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Abstract: Pericytes (PCs) are located surrounding the walls of small blood vessels, particularly
capillaries and microvessels. In addition to their functions in maintaining vascular integrity, partic-
ipating in angiogenesis, and regulating blood flow, PCs also serve as a reservoir for multi-potent
stem/progenitor cells in white, brown, beige, and bone marrow adipose tissues. Due to the complex
nature of this cell population, the identification and characterization of PCs has been challenging. A
comprehensive understanding of the heterogeneity of PCs may enhance their potential as therapeutic
targets for metabolic syndromes or bone-related diseases. This mini-review summarizes multiple PC
markers commonly employed in lineage-tracing studies, with an emphasis on their contribution to
adipogenesis and functions in different adipose depots under diverse metabolic conditions.
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1. Introduction

Pericytes (PCs) were initially described in the 19th century by Charles-Marie Benjamin
Rouget, who observed a population of contractile cells in small blood vessels, and des-
ignated them Rouget cells [1]. In the 20th century, Karl Wilhelm Zimmermann renamed
these cells “pericytes”, due to their distinct anatomical position around the vasculature [2].
Characterized by long cytoplasmic processes around blood vessel walls [3], PCs com-
municate with endothelial cells through physical contact or through secreting paracrine
signals [4]. Adipose tissues are well vascularized and harbor a significant population of
PCs [5] (Figure 1); understanding the functions of these cells and their connections with
vascular cells and adipocytes, as well as their effects on adipogenesis, may provide a
promising opportunity for therapeutic intervention in metabolic diseases, such as obesity
and type 2 diabetes.

 
 

 

 
Genes 2024, 15, 126. https://doi.org/10.3390/genes15010126 www.mdpi.com/journal/genes 

Review 

Pericytes as the Orchestrators of Vasculature and Adipogenesis 
Caroline de Carvalho Picoli 1, Alexander Birbrair 2 and Ziru Li 1,* 

1 Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME 04074, USA;  
caroline.picoli@mainehealth.org 

2 Department of Dermatology, University of Wisconsin-Madison, Medical Sciences Center,  
Madison, WI 53706, USA; abirbrair@dermatology.wisc.edu 

* Correspondence: ziru.li@mainehealth.org 

Abstract: Pericytes (PCs) are located surrounding the walls of small blood vessels, particularly ca-
pillaries and microvessels. In addition to their functions in maintaining vascular integrity, partici-
pating in angiogenesis, and regulating blood flow, PCs also serve as a reservoir for multi-potent 
stem/progenitor cells in white, brown, beige, and bone marrow adipose tissues. Due to the complex 
nature of this cell population, the identification and characterization of PCs has been challenging. A 
comprehensive understanding of the heterogeneity of PCs may enhance their potential as therapeu-
tic targets for metabolic syndromes or bone-related diseases. This mini-review summarizes multiple 
PC markers commonly employed in lineage-tracing studies, with an emphasis on their contribution 
to adipogenesis and functions in different adipose depots under diverse metabolic conditions. 

Keywords: pericytes; hallmarks; adipose tissue; adipogenesis 
 

1. Introduction 
Pericytes (PCs) were initially described in the 19th century by Charles-Marie Benja-

min Rouget, who observed a population of contractile cells in small blood vessels, and 
designated them Rouget cells [1]. In the 20th century, Karl Wilhelm Zimmermann re-
named these cells “pericytes”, due to their distinct anatomical position around the vascu-
lature [2]. Characterized by long cytoplasmic processes around blood vessel walls [3], PCs 
communicate with endothelial cells through physical contact or through secreting para-
crine signals [4]. Adipose tissues are well vascularized and harbor a significant population 
of PCs [5] (Figure 1); understanding the functions of these cells and their connections with 
vascular cells and adipocytes, as well as their effects on adipogenesis, may provide a 
promising opportunity for therapeutic intervention in metabolic diseases, such as obesity 
and type 2 diabetes. 

