxyribonu-
cleic acid (DNA) from pure cultures and manually curating genomic contigs to generate
high-quality drafts or complete genomes. But not all microbes can be cultured in the
lab, owing to the inability to recreate their native growing conditions. Advancements in
shotgun sequencing have led to the development of the culture-independent method of
microbiome studies referred to as genome-resolved metagenomics. This has allowed the
construction of whole genomes from environmental samples, generating a vast number
of draft metagenome-assembled genomes (MAGs). While these methods resolve the lim-
itations of the traditional approach, most of the MAGs are incomplete and suffer from
assembly errors, gaps, chimeras, and contamination. Due to these limitations, close to 90%
of bacterial genomes in the GenBank are currently incomplete [23].

Human microbiome studies have indicated that individuals tend to have a unique
microbial composition, to the extent that they can act as microbial “fingerprints” [24].
Strain-level diversity is what uniquely identifies an individual’s microbiome. In many
cases, strain-level variation also determines a microbe’s ability to cause diseases [25],
resistance to antibacterial drugs [26], or be useful as precise markers to distinguish between
human populations [3]. Hence, it is essential to identify microbes at a strain level to design
an effective personalized treatment regimen for patients.

The identification and quantification of individual taxa in any metagenomics sample
is highly dependent on the availability of high-quality reference genomes. Many tools have
been developed to identify the taxonomic composition using short-read metagenomics
data. Alignment-based methods such as MEGAN [27], MetaFlow [28], and PathoScope [29]
infer the composition in each sample by aligning the reads to existing reference databases.
Hence, these methods are highly dependent on the quality of the reference genomes. Other
categories of tools used to analyze metagenomics data include k-mer-based methods such
as Kraken [30], KrakenUniq [31], CLARK [32], CLARK-S [33], and LMAT [34]. These tools
compare k-mers generated from the reads in metagenomics data against the reference
genomes. Hence, the k-mer-based methods are relatively less sensitive to the quality of
the reference genomes, as long-range alignments are not performed. Also, methods such
as StrainEst [35] and ConStrains [36] use SNPs/SNVs and are highly dependent on the
coverage. In the human body, microbial communities seem to be uniquely concentrated at
different sites such as the gut, skin, and oral cavity [37]. The currently available methods,
detailed by the authors in [27,28,31,32,38,39], primarily use more generic databases of
reference genomes containing all the known microbial species from various body sites. This
large search space can result in a significant number of false positives [28]. Hence, there is a
need for a method that is developed around body-site-specific reference genome databases
to obtain more accurate results. In this study, we proposed a novel n-gram-based method,
StrainIQ, for the identification and quantification of microbial taxa at the strain level using
whole-genome sequencing (WGS) metagenomic samples. StrainIQ takes advantage of the
discriminative nature of unique n-grams as well as the weighted common n-grams present
in incomplete and draft metagenomic assemblies. Additionally, StrainIQ leverages the
body-site-specific reference genome information to increase the specificity of the prediction.
In comparison to other metagenomic taxa profiling methods such as CLARK, MetaPhlAn,
and KrakenUniq, our StrainIQ method showed superior performance using site-specific
reference genome n-gram models.
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2. Materials and Methods
2.1. Site-Specific Reference Genome Sets

A total of 2234 reference genome assemblies cataloged under the Human Microbiome
Project (HMP) in the National Center for Biotechnology Information (NCBI) BioProject
database were downloaded in September 2020. These genomes were sequenced under
various sub-projects under HMP, and belong to different body sites, including the gastroin-
testinal (GI) tract, airways, oral cavity, skin, blood, and urogenital tracts. We downloaded
the reference genome assemblies of the GI tract, blood, and urogenital tract and parsed
those genome assemblies to remove the plasmids present in them.

2.2. Building n-Gram-Based DNA Signature Element Models (DSEMs)

We developed de novo n-gram reference genome models for each body site, called
DNA signature element models (DSEMs), to predict and quantify body-site-specific taxa
at various taxonomic levels. An n-gram is any contiguous sequence of DNA with a fixed
length of n nucleotides. In computational genomics, n-grams are alternatively called k-mers
or n-mers. The StrainIQ method uses unique (occurring in only one genome) and common
(occurring in more than one genome) n-grams as signature elements for identifying taxa in
metagenomic datasets. The de novo building of DSEMs includes the generation of n-grams
from the reference genomes and scoring each n-gram using a scoring function, described in
detail below. The methodology of building site-specific DSEMs is depicted in Figure 1. The
score represents the discriminatory value of each n-gram in the site-specific genomes. An
n-gram occurring in fewer genomes has a higher weightage (high discriminatory power)
than those occurring in multiple genomes.
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Figure 1. Graphical summary of StrainIQ algorithm. (A) n-gram quantification for DSEM building
based on reference genomes. (B) Taxa identification and (C) relative abundance estimation of taxa
from metagenomic data using DSEM. The longer red color lines in the figure indicate the linear
genomes of the microbes from the reference genome and the shorter red lines denote the extracted
n-grams.
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2.2.1. n-Gram Generation and Encoding

