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Abstract: The loquat (Eriobotrya japonica L.) is a special evergreen tree, and its fruit is of high medical
and health value as well as having stable market demand around the world. In recent years, research
on the accumulation of nutrients in loquat fruit, such as carotenoids, flavonoids, and terpenoids, has
become a hotspot. The SBP-box gene family encodes transcription factors involved in plant growth
and development. However, there has been no report on the SBP-box gene family in the loquat
genome and their functions in carotenoid biosynthesis and fruit ripening. In this study, we identified
28 EjSBP genes in the loquat genome, which were unevenly distributed on 12 chromosomes. We
also systematically investigated the phylogenetic relationship, collinearity, gene structure, conserved
motifs, and cis-elements of EjSBP proteins. Most EjSBP genes showed high expression in the root,
stem, leaf, and inflorescence, while only five EjSBP genes were highly expressed in the fruit. Gene
expression analysis revealed eight differentially expressed EjSBP genes between yellow- and white-
fleshed fruits, suggesting that the EjSBP genes play important roles in loquat fruit development at
the breaker stage. Notably, EjSBP01 and EjSBP19 exhibited completely opposite expression patterns
between white- and yellow-fleshed fruits during fruit development, and showed a close relationship
with SlCnr involved in carotenoid biosynthesis and fruit ripening, indicating that these two genes may
participate in the synthesis and accumulation of carotenoids in loquat fruit. In summary, this study
provides comprehensive information about the SBP-box gene family in the loquat, and identified
two EjSBP genes as candidates involved in carotenoid synthesis and accumulation during loquat
fruit development.

Keywords: SBP-Box gene family; loquat; carotenoid biosynthesis; fruit ripening

1. Introduction

Transcription factors (TFs) are proteins binding DNA-regulatory sequences that acti-
vate or repress gene transcription to modulate biochemical and physiological processes. TFs
play vital roles in the normal development, routine cellular functions, and disease responses
of organisms [1]. Most plant TFs contain four common domains, including a DNA-binding
region, a nuclear localization signal, an oligomerization site, and a transcription-regulation
domain [2]. According to their DNA-binding regions, TFs can be divided into many gene
families [2]. SQUAMOSA promoter binding protein (SBP)-box proteins are a family of plant-
specific TFs that all contain a highly conserved DNA binding domain of 76 amino acids
comprising two tandem zinc finger motifs (Cys-Cys-His-Cys and Cys-Cys-Cys-His) [3].
The SBP gene was first identified in Antirrhinum majus as a nuclear transcriptional regulator
of the expression of the SQUAMOSA gene in floral meristems [4]. Subsequently, many
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studies have demonstrated that SBP genes play crucial roles in plant growth and develop-
ment, such as leaf, flower, and fruit development, the vegetative phase change, and signal
transduction [5–10].

Sixteen SBP-LIKE (SPL) genes were identified in the genome of Arabidopsis based on
protein sequences and were grouped into eight clades: clade 1 (SPL1), clade 2 (SPL12,
SPL14, SPL16), clade 3 (SPL8), clade 4 (SPL6), clade 5 (SPL2, SPL10, SPL11), clade 6 (SPL3,
SPL4, SPL5), clade 7 (SPL13), and clade 8 (SPL9, SPL15) [11]. The SPL genes of most clades
(4,5, 6, 7,8) are targeted by miR156 [12]. The genes grouped in the same clades usually have
similar functions. SPL3, SPL4, and SPL5 in clade 6 potentiate the FLOWERING LOCUS T
(FT)- FLOWERING LOCUS T (FD) module to control the timing of flower formation by
directly binding to the promoters of LEAFY, FRUITFULL, and APETALA1 [10,13]. SPL2
and SPL10, and SPL11 in clade 5 redundantly control the proper development of lateral
organs in association with shoot maturation in the reproductive phase [14]. SPL9 and
SPL15 in clade 8 positively regulate the juvenile-to-adult growth phase transition [15].
Overexpression of SPL1 or SPL12 (clade 2) promotes thermotolerance while loss of function
of SPL1 and SPL12 showed hypersensitivity to heat stress in the reproductive stage [16].
SPL7 and HY5 act coordinately to transcriptionally regulate MIR408 and its target genes in
response to changing light and copper conditions [17].