 
Figure 1. A schematic illustration depicts the location of pericytes within the adipose tissue niche. 
Adipose tissue is well vascularized, with pericytes surrounding blood vessels. Notably, pericytes 
are embedded within the shared basement membrane alongside endothelial cells. 
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Figure 1. A schematic illustration depicts the location of pericytes within the adipose tissue niche.
Adipose tissue is well vascularized, with pericytes surrounding blood vessels. Notably, pericytes are
embedded within the shared basement membrane alongside endothelial cells.

Although advances have been made in understanding the effects of PCs on adipose
tissue homeostasis, ongoing debates persist on this subject. A primary challenge is that PCs
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are very heterogeneous, which complicates the characterization of this cell population due
to the absence of distinct cell-specific markers. Furthermore, PCs have been implicated in
diverse physiological processes, including angiogenesis, tissue regeneration, and adipocyte
differentiation, all of which are still under active investigation. Hence, this review will
summarize the most recent insights about PC markers based on the lineage tracing studies,
and PC functions in adipose tissues, such as white (WAT), brown (BAT), beige and bone
marrow (BMAT) adipose tissues.

2. Literature Search Strategy

To provide a comprehensive overview of the current state of knowledge regarding the
topic of PCs in adipose tissue, relevant papers were chosen from prominent databases, in-
cluding PubMed/MEDLINE, Google Scholar, Scopus, and Web of Science, covering the past
30 years. An exception was made for the historical review of PCs, extending over 150 years
ago. The following search keywords were used: “Pericytes” OR “perivascular cells” AND
“adipose tissue” OR “adipocytes” OR “adipogenesis” OR “fat”. Data in each selected paper
was carefully reviewed to provide a precise and comprehensive overview of the key aspects
of PCs, particularly their contribution and functions in different adipose tissues.

3. The Hallmarks of Pericytes: Insights from Lineage-Tracing Studies

It has been challenging to define PCs by a particular molecular marker due to the fact
that PC subtypes vary across tissues [6–9], coupled with differences in the characteristics,
functions, and locations of this cell population in a tissue-dependent manner [10]. For
example, platelet-derived growth factor receptor-beta (PDGFRβ) [11–15], nerve/glial anti-
gen 2 (NG2, also known as chondroitin sulfate proteoglycan 4, CSPG4) [12,16,17], clusters
of differentiation 146 (CD146) [12,18–22], T-box18 (TBX18) [15], α-smooth muscle actin (α-
SMA) [10,23], and NESTIN [24,25] are commonly used as PC markers in most of the tissues.
However, other tissue-specific markers were also proposed by a single-cell transcriptome
analytic study: such as Kcnk3 in the lung, Rgs4 in the heart, myosin heavy chain 11 (Myh11)
and Knca5 in the kidney, Pcp4l1 in the bladder, and Higd1b in the lung and the heart [26].

In addition to the tissue-specific manner, the identification of PCs varies between
species. For example, CD105, CD13 [27], and CD73 [28] were used as PC markers in human
studies, while smooth muscle myosin [29], tropomyosin [29], vimentin [30], desmin [10,30],
connexin 43 (Cx43) [31], Endosialin (CD248) [32,33], γ-glutamyl transpeptidase (GGT) [34],
protein kinase G (PKG) [35], aminopeptidase A (APA) [36], a regulator of G protein sig-
naling 5 (RGS5) [37,38], ATP-sensitive potassium Kir6.1 [39,40], sulfonylurea receptor 2
(SUR2) [41], and delta-like 1 homolog (DLK1) [42,43] were identified in mouse PCs.

However, one of the caveats of these markers is that they are also expressed, to some
extent, in other cell types, such as smooth muscle and interstitial cells [44–46]. Thus, few
dynamic molecular markers could be commonly used in PC identification, with expression
varying in a tissue-specific manner or depending on the developmental stages or type
of blood vessels. Nevertheless, several PC markers, including PDGFRβ, NG2, TBX18,
SMA, NESTIN, and CD146, have been used for PC profiling and lineage-tracing studies
to identify the involvement of PCs in adipocyte differentiation. We will summarize the
contribution of these PCs labelled by different markers in WAT and BAT under different
metabolic or environmental conditions (Table 1).