For building site-specific DSEMs, the reference genomes in corresponding body sites
are disassembled to a list of contiguous n-grams. For a nucleotide sequence of length x, the
generation of overlapping n-grams yields (x− n + 1)-many n-grams, where n < x. Only four
bases (A, C, G, and T) are allowed in an n-gram; n-grams containing any other characters
are ignored. In our DSEMs, n-grams were encoded using Huffman encoding [40] to increase
efficiency and reduce memory and storage requirements. Then, the list of non-redundant
n-grams was identified from the extracted n-gram for each genome and compared against
those from other genomes in the body site to identify the unique and shared (common) list
of n-grams for each body site. Also, we optimized the size of the n-gram by comparing the
uniqueness of n-grams present in the reference genomes of a body site for different n-sizes.
For this, we generated n-grams of sizes 12 through 27 with +3 increments (such as 12, 15, 18,
and so on) and determined the common and unique n-grams for each case. As described
in the results section, we found that n = 21 is the optimal size for use in DSEM building.
Hence, we extracted unique and common n-grams of size 21 from all the genomes of each
body site and indexed them to build site-specific DSEMs.

2.2.2. Scoring Function

The purpose of the scoring function is to assign weights to the n-grams based on their
discriminatory nature in the corresponding reference genome set. The unique n-grams are
distinct to only one genome in a body site, and common n-grams occur in more than one
genome. The scoring function considers the number of genomes an n-gram is present in
and assigns an appropriate weight to the n-gram to reflect its discriminatory power. The
scoring function implemented in this study was like the term “weighting”, as discussed in
our previous study [41]. For any n-gram x, the score Sx is given by the following expression:

Sx =

(
ln
(

|c|
|{c : xεc}|

)
/ ln|c|

)2
,

where |c| is the total number of reference genomes in the DSEM and |{c: xεc}| is the total
number of genomes in which n-gram x is present.

For a unique n-gram,
|{c : xεc}| = 1,

∵ sx = 1.

The score for n-grams ranges between 0 and 1, where all unique n-grams will receive
a score of 1, and those present in all the genomes will receive a score of 0. The square
power in the denominator rapidly dampens the score for n-grams that are commonly
present in multiple genomes; hence, n-grams that occur in fewer genomes receive a better
discriminatory score closer to 1. A genome is predicted to be present in a sample based on
the sum of the scores of all the n-grams; hence, n-grams with smaller scores can contribute
to the decision-making process.

2.3. Identification of Strains from Metagenomic Sequencing Datasets

The identification step involves generating n-grams from the metagenomic sequencing
reads and comparing them to DSEMs to identify a list of genomes in the metagenomic
data. For this, we deconstructed the sequencing reads into unique overlapping n-grams
and identified their scores based on the DSEM. For each metagenomic dataset generated
for in silico and experimental validation, the reverse reads were converted to a forward
direction and then all reads were combined to generate unique n-grams. We built a matrix
W with genomes as columns and the n-grams as rows, and filled each cell in the matrix
with the scores of the n-grams. For N = {n1, n22, n33 . . ., nx}, where N is a set of n-grams
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ranging from n1 to nx, generated from a metagenomic sequencing read, and G = {g1, g2, g3
. . ., gy}, where G is a set of reference genomes ranging from g1 to gy in a body site, we have

W = (wnxgy) =


wn1g1
wn1g1

...
wnxg1

wn1g2 · · · wn1gy
wn2g2 · · · wn2gy

...
wnxg2

. . .
· · ·

...
wnxgy

.

The summed column score (gj-th column) in the matrix represents the score (Sgj) for
an individual genome and that gives the initial probability of the presence of a specific
taxon in the metagenomic sample:

Sgj =
x

∑
ni=1

wnigj,

where x is the total number of n-grams in the metagenome and gj is the gi-th genome in the
matrix. We calculated the sum for each column in the matrix, represented below:

S =
(
Sgj
)n

gj=1,

where S is a vector of column scores and n is total columns/genomes in the matrix. Then,
each column score Sgj is further normalized using a parameter (nFactorg) that considers the
size of the genome and the number of n-grams contributing to the prediction score. The
nFactorg is defined as

nFacorg =
nc

nt
,

where nc is the number of n-grams that contributes to the score Sgi and nt is the total
number of n-grams in the genome. The final probability score (fSgi) is calculated as below:

f Sgi = Sgi ∗ nFactorg

The fSgi values are further processed based on the cutoff scores to identify the presence
of a genome in the metagenomic community. While our methodology is generic and works
with all body sites, we used the gastrointestinal (GI) tract microbiota for testing purposes
in this study as they contain the highest number and most diverse set of taxa.