Fruit ripening is a complex developmental process accompanied by changes in color,
texture, and flavor [7]. The changes in color are mostly due to the deposition of color
pigments (mainly flavonoids and carotenoids) in fruits. The Colorless non-ripening (Cnr)
gene is an SBP-box TF involved in tomato fruit ripening [7]. The Cnr tomato mutant showed
inhibited carotenoid biosynthesis and correspondingly colorless and non-ripening fruits
with low levels of total carotenoids and undetectable levels of phytoene and lycopene [18].
Manning et al. revealed that a natural epimutation in the promoter of the CNR gene reduced
cell-to-cell adhesion and resulted in colorless fruits [7]. A further study confirmed that a
functional CNR gene affects the RIN protein (a master regulator of ripening) [19]. These
studies indicate that the SBP genes may play an important role in carotenoid biosynthesis
and fruit ripening.

Loquat (E. japonica L.), a member of the Rosaceae family, is a subtropical fruit tree
originating from south-west China. It usually blossoms in autumn and winter, and its
fruit expands in spring and ripens in early summer. The loquat has a cultivation history
of about 2000 years in China, and currently has become a popular fruit worldwide for its
attractive taste [20]. Based on its flesh color arising from different carotenoid accumulations,
the loquat can be divided into white- and yellow-fleshed varieties [21]. Apart from flesh
color, white- and yellow-fleshed loquat varieties have some other differences in quality and
flavor. Yellow-fleshed loquat has larger fruits, tighter flesh, thicker peel, and higher stress
resistance and storability, while white-fleshed loquat bears smaller fruits with soft, juicy,
and sweet flesh preferred by consumers [22]. Four loquat genomes have been published
since 2020, providing a valuable genomic resource for genetic research on loquat growth
and development [23–26]. It is highly necessary to exploit critical genes in key physiological
processes that regulate the yield and quality of the loquat.

Although the SBP-box gene family has been identified in many plants by bioinformatics
analysis, there have been few studies in fruit crops and no study of this gene family in
the loquat. In the present study, we conducted genome-wide identification of the SBP-box
gene family in the loquat genome using BLASTP search and SMART, NCBI-CDD, and the
Pfam database. As a result, 28 members of the EjSBP-box gene family were identified. We
further analyzed and predicted the physicochemical properties, chromosomal localization,
collinearity relationship, phylogenetic relationship, gene structure, conserved motifs, cis-
elements, and expression patterns of EjSBPs. In addition, we compared the expression
patterns of EjSBPs between yellow- and white-fleshed fruits at three developmental stages.
Our study presents comprehensive information on the SBP-box gene family in the loquat
genome and their potential functions in the synthesis and accumulation of carotenoids in
loquat fruit.
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2. Materials and Methods
2.1. Data Sources and Plant Materials

The genome sequences of yellow-fleshed loquat variety “Jiefangzhong” were down-
loaded from the China National GeneBank Database (CNGB, https://db.cngb.org/cnsa,
accessed on 14 December 2023) with the accession number of CNP0001531 [25]. The RNA-
seq data presented in the study were downloaded from the National Geophysical Data
Center (NGDC, https://ngdc.cncb.ac.cn/gsa, accessed on 14 December 2023) with the ac-
cession number of CRA011296. The SBP protein sequences of A. thaliana were acquired from
the Arabidopsis Information Resource (TAIR, http://www.Arabidopsis.org/, accessed
on 14 December 2023). A local loquat variety, “Dongting” (TBY, yellow-fleshed), and its
white-fleshed mutant (TBW) sourced from Aba Tibetan and Qiang Autonomous Prefecture
of Sichuan Province [27] were selected as the plant materials for gene expression pattern
and differential expression analysis (Figure 1).
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Figure 1. Local loquat variety, “Dongting” (yellow-fleshed), and its white-fleshed mutant at the green
stage (140 DAP), breaker stage (150 DAP), and mature stage (158 DAP), respectively.