Table 1. Overview of molecular markers for pericytes in adipose tissues.

Marker Location Function in Adipose Tissue Condition Specie References

PDGFRβ

Gonadal WAT Contribute to gonadal
WAT expansion High-fat die Mouse Vishvanath et al. [14]

Inguinal WAT Contribute to beige
adipocytes formation Cold exposure Mouse Vishvanath et al. [14]

All BAT depots
Label brown adipocytes in early

postnatal stage, but not
in adulthood

Different
developmental stages Mouse Shi et al. [15]
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Table 1. Cont.

Marker Location Function in Adipose Tissue Condition Specie References

NG2
(CSPG4)

Subcutaneous and
periscapular WAT Trace to 100% white adipocytes Room temperature Mouse Berry et al. [23]

Jiang et al. [47]
Subcutaneous and
perigonadal WAT

Track 50% of the UCP1+

beige cells Cold exposure Mouse Berry et al. [23]

TBX18

Perigonadal and
inguinal WAT

No contribution to
white adipocytes

High-fat diet or
normal chow diet;

β3-adrenergic receptor
agonist treatment

Mouse Cattaneo et al. [48]

Supraclavicular,
thoracic perivascular and

perirenal BAT

Act as progenitors of brown
adipocytes in a

depot-specific manner

Different
developmental stages Mouse Shi et al. [15]

α-SMA

Subcutaneous and
visceral WAT

No contribution to
white adipocytes Room temperature Mouse Berry et al. [23]

Inguinal and
perigonadal WAT

Trace to 55–68% of
beige adipocytes Cold exposure Mouse

Nestin Dermal WAT Potentially become adipocytes or
profibrotic cells Ex vivo Mouse

cell Iwayama et al. [24]

CD146 Human liposuction
specimens

Prefer to differentiate into
adipocytes over osteogenic cells Ex vivo Human

cell
Xu et al. [49]

Hsu et al. [50]

PDGFRβ—Using a pulse-chase lineage-tracing approach, Shao et al. found that
PDGFRβ+ preadipocytes contribute to gonadal and perirenal WAT expansion upon high-fat
diet feeding, but not in inguinal WAT [51]. In addition, Pparg overexpression in PDGFRβ+

mural cells give rise to healthier white adipocytes under high-fat diet-induced obesity.
Furthermore, Zfp423+ PDGFRβ+ cells, which are the PCs that are committed to adipogenic
lineage, contribute to approximately 10% of the white adipocytes in gonadal WAT following
high-fat diet feeding. Moreover, these cells demonstrate the ability to differentiate into
beige adipocytes in small clusters under prolonged cold exposure for two weeks; of note,
this occurs in multiple waves depending on the extent and time course of cold stress [14].
A recent study focusing on BAT demonstrated that PDGFRβ+ PCs gave rise to brown
adipocytes at an early stage, but not in adulthood [15].

NG2—It is found to be expressed on the surface of PCs during vasculogenic and
angiogenic processes [52,53], as well as on some adipocytes. A lineage-tracing study demon-
strated that NG2+ cells marked a portion of the mural cells and 100% of white adipocytes
in subcutaneous and periscapular regions under room temperature, but only tracked mural
cells in the visceral depot vasculatures without signals in adipocytes [23]. Interestingly,
under cold exposure, approximately 50% of the UCP1+ beige cells originated from NG2+

PCs in subcutaneous and visceral perigonadal depots, suggesting the existence of other
potential progenitor sources contributing to beige adipocytes [23]. However, NG2+ cells
do not contribute to intramyocardial adipocytes in postnatal development or under adult
homeostasis [47].