We calculated the cutoff scores to avoid the prediction of any random genome that can
be predicted simply by chance because of the common n-grams present within the genomes
of a body site. Note that these cutoffs should be determined for each body site separately as
they vary for each body site depending on the number and composition of the genomes in
that microbiome. Here, we showed the example of the GI tract microbiota. To determine the
optimal score cutoff, we used these scores’ distributions from positive and negative datasets
described in our previous study [42]. For example, to estimate the cutoff score for GI tract
strain identification, we simulated a metagenome containing 471 reference genomes from
the GI tract as the positive dataset and selected the same number of non-GI tract genomes
as the negative dataset. We calculated the prediction scores for each genome in the positive
and negative datasets using the GI-tract-specific DSEM and prediction algorithm. Then,
we plotted the score distributions of the genomes from the GI tract in descending order
and those from the negative dataset in ascending order. The intersection of these two plots
is deemed to be the score cutoff, where the ascending score of the negative dataset exceeds
the descending score of the positive dataset. In other words, at this cutoff, the method
predicts maximum true positives and minimum false positives.

2.4. Quantification of Strains

Relative abundance is calculated by assigning the metagenomic reads to identified
genomes based on the unique and common n-grams present in the reads. With n = 21,
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we identified that a significant number of n-grams were unique to single genomes. The
distribution of unique and common n-grams of the GI tract reference genomes is provided
in Supplementary Table S6. We calculated the read-genome score for reads containing only
non-unique n-grams to assign those reads to appropriate genomes. The read-genome score
for a read is the sum of the weights of the n-grams that are common between a genome
and a read. For N = {n1, n2, n3, . . ., nx}, where N is a set of n-grams present in reads
R = {R1, R2, . . ., Rj} containing only non-unique n-grams, the read-genome score (Rjg), i.e.,
the probability of Rj belonging to a specific genome, is calculated as

Rjg =
x

∑
ni=1

Snigy,

where x is the total number of n-grams in a metagenomic read and gy is the total number of
genomes in a body site. The read is assigned to a genome with a maximum Rjg score.

2.5. In Silico and Experimental Validation Using Simulated and Mock Communities
2.5.1. Simulated Datasets for Testing

We used InSilicoSeq [43] software with the NovaSeq error model to simulate ten
metagenomes with 20 million 150 bp paired-end reads from 200–300 randomly selected
reference genomes from the GI tract (Supplementary Table S3, Supplementary Dataset 2).
The simulated reads from InSilicoSeq are similar to reads from Illumina sequencing. It
provides a flag to use draft genomes for simulation; this enabled us to use all draft genomes
for creating test samples.

2.5.2. Mock Community Datasets for Testing

We also used the Gut Microbiome Genomic Mix (ATCC® MSA-1006™) containing
12 evenly mixed gut genomes and Staggered Mix Genomic Material (ATCC® MSA-1003)
containing 20 staggered mix genomes from ATCC (https://www.atcc.org/, accessed on
4 January 2021) for experimental validation. Since most of the strains included in these mock
samples are complete and not present in the NCBI databases, we obtained the complete
genomes from ATCC and updated our DSEM before testing. As most of the reference
genomes available at NCBI are drafts, we performed additional tests with only 75%, 50%,
and 25% of the ATCC reference genomes to explore the robustness of the StrainIQ by
recreating DSEMs with partial genomes. In addition, we also reduced the sequencing data
size for the mock communities to simulate lower sequencing coverage of the genomes and
tested the strength of the StrainIQ. The initial sequencing produced reads at approximately
120x coverage for 12 genomes in each sample set (Supplementary Datasets 3 and 4). From
this, we generated additional test sets representing 90x, 60x, 30x, 5x, 3x, and 1x coverage
of the genomes by sampling only a subset of the sequencing reads. The coverage was
calculated based on the size of the genomes in the mock community.

2.6. Comparison against Other Popular Methods

We compared StrainIQ to other popular methods including KrakenUniq [31], CLARK [32],
and MetaPhlAn [39]. For KrakenUniq and CLARK, we created a customized database with
GI tract reference genome assemblies from HMP NCBI BioProject to match the reference
genomes used by StrainIQ, and MetaPhlAn was implemented with its default database. We
ran each of these methods to identify the genomes present in the ten simulated metagenomes
and compared the results against StrainIQ at different taxonomic levels. Further, we ran
strain-level identification and quantification using StrainIQ and KrakenUniq (with default
settings) on both simulated and experimental datasets, and compared the performance of
StrainIQ against KrakenUniq.

https://www.atcc.org/
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2.7. Statistical Measures Used for Performance Testing

We used sensitivity, specificity, and F1 score to evaluate the performance of StrainIQ to
predict the taxa present in the metagenomic samples. The values of these measures range
from 0 to 1, where 1 indicates the best prediction accuracy and vice versa. Each measure is
described in the context of the StrainIQ validation below:

Sensitivity/true positive rate/recall: This refers to the StrainIQ’s ability to correctly
identify the microbes present in the sample.

Sensitivity =
TP

TP + FN
.

Specificity/true negative rate: This refers to the StrainIQ’s ability to correctly identify
the microbes that are not present in the sample.

Speci f icity =
TN

TN + FP
.

F1 score/F-measure: The F1 score is calculated from the harmonic mean of precision
and recall. It measures the StrainIQ’s overall accuracy, which makes it ideal for the cases
where sensitivity and specificity are not enough to correctly distinguish the merits of the
methods.