2.2. Identification and Characterization of the Loquat SBP-Box Family Members

BLASTP search was carried out to identify the candidate loquat SBP-box family
members by using A. thaliana SBP protein sequences as queries with an e-value of 1 × 10−5.
Then, the candidate loquat SBP-box family members were confirmed via a protein domain
search with the SMART [28] (http://smart.embl-heidelberg.de/#, accessed on 14 December
2023), the Pfam database [29] (http://pfam.xfam.org, accessed on 14 December 2023), and
the NCBI-CDD [30] (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi, accessed
on 14 December 2023). The physicochemical properties and subcellular localization of
loquat SBP-box family members were predicted using the ProtParam tool [31] (https:
//web.expasy.org/protparam/, accessed on 14 December 2023) and WoLF PSORT (https:
//wolfpsort.hgc.jp/, accessed on 14 December 2023).

2.3. Chromosomal Location and Collinearity Analysis

The physical positions of EjSBP genes on the 17 chromosomes of the loquat genome
were determined using the TBtools software according to the genome annotation file [32].
The collinearity relationships of the SBP genes among the loquat, apple, and A. thaliana
genomes were determined by using the Multiple Collinearity Scan toolkit (MCScanX)
with default parameters according to the annotation information and the whole genome
protein sequences [33]. The results of chromosomal location and collinearity analysis were
visualized using the TBtools software.

2.4. Construction of a Phylogenetic Tree

The amino acid sequences of the loquat, A. thaliana, and tomato SBP proteins were
collected for phylogenetic analysis. Multiple sequence alignment of SBP protein sequences
was carried out using Clustal X with default parameters in MEGA X [34]. The phylogenetic
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http://pfam.xfam.org
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
https://web.expasy.org/protparam/
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tree was constructed by employing the MEGA X software using the maximum likelihood
(ML) method with partial deletion of 1000 bootstraps and a WAG model [34]. The Interac-
tive Tree Of Life (iTOL) was used to display the phylogenetic relationship of the loquat, A.
thaliana, and tomato SBP proteins [35].

2.5. Analysis of Gene Structure, Conserved Motifs, Cis-Elements, and Protein-Protein
Interaction Network

The exon–intron structures of EjSBP genes were generated using TBtools according
to the difference between the protein-coding sequences (CDS) and genome sequences.
The conserved motifs of EjSBP genes were identified using MEME (multiple expecta-
tion for motif elicitation) [36], and the TBtools software was used to visualize the MEME
results. To study the regulatory factors of EjSBP genes, the cis-elements in promoter re-
gions were explored. The 2000 bp fragments upstream of the transcription initiation site
(ATG) in EjSBP genes were extracted from the genome and analyzed using the PlantCARE
tool (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/, accessed on 14 De-
cember 2023). The cis-elements of each EjSBP gene were visualized using the TBtools
software. The protein–protein interaction network (PPI) of 28 EjSBP proteins was investi-
gated by employing the STRING webserver [37] using the homologs of 28 EjSBP proteins in
A. thaliana.

2.6. Detection of Expression Patterns by Using Transcriptome Data

To study the expression patterns of EjSBP genes in various organs of the loquat, the
transcriptome data of roots, stems, leaves, inflorescences, and fruits at the green stage at
140 days after pollination (DAP 140), breaker stage (DAP 150), and mature stage (DAP
158) of the loquat were downloaded from the NGDC repository (https://ngdc.cncb.ac.cn/
gsa, accessed on 14 December 2023). The transcript abundance of each EjSBP gene was
calculated as fragments per kilobase of the exon model per million mapped reads (FPKM)
using Trimmomatic [38]. The expression patterns of EjSBP genes were visualized using the
TBtools software after normalization. Different expression patterns of EjSBP genes between
yellow- and white-fleshed fruits were also investigated according to the transcriptome data.
Differential expression analysis was carried out with a Log2 fold change ≥1 and a false
discovery rate ≤ 0.05.