TBX18—It serves as a robust marker for identifying mural cells, including PCs and
vascular smooth muscle cells [48]. Lineage-tracing mouse studies demonstrated that
TBX18 neither traced to white adipocyte under either chow or high-fat diets, nor did
it lead to a significant contribution to beige cells after 14 days of treatment with a β3-
adrenergic receptor agonist [48]. Likewise, another study demonstrated that TBX18 plays
a minor role in de novo beige adipogenesis [54]. However, in BAT, TBX18+ PCs act as
progenitors of brown adipocytes in multiple regions, such as thoracic perivascular and
supraclavicular depots, but not in intrascapular and periaortic regions, suggesting that
TBX18+ PCs contribute to brown adipocytes in a depot-specific manner [15].

α-SMA—Similar to TBX18, α-SMA was not expressed in mature adipocytes, but
was restricted to vasculatures in subcutaneous and visceral adipose tissue under normal
conditions. However, upon cold exposure for 7 days, α-SMA+ PCs were fated into de
novo beige adipogenesis and contributed to 55–68% of beige adipocytes in inguinal and
perigonadal adipose depots [23].
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NESTIN—It labels a subset of pericyte-like cells that possess somatic stem/progenitor
cell properties [55]. Iwayama T. et al. [24] demonstrated that NESTIN was expressed in
the PCs in WAT; and these NESTIN+ PCs have the potential to differentiate into either
adipocytes or profibrotic cells. Especially, when PDGFRα+ was overexpressed in NESTIN+

PCs, these cells were fated into profibrotic cells by increasing the production of collagen [24],
while the adipogenesis was inhibited.

CD146+—CD146+CD31−CD45− PCs from adipose tissue prefer to differentiate into
adipocytes, while the periosteal CD146+ PCs tend to be more mineralized in vitro and
ossification in vivo [49]. These results suggest that CD146+ PCs hold a tissue-specific
potential of differentiating into either adipogenic or osteogenic cells. A key regulator in
this fate determination of CD146+ PCs is the T cell lymphoma invasion and metastasis 1
(TIAM1), which is highly expressed in adipose tissue but not in the skeleton. TIAM1 affects
the morphology of adipose tissue-derived CD146+ PCs and increases the potential for
adipogenic differentiation, while TIAM1 knockdown promotes osteogenic differentiation
over adipogenesis [50].

As discussed earlier, none of the single molecular markers could uniquely identify
PCs in general, or effectively distinguish them from other cell types, such as mural cells and
fibroblasts. Future studies utilizing the single-cell RNA-seq technique will provide more
informative data, shedding light on the heterogeneity of this cell population [26,56,57].
Furthermore, it remains unclear whether these PC progenitors would influence adipocyte
dynamics under conditions such as physical exercise, diabetes, hypertension, fatty liver
disease, and other metabolic complications [58,59].

4. Pericytes in the Bone Marrow Niche

Bone is also highly vascularized, with the blood vessels presenting throughout the
bone tissue except in cartilaginous areas such as the growth plate [60–63]. The vascula-
ture is a key component of the bone marrow microenvironment. Of note, PCs around
vasculatures provide critical signals for bone marrow niche homeostasis, such as stromal
cell proliferation, hematopoietic stem cell (HSC) maintenance, as well as the regulation of
osteoblast, osteoclast, and adipocyte differentiation [64,65].

Two subtypes of vessels have been classified in the bone marrow based on their
marker expression and functional characteristics, including type-H, which is localized in the
proximal metaphyseal regions with higher blood flow, and type-L, which is mainly located
in the diaphyseal regions and consists predominantly of sinusoidal-like vessels [66,67]. The
distribution of PCs varies between these two distinct types of bone marrow vessels. For
example, type-H capillaries are surrounded by perivascular cells expressing PDGFRβ and
NG2 [68], whereas type-L blood vessels are surrounded by perivascular cells expressing
leptin receptor (LepR) [69] and reticular cells abundant in CXCL12 (CAR) [70].