F1 Score =
TP

TP + 1
2 (FP + FN)

.

In the above equations, we use the following terms:
TP—True positive. The number of microbes correctly identified as being present in

a sample;
TN—True negative. The number of microbes correctly identified as not being present

in a sample;
FP/type I error—The number of microbes incorrectly identified as being present in

a sample;
FN/type II error—The number of microbes incorrectly identified as not being present

in a sample.

3. Results
3.1. n-Gram-Based Body-Site-Specific DSEMs

Our novel StrainIQ algorithm identifies the taxa at different levels including strains
from metagenomics samples. As different microbial floras inhabit different body sites, we
resort to developing body-site-specific DSEMs to enable accurate prediction. In this study,
we built site-specific DSEMs for the GI tract, blood, and urogenital tract using 488, 54,
and 359 genomes, respectively. For the GI tract, we used 459 draft and complete genomes
from NCBI and 29 mostly complete genomes from atcc.org mock communities (ATCC®

MSA-1006™, ATCC® MSA-1003™), while the genomes inhabiting the blood and urogenital
tract were downloaded from NCBI. Overall, we built separate DSEMs for each body site
that has at least 50 identified genomes to confer enough discriminatory power to the model.
The DSEMs can be built using this method for any other body site containing at least
50 genomes. In this study, we described our model using GI tract DSEM implementation
and testing procedures.

3.2. Identification of Optimal Size of an n-Gram for DSEM Building

Determining the optimal size of n-grams is an important step for the optimal perfor-
mance of the StrainIQ algorithm. We optimized the size of the n-gram based on two factors:
the number of unique n-grams and the total number of n-grams in the DSEM. A large
n-gram size increases the discriminatory power at the expense of the memory and pro-
cessing time for the tool. In contrast, a small n-gram size involves the risk of losing the
discriminatory power to identify strain-level differences in a sample. Hence, to determine
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the optimal n-gram size, we generated n-grams for n = 12, 15, 18, 21, 24, and 27 from all
the body-site-specific reference genomes and identified the unique and common n-grams.
We tried different n values as multiples of three because the genetic code is a triplet code
made of a series of three nucleotides [44]. Supplementary Table S1 shows the number of
unique/common n-grams, and the memory and time required for generating the n-grams
using the GI tract reference genomes. The number of unique/common n-grams increases
with the size of n. For n = 12, the number of unique n-grams is only 14,933, whereas for a
higher n, the number of unique n-grams is in the millions (for n = 27, the number of unique
n-grams is 837,006,517). We observed that there was not much of a further increase in the
numbers of unique n-grams as the n-gram size increased beyond 21. However, there was
a significant increase in the memory requirement and the n-gram generation time with
increases in the size of n (Supplementary Figure S1). Hence, we chose 21 as the optimal
size for n and used this for generating models for the GI tract and other body sites.

3.3. DSEM Building from GI Tract Reference Genomes

We built a 21-g DSEM for the GI tract using 488 microbial genomes that inhabit the
GI tract (including mock community microbes), which contained a total of 988,866,457
n-grams. Of these, 809,679,392 (~81%) were unique to individual genomes in the set and
the rest were shared by multiple genomes. The number of unique n-grams ranged from
85 to 9,144,371 in different genomes (Supplementary Table S5). The higher the number of
unique n-grams, the more distinct the species is with respect to the other genomes in the set.
Each n-gram is assigned a score that ranges from 0 to 1. The scoring function was designed
to assign the full weight to unique n-grams and a rapidly decaying weight to the common
n-grams as they become more common in the genome set (Supplementary Table S2). We
also created DSEMs for the blood, which has 54 genomes, and the urogenital tract, with
359 genomes.

3.4. Threshold Score Cutoff for Taxa Prediction

To avoid the false positive prediction of site-specific genomes, we estimated the thresh-
old cutoff scores for each body site by plotting the genome prediction score distribution
of positive and negative datasets (Supplementary Dataset 1). We determined the optimal
cutoff to be 3.16 × 10−9 (Figure 2) based on our de novo built GI tract DSEM. The point
at which the positive and negative scores intersect is the optimal cutoff where there are
maximum true positives with minimum false positives. Similarly, we calculated the cutoffs
for the blood and urogenital tract using corresponding DSEMs and appropriate positive
and negative datasets (Supplementary Table S9). In an ideal case, we expect the maximum
prediction score for any genome in the negative datasets to be less than the minimum
score of the genomes in the positive datasets. However, plenty of n-grams of size 21 can
occur in both negative and positive datasets, resulting in cases where the genomes in the
negative datasets have significant scores and exceed those of the genomes in the positive
dataset. Figure 2 shows the scores for the positive and negative datasets and the intersection
point for the GI tract. The prediction score distribution in the negative datasets before
the intersection is represented by n-grams that are less discriminatory, and those beyond
the intersection point are more discriminatory than those of the positive dataset. In other
words, the intersection is the score threshold where n-grams from the positive dataset
have higher discriminatory power than those in the negative dataset to identify the taxa
accurately. The values beyond the intersection indicate the scores that any random genome
can have because of the common n-grams. We considered the intersecting point a threshold
cutoff score to distinguish positive genomes in the metagenomic dataset and avoid any
other random genome match in the DSEM-based prediction model.
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Figure 2. Determining the n-gram score cutoff for the GI tract DSEM. The intersection point between
the positive and negative datasets is the optimal cutoff where there will be maximum true positives
with minimum false positives.