2.7. Real-Time PCR Analysis

Total RNA was isolated from two kinds of fruits at three developmental stages using
the Total RNA Extraction reagent (R401-01, Vazyme, Nanjing, China) according to the man-
ufacturer’s instructions. Quantitative RT-PCR analysis was performed on the CFX96TM
real-time PCR system (Bio-Rad, Hercules, California, USA) with a qPCR reaction mixture
(10 µL): 5 µL of 2 × ChamQ SYBR Master Mix (Vazyme, Nanjing, China), 1 µL template of
10-fold diluted RT reaction mixture, 0.2 µL of forward and reverse primers (10 µmol/µL),
and 3.6 µL of ddH2O, with the procedure conditions of 95 ◦C for 30 s, followed by 40 cycles
of 95 ◦C for 10 s, 60 ◦C for 15 s, and 72 ◦C for 30 s. The relative expression to reference
genes was calculated using the 2−∆∆Ct method. Actin1 was used as an internal control, and
all primers are listed in Table S2.

2.8. Statistical Analysis

SPSS (IBM Corp., Armonk, NY, USA) was used for statistical analyses. Statistical
differences between groups were evaluated using analysis of variance (ANOVA) with
Student’s t-test (unpaired two-tailed), and a level of p < 0.05 was considered statistically
significant based on three independent biological replicates. The Tbtools software was used
to generate the figures in this study.

http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
https://ngdc.cncb.ac.cn/gsa
https://ngdc.cncb.ac.cn/gsa
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3. Results
3.1. Identification and Characterization of EjSBP Genes

In total, 28 members of the SBP-box gene family were identified from the genome of
the yellow-fleshed loquat variety, “Jiefangzhong”, by performing a BLASTP search using A.
thaliana SBP protein sequences and confirmation with SMART, NCBI-CDD, and the Pfam
database. All identified EjSBP genes were renamed from EjSBP01 to EjSBP28 according to
the gene ID in the genome (Table 1). The length of EjSBP proteins varied greatly from 135
(EjSBP28) to 1515 (EjSBP16) amino acids (aa). The molecular weight (MW) ranged from
15.3 kDa (EjSBP28) to 168.6 kDa (EjSBP16). The 28 EjSBP proteins included 10 acidic proteins
and 18 basic proteins, with the lowest isoelectric point (pI) of 5.21 (EjSBP01) and the highest
isoelectric point of 9.77 (EjSBP28). EjSBP16 and EjSBP18 were predicted to be located in
the mitochondria and chloroplasts, respectively, and the remaining EjSBP proteins were all
located in the nucleus.

Table 1. Basic information of EjSBP genes.

Gene Name Gene ID Length (aa) MV (kDa) pI Subcellular
Localization

EjSBP01 Ej00000266 173 19685.18 5.21 nucl
EjSBP02 Ej00015513 932 103687.92 7.09 nucl
EjSBP03 Ej00016783 217 23673.22 7.64 nucl
EjSBP04 Ej00026056 510 55835.29 8.13 nucl
EjSBP05 Ej00034062 971 107095.03 6.71 nucl
EjSBP06 Ej00034149 983 109556.47 6.24 nucl
EjSBP07 Ej00034777 477 53066.69 6.47 nucl
EjSBP08 Ej00035634 189 21196.41 8.97 nucl
EjSBP09 Ej00048187 414 45313.99 8.28 nucl
EjSBP10 Ej00062526 551 61179.21 6.74 nucl
EjSBP11 Ej00064408 555 61188.51 7.29 nucl
EjSBP12 Ej00065062 1077 119141.49 7.96 nucl
EjSBP13 Ej00065226 510 55835.29 8.13 nucl
EjSBP14 Ej00066329 817 91470.01 6.55 nucl
EjSBP15 Ej00068286 414 45179.21 8.99 nucl
EjSBP16 Ej00069183 1515 168555.71 5.51 mito
EjSBP17 Ej00069236 1278 140862.49 5.37 nucl
EjSBP18 Ej00069499 1062 118128.02 5.4 chlo
EjSBP19 Ej00069727 182 20781.38 9.53 nucl
EjSBP20 Ej00074396 334 37715.64 9.06 nucl
EjSBP21 Ej00075258 393 42171.64 9.14 nucl
EjSBP22 Ej00081025 816 91901.24 7.23 nucl
EjSBP23 Ej00083560 191 21437.61 9.21 nucl
EjSBP24 Ej00085592 1003 111523.92 6.34 nucl
EjSBP25 Ej00085893 308 34705.86 9.43 nucl
EjSBP26 Ej00085904 1029 113860.22 6.71 nucl
EjSBP27 Ej00086049 475 52086.43 6.55 nucl
EjSBP28 Ej00096159 135 15343.05 9.77 nucl