PDGF-PDGFRβ signaling in Osterix-expressing cells are critical for the recruitment,
expansion, and angiotropism of skeletal stem and progenitor cells during bone repair,
which are essential processes for effective fracture healing [71]. NG2+ PCs are critical for
HSC localization to arterioles and the maintenance of their quiescent status [72]. LepR+

cells have the potential to differentiate into osteoblasts, chondrocytes, and adipocytes [73].
Notably, LepR labels 70% and 90% of bone marrow adipocytes at 2 and 6 months of age,
respectively [73]. Although LepR+ cells barely contribute to bone formation when mice
were younger than 2 months old, this proportion increases with age, reaching up to ~80%
when mice were 14 months old [73]. Of note, leptin-lepR signaling in skeletal stem cells
inhibits osteogenesis and promotes adipogenesis in response to a high-fat diet [74], and
impairs bone regeneration after injury. CAR cells are scattered throughout the bone marrow,
creating a network with the blood vessels [70,75]. These cells demonstrated the potential to
differentiate into adipocytes both in vitro [76] and in vivo [77]. The pre-adipocyte-like CAR
cells are also readily lipid-laden because CXCL12 deletion directly converted these cells into
mature bone marrow adipocytes. Moreover, pre-adipocyte-like CAR cells communicate
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with hematopoietic cells through the CXCL12–CXCR4 pathway to regulate HSC retention,
quiescence, and repopulation [77].

LepR+ cells and CAR cells overlap with each other to some extent [73,78], and both
cell populations express high level of adipogenic markers, such as Pparg, Adipoq, and
Cebpa [73,76]. Therefore, Zhong et al. described that LepR+/CAR cells could be marrow adi-
pogenic lineage precursors (MALPs) [79], which were identified in the bone marrow niche
through a single-cell RNA-sequencing approach [80]. MALPs express adipogenic markers
(such as Pparg, Cebpa, Adipoq, Apoe, and Lpl), without lipid accumulation (Perilipin−) [79].
Interestingly, MALPs also express PCs markers, including PDGFRβ and Laminin [80], and
are exhibited as star-shaped PCs, with many dendritic processes extending and connecting
around the endothelial wall [80].

Although bone marrow PCs express PDGFRβ, NG2, LepR, and/or CXCL12, these
markers are not exclusive to PCs, as they are also expressed in stromal cells and/or MALPs.
This complexity leads to questions about how to distinguish the typical PCs from bone
marrow stromal cells and adipogenic MALPs, which require further studies. Overall, these
findings suggest that PCs have a significant impact on adipogenesis in the bone marrow
and influence stromal cells proliferation, HSC maintenance, and other mesenchymal cells.

5. Pericyte Functions in Adipose Tissue

As described above, the existence of PCs in adipose tissue has drawn more attention
from researchers, prompting the functional studies of this cell population both locally and
systematically. Overall, the primary functions of PCs in adipose tissue include maintaining
vasculature integrity, facilitating angiogenesis, controlling blood flow, and serving as a
stem/progenitor cell pool (Table 2).

Table 2. Brief summary of pericyte functions.

Function Brief Description References

Vasculature
integrity

Envelop endothelial cells;
Secrete extracellular matrix proteins;

Provide structural support to blood vessels.

Nwadozi et al. [81], Armulik et al. [82], Holm et al.
[83], Birbrair et al. [84],

and Andreeva et al. [85]

Angiogenesis

Determine the location of sprout formation;
Support the angiogenic sprouting process;

Coordinate with the adjacent endothelial cells and
promote angiogenesis.

Nehls et al. [86], Ponce et al. [87]
Eilken et al. [88] and

J. Gonzalez-Rubio et al. [89]

Capillary
blood flow

Regulate vascular diameter and blood flow;
Modulate blood vessel contraction and relaxation.

Rucker et al. [90], Nelson et al. [91]
and Ivanova et al. [92]

Stemness
property

Possess self-renewal and differentiation capacity;
Contribute to adipose tissue plasticity, angiogenesis,

neovascularization, and osteogenesis;
Give rise to white, brown and beige adipocytes.