3.5. Assessing the Performance of the StrainIQ Algorithm Based on Simulated Datasets

We assessed the accuracy of the StrainIQ algorithm using 10 stimulated metagenomic
datasets with the known composition of microbial genomes. The genomes were selected
randomly from GI tract reference genomes to build simulated metagenomic datasets. The
details of the simulated sets are shown in Supplementary Table S3. Set 1, Set 2, and Set 3
were simulated using 300 genomes from the GI tract and Sets 4 through 10 were simulated
using 200 genomes from the GI tract. Then, we tested StrainIQ against these datasets
to evaluate its performance. Our method was able to identify taxa at the strain level in
the simulated datasets at an average of 0.858 sensitivity and 0.782 specificity (Figure 3A)
We noticed that the specificity for the datasets containing a larger number of genomes
(Sets 1–3) was lower and the sensitivity was higher compared to corresponding values for
the datasets containing fewer genomes.
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3.6. Assessing the Performance of the StrainIQ Algorithm on Experimental Datasets

We sequenced mock communities containing an even and staggered mix of genomes
from atcc.org (ATCC® MSA-1006™, ATCC® MSA-1003™). This allowed us to validate the
strength of the tool with known standards of mock communities. Moreover, using the
staggered mix, we explored the strength of the tool to identify the less abundant genomes
in the sample, as it contains the microbial genomes with varying compositions from 0.02%
to 18.0%. The mock communities were sequenced on the NextSeq550 to generate 150 bp
paired-end reads. The sequencing details can be found in Supplementary Table S4. To test
these mock communities, we custom-built separate GI tract DSEMs by including 100%,
75%, 50%, and 25% of the mock community genomes. Supplementary Tables S5 and S6
show the n-gram statistics before and after adding the new mock community genomes
in DSEM. These data show that the addition of the new genomes reduced the number of
unique n-grams in the DSEM (Supplementary Figure S2). Figure 3B shows the performance
of StrainIQ for even and staggered mix mock communities against the four custom-built
DSEMs. We observed a specificity of approximately 0.88 for both even and staggered
communities and 1.00 sensitivity for the even community. For the staggered community,
the sensitivity dropped to 0.79 for the model with only 25% of the reference genomes,
while for the other three DSEMs at 50%, 75% and 100% reference genomes, the sensitivity
exceeded 0.93. The sensitivity and specificity measures were constant across DSEMs
with different proportions of reference genomes for the even communities, whereas for
staggered communities, the sensitivity and specificity measures varied across DSEMs built
with different proportions of reference genomes. Overall, StrainIQ showed a reasonably
high level of sensitivity and specificity despite using reduced reference genome models
for strain-level prediction. This proves the strength of our algorithm to accurately identify
strains in a metagenomics sample even when the reference assemblies are incomplete
and at different stages of draft genomes. We also noted that the identification algorithm
could accurately identify strains with similar sensitivity and specificity for both even and
staggered mixed samples.

The microbiota often shows a huge variation in the relative abundance of its constituent
taxa. The highly abundant taxa represent the core of the metagenomic community, and the
rare taxa represent a small fraction of the metagenome community. Hence, in this study,
we tested StrainIQ’s performance using datasets with different sequencing coverages. We
created four datasets to represent only 1x, 3x, 5x, and 30x coverage, as explained in the
Methods section, and predicted the strain-level taxa in those datasets using the GI-tract-
specific DSEM. Figure 3C shows the sensitivity and specificity at different levels of coverage.
This analysis showed the same level of sensitivity (1.00) for all four datasets with different
levels of coverage. However, the specificity increased from 0.89 to 0.97 as the coverage of
the data decreased. This might be due to decreased false positives from decreased repeating
common n-grams at lower coverages. As the coverage of sequencing data decreases, the
percentage of repeating n-grams gradually decreases, and this improves the specificity at
lower coverages. Although not seen in this case, this can also reduce the sensitivity when
the genomes present in the samples rely mostly on common n-grams for identification. We
analyzed the n-grams representing the different coverages of sequencing data to calculate
the ratio of common n-grams to unique n-grams (Figure 3D). As expected, we observed
that the number of unique n-grams increased from 5x coverage to 1x coverage compared to
common n-grams. This is reflected in the specificity increase shown in Figure 3C.