3.2. Chromosomal Distribution of EjSBP Genes

The distribution of EjSBP genes on the 17 loquat chromosomes was predicted by using
the TBtools software according to the gene annotation information. The results showed
that the 28 EjSBP genes were unevenly distributed on 12 chromosomes (Figure 2), while no
EjSBP genes were found on chr1, chr5, chr8, chr10, and chr11 chromosomes. Each of Chr2,
chr3, chr4, chr7, chr9, chr14, chr15, and chr17 contained only one EjSBP gene, respectively,
and chr12 harbored two EjSBP genes. Chr6, chr13, and chr16 had more than five EjSBP
genes, and chr16 contained the most EjSBP genes (seven).
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3.3. Phylogenetic Analysis of SBP Proteins

To explore the evolutionary relationship of EjSBP proteins, the phylogenetic tree of
SBP proteins from the loquat, tomato, and A. thaliana was constructed using MEGA and
the maximum likelihood (ML) method. A total of 61 SBP proteins were grouped into seven
clades (Clade I to Clade VII) (Figure 3). All clades contained at least one SBP protein from
the tomato and A. thaliana, while Clade I did not harbor any EjSBP. Clade III had the largest
number (seven) of EjSBPs. Clade II contained the key protein, SlCnr, involved in carotenoid
biosynthesis and fruit ripening, and EjSBP01, EjSBP08, EjSBP14, EjSBP19, EjSBP22, EjSBP23,
and EjSBP28 were clustered in the same clade with SlCnr, suggesting that they have a close
relationship with SlCnr and may also play certain roles in carotenoid biosynthesis and fruit
ripening.

3.4. Collinearity Analysis

A multiple collinearity analysis was performed using MCScanX of the loquat, A.
thaliana, and apple. As a result, 22 and 72 syntenic SBP gene pairs were detected between the
loquat and A. thaliana and between the loquat and apple, respectively (Figure 4A), indicating
that EjSBP genes have a closer relationship with the SBP genes in the apple. A collinearity
analysis was also performed using MCScanX between and within chromosomes in the
loquat to find the collinear genes in the loquat genome. As a result, 27 inter-chromosome
segmental duplication events and no tandem duplication event were detected in the
28 EjSBP genes (Figure 4B). Nearly half of the duplication events (12/27) showed a
one-to-one pattern, while the remaining duplication events exhibited a one-to-many
(2–4) pattern.