Mendez-Ferrer [25], Crisan et al. [93], Hoshino et al.
[94], Passman et al. [95], Corselli et al. [96],

Pierantozzi et al. [97],
Rodeheffer et al. [98], Farrington-Rock et al. [99],

Lin et al. [100], Cai et al. [101],
Lauvrud et al. [102], James et al. [103]

Wang et al. [104], Berry et al. [23];
Jiang et al. [47], Cattaneo et al. [48]

and Shao et al. [105]

Vasculature integrity—PCs intimately envelop endothelial cells in capillaries and
microvessels [85], and are therefore predominantly found in the abluminal wall of blood
vessels, where they contribute to the maintenance of capillary integrity and vascular per-
meability [81]. The basal membrane of the PC forms a continuous connection with the
endothelial cells; both cell populations could secrete extracellular matrix proteins (mainly
collagen IV and glycoprotein laminin) to maintain the structural integrity of blood vessels.
The PCs could also emit protrusions that insert into the endothelial cell invaginations (cavi-
ties) and occasional interruptions of the basement membrane, providing essential support
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and structure for cell–cell communications [82,83]. Beyond their roles in regulating or
stabilizing the function of blood vessels, PCs could be disrupted by pathological processes,
and participate in vascular tissue remodeling [81–84].

It is noteworthy that the density of the endothelial cell/PC ratio varies across tis-
sues, suggesting that PCs may perform specialized functions that differ between organs.
The highest ratio of endothelial cells versus PCs is found in the central nervous sys-
tem and retina [82,106,107], approximately 1:1, compared with other organs and tissues
such as kidney (2.5:1), lung (7–9:1), skin, liver (10:1), cardiac microvasculature (2–3:1),
and skeletal muscle (100:1) [108–111]. However, the proportion of PCs in adipose tissue
remains undetermined.

Angiogenesis—PCs are the first cells to invade newly vascularized tissues, deter-
mining the location of sprout formation [86–88]. They actively participate in recruitment,
extracellular matrix modulation, and paracrine signaling, and direct interactions with
endothelial cells [112]. PC proliferation and migration is closely coordinated with the be-
havior of adjacent endothelial cells, demonstrating the essential collaboration between both
cell types during angiogenesis. Indeed, the co-culture of human adipose tissue-derived
CD146+ PCs with human umbilical vein endothelial cells (HUVECs) demonstrated a clear
promoting effect on vessel sprouting during the angiogenesis [89]. Furthermore, the pro-
angiogenic efficacy of adipose tissue-derived PCs on tube formation and cell migration was
enhanced by Nel-like protein-1 (NELL-1), and promoted bone formation in an osteonecrosis
mouse model [113]. Moreover, PCs have been found to ameliorate ischemia after being
transplanted into a mouse model with severe hind limb ischemia [114,115], and improve
the blood flow in mice during femoral artery ligation [116], suggesting their potential as
promising targets for vascular regeneration. It is important to note, however, that their
heterogeneity implies that different PC subpopulations may have distinct functions based
on the tissue of origin and surface markers [117].

Capillary blood flow—The PCs have the abilities to induce vasoconstriction or vasodi-
lation within the capillary beds in order to control the vascular diameter as well as the blood
flow, akin to the smooth muscle cells of larger vessels. PCs also express cholinergic and
adrenergic receptors (α-2 and β-2), where a β-adrenergic response leads to relaxation, while
an α-2 response would be antagonistic and induce contraction. There are also other vasoac-
tive substances that bind to PCs, such as angiotensin II and endothelin 1, and function as
paracrine signals to regulate contraction and relaxation [90]. Moreover, using optogenetic
approaches, the stimulation of the PCs causes excitation that leads to the contractions
of blood vessels in brain [91], whereas Halorhodopsin channel hyperpolarization in PCs,
which inhibits cell activities, results in increased capillary blood flow in the retina [92]. The
modulation of PC activities provides opportunities to optimize the microvascular network
within adipose tissue, thereby improving perfusion and nutrient exchange. This manip-
ulation not only holds potential for mitigating hypoxia within adipose tissue, but also
for fostering a more conducive environment for adipocyte function. Optimizing capillary
blood flow through PCs may have implications for metabolic health, as it could affect
adipose tissue expansion, adipokine secretion, and overall tissue homeostasis.