3.7. Comparison of StrainIQ Performance with other Popular Methods

We compared the performance of StrainIQ against three other popular tools used for
metagenomics analysis, namely, KrakenUniq, MetaPhlAn, and CLARK, using sensitivity
and specificity metrics. Supplementary Table S8 shows the comparison of sensitivity and
specificity of all four methods at the species, genus, and strain levels. In this study, we
presented the F1 measure for comparison, which signifies the accuracy of a method by
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combining the precision and recall (sensitivity). Table 1 lists F1 score for different methods
at the strain, species, and genus levels.

Table 1. Comparison of F1 score between StrainIQ, KrakenUniq, MetaPhlAn, and CLARK at different
taxonomic levels.

Genus Species Strain

StrainIQ 0.977 0.886 0.821

KrakenUniq 0.983 0.942 0.639

MetaPhlAn 0.914 0.719 NA

CLARK 0.887 0.719 NA

For this comparison, we chose the GI tract body site and used three sets of simulated
genomes from the GI tract to calculate the average F1 for each method. The StrainIQ
performance was superior to both MetaPhlAn and CLARK, and at the genus level, had
an F1 score of 0.977. In comparison, the F1 score of MetaPhlAn and CLARK at the genus
level were 0.914 and 0.887%, respectively. Also, StrainIQ performed better than CLARK
and MetaPhlAn at species-level prediction, while the results at the strain level could not be
compared, as the latter methods do not predict at the strain level (Table 1). The CLARK
method has shown a very high number of false positives compared to other methods,
resulting in a very low specificity of a mere 3.5% (Supplementary Table S8). StrainIQ
has better specificity than CLARK and is more sensitive than MetaPhlan. On the other
hand, KrakenUniq slightly outperforms StrainIQ at the genus level, and significantly at the
species level, with F1 score of 0.983 and 0.942, respectively. However, StrainIQ outperforms
at the strain level with an F1 score of 0.821 in comparison to only 0.639 for KrakenUniq.

We also used mock microbial communities to compare StrainIQ against KrakenUniq at
the strain level. To investigate the effects of incomplete reference genome models (DSEMs),
we ran both StrainIQ and KrakenUniq against four custom-built DSEMs (100%, 75%, 50%,
and 25% of genomes). Figure 4A shows the comparison of specificity and sensitivity
between the two methods against the four models. The sensitivities of the two methods
were remarkably identical at 100% (with the two lines merged as one) without any effect of
the incompleteness of the models. StrainIQ showed the same level of specificity at around
90% for all models, while KrakenUniq showed a big drop from approximately 0.75 with the
100% genome model to 0.61 with the 25% genome model. These results demonstrate that
the StrainIQ algorithm is very robust and performs consistently better than KrakenUniq,
even with incomplete draft genomes for strain-level identification.

We also assessed the performances of StrainIQ and KrakenUniq at different sequencing
coverages of the mock sequencing dataset ranging from 120x to 1x coverage using the
sensitivity and specificity measures based on the taxa identification (Figure 4B). We found
that the sensitivity remained consistent for both StrainIQ and KrakenUniq with the highest
value of 1.00, while StrainIQ showed consistently higher specificity (from 0.89 to 0.97)
than KrakenUniq (from 0.61 to 0.91) at all the sequencing coverages tested. However,
both StrainIQ and KrakenUniq showed increased specificity as the sequencing coverage
decreased from 30x to 1x, especially at the lower sequencing coverages from 5x and 1x.
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3.8. Quantification of the Identified Taxa from the Metagenomic Data

The StrainIQ algorithm estimates (Figure 1C) the relative abundance of the microbes
that are present in the metagenomic sequencing datasets by assigning the reads to corre-
sponding taxa identified in the first step (Figure 1B). In this study, we tested the performance
of StrainIQ quantification using simulated datasets and sequencing reads from experimen-
tal mock communities in comparison to KrakenUniq. We generated ten simulated datasets
with known relative abundances for each taxon in these datasets and used them to test the
quantification performance of StrainIQ and KrakenUniq. Based on the difference between
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the predicted and simulated relative abundance values, we determined the number of
genomes each method predicted better, i.e., closer to the known values, for all ten sets.
Table 2 lists the number of genomes predicted by StrainIQ and KrakenUniq and the dif-
ferences in predicting true positives. The first column shows the ten datasets tested. The
second and third columns include the number of all genomes predicted by each method
(including false positives). The last column “StrainIQ’s lead (%)” shows the percentage dif-
ference in predicting the true positive genomes by StrainIQ in comparison to KrakenUniq.
Even though both methods showed false positives, StrainIQ’s quantification performance
of relative abundance was much better than that of KrakenUniq, while KrakenUniq per-
formed slightly better with datasets 3 and 6. StrainIQ outperformed in 8 out of 10 datasets,
and was able to quantify closer to the known values for higher number of genomes (from
3% to 37%) over KrakenUniq.

Table 2. Comparison of relative abundance prediction between StrainIQ and KrakenUniq.