3.5. Conserved Motifs and Gene Structures of EjSBP Genes

Conserved motifs of EjSBP protein sequences were analyzed using the MEME tool.
The results showed that EjSBP proteins contained different numbers of motifs ranging
from two to six. All 28 EjSBP proteins shared two common motifs (motif 1 and motif 2)
(Figure 5A), indicating that these two motifs are important for the function of EjSBP proteins.
The EjSBP proteins sharing a common motif combination showed closer phylogenetic
relationships. For example, all EjSBP proteins sharing six motifs were grouped into one
clade. Furthermore, the intron/exon distribution patterns of EjSBP genes were analyzed by
comparing the CDS and genome sequences. The results revealed that the 28 EjSBP genes
contained various numbers of exons ranging from two to twelve (Figure 5B). Most EjSBP
genes (17/28) had a small number of exons (2–4), and the remaining EjSBP genes (11/28)
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contained a large number of exons (10–14). Similar to conserved motif patterns, EjSBP
genes sharing similar intron/exon patterns also showed closer phylogenetic relationships.
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Figure 3. Phylogenetic analysis of SBP proteins from loquat, tomato, and A. thaliana. Each symbol
represents a group of SBP proteins from one species. Green circle: E. japonica (Ej); blue star: Solanum
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3.6. Cis-Elements in the Promoter Regions of EjSBP Genes

The 2000 bp fragments upstream of the transcription initiation site (ATG) in EjSBP
genes were analyzed using the PlantCARE tool. Three categories of cis-elements were
found in EjSBP promoters including stress-responsive elements, hormone-responsive
elements, and light-responsive elements (Figure 6A). Light-responsive elements were the
most abundant cis-elements detected in EjSBP promoters, including the GT1-motif, G-
box, Box 4, TCT-motif, GATA-motif, and ATCT-motif (Figure 6B). Hormone-responsive
elements also accounted for a large proportion of cis-elements in EjSBP promoters, such as
the TGACG-motif and CGTCA-motif as MeJA-responsive elements, ABRE as an abscisic
acid-responsive element, TCA-element as a salicylic acid-responsive element, and TGA-
element as an auxin-responsive element. Stress-responsive elements only accounted for a
small proportion of cis-elements in EjSBP promoters, including LTR as a low-temperature-
responsive element and TC-rich repeats as a defense-and-stress-responsive element.

3.7. Protein–Protein Interaction Network of Homologs of EjSBP Proteins in A. thaliana

The protein–protein interaction (PPI) network of EjSBP proteins was investigated
using the homologous proteins in A. thaliana. The results of the PPI network showed that
several EjSBP proteins have the same homologous proteins as in A. thaliana (Figure 7).
AtSPL13B (EjSBP09, EjSBP11, EjSBP13, EjSBP18, and EjSBP28) showed a potential interac-
tion relationship with most of the homologous proteins in A. thaliana: AtSPL1 (EjSBP01,
EjSBP02, EjSBP03, and EjSBP04), AtSPL4 (EjSBP08, EjSBP12, EjSBP16, and EjSBP17), At-
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SPL5 (EjSBP07), AtSPL7 (EjSBP22 and EjSBP23), AtSPL9 (EjSBP10), AtSPL14 (EjSBP05 and
EjSBP06), At5g43270 (EjSBP20 and EjSBP21), and AT1G69170 (EjSBP14, EjSBP15, EjSBP19,
and EjSBP24). In addition, AtSPL9 (EjSBP10), AT1G69170 (EjSBP14, EjSBP15, EjSBP19, and
EjSBP24), AtSPL5 (EjSBP07) and AtSPL4 (EjSBP08, EjSBP12, EjSBP16, and EjSBP17) had a
potential interaction relationship with five–seven homologous proteins in A. thaliana. The
results of the EjSBP protein PPI network based on the homologous proteins in A. thaliana
give us a preliminary finding for the further investigation of the protein interaction between
EjSBP proteins.
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3.8. Expression Patterns of EjSBP Genes in Different Tissues