Stemness property—PCs possess the capacity for self-renewal and differentiation into
other cell lineages, such as mature adipocytes, osteoblasts, and other mesenchymal cell
types [25,93–97]. Therefore, they have been implicated as a potential reservoir of multi-
potent stem cells in adults [55,81,93,118,119]. In adipose tissue, PCs exist in the stromal
vascular fraction (SVF) [11], which contains cells that are crucial for adipose tissue plasticity,
angiogenesis, and neovascularization [120,121]. Notably, it has been demonstrated that PCs
in close proximity to vasculature serve as an important source of adipogenic progenitor
cells [98–101,122], which has been discussed in the “hallmarks” section above. In addition,
Olson and Soriano found that PDGFRβ activation driven by Sox2-Cre in epiblasts, which
include PCs and mesenchymal cells, inhibits white adipocyte differentiation [123]. In
contrast, the deletion of PDGFRβ enhances white, brown, and beige adipogenesis [124].
Interestingly, the stemness property of PCs has been applied in reconstructive and tissue en-
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gineering therapies. For example, human adipose-tissue-derived stem cells (ASCs) isolated
from lipoaspirate, expressing CD146, including PCs and adventitial components, have been
demonstrated to have angiogenic and adipogeneic properties in vitro [102]. These cells
have also been shown to have the capability to undergo osteogenic differentiation in vitro
and form bone in vivo, suggesting their potential as a source for bone formation [103] and
the possibility of contributing to bone healing [104]. In addition, a study using human
ASC-derived PCs, injected into NOD-SCID mice, demonstrated the enhancement of retinal
microvascular stabilization in mouse models of retinopathic vasculopathy [125].

Beige adipocytes have been gaining more attention from biologists, as these cells arise
in WAT following thermogenic induction [126]. Interestingly, these beige adipocytes are
located around the vasculature, sharing the same location with PCs (Figure 2). A ground-
breaking study by Clack and Clack (1940) had revealed that de novo adipogenesis could
occur in the close proximity of blood vessels, suggesting that adipogenic progenitors might
be a type of blood vessel wall cells [48]. Indeed, perivascular cells (vascular smooth muscle
cells and PCs) have been proven to give rise not only to white adipocytes, but also to differ-
entiate into beige adipocytes [47,105,122]. Berry et al. [23] also evaluated a variety of mural
cell markers, including SM22, Myh11, NG2, PDGFRα, and SMA, affirming that these cells
indeed serve as an important source for beige adipocyte induction during cold exposure.
However, further data analysis or future studies are required to better understand which of
these markers truly represent PCs in WAT. Despite efforts to elucidate the ideal identity of
the adipogenic progenitors among PCs, there are frequent contradictions in the findings,
attributed not only to a variety of lineage tracing markers, but also to different experimental
conditions [48].
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Figure 2. Representative schematic of the white adipose tissue microenvironment, including beige
adipocytes surrounding blood vessels, pericytes, immune cells, and neurons in the stromal vascu-
lar fraction.

6. Conclusions and Prospects

PCs have emerged as promising and multifaceted cells in various adipose tissues,
orchestrating a series of functions crucial for adipose tissue homeostasis. Their regulatory
roles in adipogenesis and angiogenesis highlight their importance in the formation of
the adipose tissue microenvironment. The manipulation of PCs holds great potential to
influence capillary integrity, angiogenesis, blood flow, and adipogenesis, thus impacting
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the metabolic health of adipose tissue. As we delve deeper into understanding the com-
plexities of PC biology, we open new avenues for innovative therapeutic interventions
in conditions related to adipose tissue dysfunction, offering hope for addressing issues
such as obesity and metabolic disorders. Further research is required to fully understand
the mechanisms, triggers, and functional consequences of PC-to-adipocyte differentiation.
Continued investigations will shed more light on the role of PCs in adipose tissue biology
and the progression of metabolic diseases related to adipose tissue.
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