Sets StrainIQ KrakenUniq StrainIQ’s Lead (%)

Set 1 211 176 11.67

Set 2 196 190 2.00

Set 3 190 198 −2.67

Set 4 183 140 21.50

Set 5 175 143 16.00

Set 6 147 151 −2.00

Set 7 203 127 38.00

Set 8 187 145 21.00

Set 9 179 147 16.00

Set 10 173 142 15.50

Among the mock experimental samples, even communities have 12 genomes with an
even relative abundance of 0.083 each, and the staggered communities have 20 genomes
with varying relative abundances ranging from 0.0002 to 0.18. The actual relative abun-
dances of taxa in these communities are shown in Supplementary Table S7. The estimated
relative abundances of both even and staggered mock communities using StrainIQ and
KrakenUniq are shown in Figure 5. This analysis showed a similar performance of StrainIQ
and KrakenUniq in estimating the even and staggered mock community species. However,
it also showed a higher number of false positives in these two small communities, with
162 and 56 false positives in the even community by KrakenUniq and StrainIQ, and 89 and
49 false positives in the staggered community by KrakenUniq and StrainIQ, respectively
(not shown in Figure 5). We compared each identified microbe’s relative abundance to
the corresponding number of its unique n-grams in the even and staggered communities
for both the StrainIQ and KrakenUniq tools. Both KrakenUniq and StrainIQ showed an
overestimation of Enterobacter cloacae subsp. cloacae ATCC 13047 and an underestimation
of Escherichia coli ATCC 700926 in association with their numbers of unique n-grams
at 4,763,541 and 180,987, respectively, in the even community. Similarly, Rhodobacter
sphaeroides ATCC 17029 was overestimated and Staphylococcus epidermidis ATCC 12228
was underestimated in the staggered community, and the estimates were in proportion
to their numbers of unique n-grams, at 4,403,102 and 173,174, respectively. Both StrainIQ
and KrakenUniq overestimated the taxa with higher number of unique n-grams and un-
derestimated the taxa with a smaller number of unique n-grams. However, these analyses
revealed that the accuracy of the relative abundance estimation of microbes in a microbial
community depends upon the number of unique n-grams identified in each microbe.
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4. Discussion

Over the past several years, many tools have been developed for the taxonomic
profiling of microbial communities, including reference-based alignment [27–29], marker-
gene-based identification [39,45], and k-mer-based alignment-free methods [30–33]. The
reference-based taxonomic profiling tools show higher accuracy, but run slower as the
volume of the metagenomic reads in datasets increases, whereas marker-gene-based tools
depend on the curated reference databases. In contrast, alignment-free methods are faster
but need high-coverage sequencing data and reference genome sequences of all known
microbes. Contrary to existing alignment-free methods, our de novo StrainIQ method
leverages discrete small-number site-specific reference genomes to predict site-specific
genomes more accurately from metagenomic datasets. We also employed the Huffman
encoding method to encode binary n-grams and optimized the n-gram size to reduce the
memory requirements significantly. Unlike most other methods, we use a comprehensive
list of all overlapping n-grams for building DSEMs and taxa prediction, which requires us
to store and process large amounts of n-gram data. StrainIQ uses the discriminatory nature
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of unique and weighted common n-grams to identify the taxa in any metagenomic samples.
The n-grams occurring in fewer genomes are assigned higher weights, and the weights
for n-grams decay rapidly as their frequency of occurrence increases. This scoring method
allows us to reward the more discriminatory n-grams, while utilizing the weights of all the
n-grams in the set.

With the appropriate size of n, the combination of unique and weighted common
n-grams can distinguish taxa present in any metagenomic samples with high accuracy.
The n-gram size is a critical factor to yield unique n-grams and manage memory size. We
optimized the n-gram size and chose n = 21 for building body-site-specific DSEMs. At this
n-gram size of 21, we found more unique n-grams for each body-site-specific genome and
less memory to store n-grams when compared to an n-gram size of more than 21.

Our method uses the knowledge of body-site-specific microbial communities to accu-
rately identify and quantify the genomes. The DSEMs are built for each body site based on
the genomes of microbes known to reside in the body site. This helps to reduce false posi-
tives significantly. The tool is easily customized for other environments such as ocean floors,
ponds, and agricultural sites for accurate identification and quantification by building the
environment-specific DSEMs.

StrainIQ makes use of complete overlapping n-grams from the reference and input
samples, allowing it to accurately identify the strain-level taxa at a higher resolution. Unlike
KrakenUniq, which uses the classification of Kraken [18] at higher resolution (species) to
derive strain identification, StrainIQ focuses initially on identifying strains and builds
upwards to calculate higher taxa, making it more accurate for strain-level predictions. Our
method showed a better performance than other metagenomic prediction tools such as
CLARK, MetaPhlAn, and KrakenUniq at the strain level. This is due to its algorithm,
which builds comprehensive reference genome-based models for body-site-specific data
and objectively utilizes the de novo identified signatures (n-grams) in the metagenomic
sequencing data without the need for pre-curated reference signatures. Its performance
in higher-level taxa prediction is better than that of MetaPhlAn or CLARK, but not as
good as KrakenUniq. The present version of the StrainIQ algorithm was implemented
to capture the uniqueness of n-grams at the strain level; hence, it shows a higher level of
performance for strain-level predictions than for higher taxonomic levels. The relative
abundance predicted by StrainIQ and KrakenUniq follows a similar trend, as shown in
the relative abundance estimation of simulated and mock communities (Figures 4 and 5),
but StrainIQ has a lower false positive rate compared to KrakenUniq. Even so, the relative
abundance estimation of both methods depends on the number of unique n-grams in the
reference genomes; the higher specificity shown by StrainIQ might be attributed to the
site-specific DSEMs implemented in the algorithm. Our abundance analysis showed that
the number of unique n-grams identified in each microbe influences the accuracy of the
relative abundance estimation, which in turn, depends upon the optimal size of the n-gram
and the number of reference genomes used for prediction.

The analysis of StrainIQ prediction on simulated datasets with GI tract genomes
revealed that the specificity decreases as the diversity of the community increases (Sets
1–3) and sensitivity increases as the diversity of the community decreases (Sets 4–10)
(Figure 3). We presume that the lower specificity for highly diverse communities is due
to the lower number of unique n-grams per genome, and the higher sensitivity for less
diverse communities is due to the higher proportion of common n-grams.

The StrainIQ method can be easily implemented in other environments with minor
modifications; the only requirement is the availability of site-specific reference genome
assemblies, which are available from NCBI and other public genome databases such as
the Joint Genome Institute’s (JGI) Genomes Online Database (GOLD) [46]. In addition
to the GI tract, we built DSEMs for the blood and urogenital tract, and the cutoff scores
and performances of those models are provided in Supplementary Table S9. The major
advantages of StrainIQ over other methods include: there is no requirement for a pre-
curated set of microbial DNA signatures; incomplete reference/draft genomes are sufficient
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to build the DSEMs as the algorithm makes use of both unique and common n-grams;
metagenomic sequencing reads with lower or inconsistent coverage can be efficiently used
for taxa identification and quantification. The weaker performance of StrainIQ in predicting
higher-level taxa is attributed to the lack of separate DSEMs built at those taxonomic levels.
This can be addressed in future versions of the method, because this method is mainly
focused on strain-level identification. In the present study, we were able to use only a
small set of mock community genomes for validations; hence, these results may not be
generalized in comparison with other methods. In addition, StrainIQ demands cutoff score
calculations for each set of site-specific community profiling because the composition and
distribution of unique n-grams vary in each site-specific microbiome.

5. Conclusions

We developed an n-gram-based algorithm, StrainIQ, which builds de novo n-gram
models utilizing total unique and common n-gram features of the site-specific genomes
upon weighted scoring to predict and quantify the taxa present in whole-genome metage-
nomic samples. Additionally, StrainIQ employs the Huffman encoding of n-grams for
memory and runtime management. This is followed by the optimization of n-gram size
and the prediction of cutoff scores to improve the sensitivity and specificity of the predic-
tion and quantification of taxa in metagenomic samples. StrainIQ showed an average of
0.858 sensitivity and 0.782 specificity on 10 simulated datasets with varying compositions.
Furthermore, it showed high performance for mock communities utilizing incomplete ref-
erence genome models, and had a varying range of sequencing coverage of metagenomic
samples. In comparison to other methods such as CLARK, MetaPhlAn, and KrakenUniq,
StrainIQ showed superior performance both in terms of prediction and abundance esti-
mation at the strain level. Finally, this method is highly adaptable to customize and train
the microbiota of a particular body site or an environment. The software tool allows the
users to identify the strains and higher-level taxa present in any metagenomic samples
if the models are custom built using the reference genomes of species corresponding to
that microbiome. The software tool is freely available and platform-independent, and it
can be downloaded and utilized by any user with a basic computational background and
programming experience.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes14081647/s1, Table S1: Number of unique/common n-
grams, and the memory and time requirements for the n-gram generation from the GI tract reference
genomes; Table S2: Examples of weights assigned to unique and common n-grams based on the
scoring function used while building DSEMs from the GI tract genomes; Table S3: Details of the
simulated datasets, set 1 to set 10 built from the GI tract genomes; Table S4: The number of sequencing
reads and n-grams generated for the mock communities used in this study; Table S5: Genome-wide
distribution of non-repetitive and species-specific n-grams generated from 488 GI tract microbes
and the mock community microbes (used for validation); Table S6: The distribution of unique and
common n-grams of the GI tract reference genomes (N = 459); Table S7: Relative abundances of
taxa in the mock (mix/staggered and gut/even) communities; Table S8: Performance comparison of
StrainIQ against KrakenUniq, MetaPhlAn, and CLARK methods at the species, genus, and strain
levels; Table S9: Description of the cutoff and performance scores of bodysite-specific DSEMs built
using corresponding reference genomes; Figure S1: Correlation between the n-gram size and number
of unique/common n-grams, memory requirement, and runtime using the GI tract reference genomes;
Figure S2: Visualization of the percentage of unique n-grams in DSEMs with only GI tract genomes
(GI DSEM), and with GI tract and mock community genomes (GI Mock DSEM.
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