To explore the expression patterns of EjSBP genes in different tissues, the expression
profiles of 28 EjSBP genes in the root, stem, leaf, inflorescence, and fruit were analyzed
at the green stage (DAP 140), breaker stage (DAP 150), and mature stage (DAP 158) of
the yellow-fleshed loquat variety, “Dongting” (Figure 5C). The results showed that most
EjSBP genes had less abundant expression in the fruit than in the root, stem, leaf, and
inflorescence. Totally, 23 EjSBP genes showed the highest expression in the root (EjSBP27),
stem (EjSBP12, EjSBP16, EjSBP19, EjSBP21, EjSBP24), leaf (EjSBP03, EjSBP12, EjSBP14,
EjSBP22, EjSBP23), and inflorescence (EjSBP01, EjSBP04, EjSBP05, EjSBP07, EjSBP09,
EjSBP10, EjSBP11, EjSBP13, EjSBP15, EjSBP17, EjSBP20, EjSBP25), respectively. However,
the remaining five EjSBP genes showed the highest expression in the fruit, including
EjSBP02, EjSBP06, EjSBP08, EjSBP18, and EjSBP28, suggesting that these five genes may
play important roles in loquat fruit ripening. In addition, many EjSBP genes (12/28)
showed the highest expression in inflorescence, suggesting that EjSBP genes encode vital
TFs involved in the loquat flowering process.
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structure of EjSBP genes. Exons and untranslated regions (UTRs) are shown in yellow and green
boxes, respectively, and introns are shown in gray lines. (C) Expression profiles of EjSBP genes. The
transcriptome data were obtained from NGDC, and the values of expression level were calculated
from three independent biological replicates of each organ. R: Root, S: Stem, L: Leaf, I: Inflorescence.
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white-fleshed mutant, respectively.
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3.9. Differential Expression of EjSBP Genes between Yellow- and White-Fleshed Fruit

To investigate the differential expression patterns of EjSBP genes between yellow-
and white-fleshed fruit, transcriptome sequencing was conducted with fruits from the
yellow-fleshed loquat variety, “Dongting”, and its white-fleshed mutant at the green stage
(DAP 140), breaker stage (DAP 150), and mature stage (DAP 158). As a result, zero, eight,
and one gene showed differential expression between yellow- and white-fleshed fruit at
the three developmental stages, respectively (Table S1). Compared with yellow-fleshed
fruit, white-fleshed fruit had seven downregulated differentially expressed genes (DEGs)
(EjSBP01, EjSBP04, EjSBP13, EjSBP17, EjSBP16, EjSBP18, EjSBP21) and one upregulated
DEG (EjSBP19) at the breaker stage, suggesting that EjSBP genes may play important roles
at the breaker stage, a key stage for the deposition of coloring pigments.

Furthermore, the actual expression of the eight DEGs was determined in fruit at differ-
ent stages using qPCR with specific primers (Table S2). As shown in Figure 7, the expression
of seven genes (EjSBP01, EjSBP04, EjSBP13, EjSBP17, EjSBP16, EjSBP18, EjSBP21) was
downregulated whereas that of one gene (EjSBP19) was upregulated in yellow-fleshed
fruit at the breaker stage, which is consistent with the results of transcriptome analysis
(Table S1). In addition, the eight DEGs showed various expression patterns in yellow-
and white-fleshed fruit at different stages. Intriguingly, two genes (EjSBP01 and EjSBP19)
exhibited completely opposite expression patterns between white- and yellow-fleshed
fruit during fruit development: EjSBP01 was upregulated in white-fleshed fruit while
downregulated in yellow-fleshed fruit along with fruit development, and it was just the
opposite for EjSBP19, which led to great differences in their expression levels.
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4. Discussion

Many studies have revealed that SBP genes are TFs with multiple functions involved in
leaf, flower, and fruit development, vegetative phase change, and the signal transduction of
plants [4–10,39]. The SBP-box gene family has been identified and investigated in numerous
plants, such as A. thaliana [3], rice [3], tomato [40], tobacco [41], soybean [42], pepper [43],
apple [44], castor bean [45], Populus [46], and Petunia [47]. However, the SBP-box gene
family has not been characterized in the loquat, a subtropical fruit tree with delicious fruit.
In the present study, we identified the SBP-box gene family in the loquat genome and
analyzed the phylogenetic relationship, gene structure, conserved motifs, cis-elements, and
expression patterns via bioinformatics analysis. In total, 28 members of the EjSBP family
were identified, and the number is larger than that in some plants, such as A. thaliana (16), S.
lycopersicum (16), Brachypodium distachyon (17), and Oryza sativa (19), but smaller than that
in some other plants, such as Malus domestica (34), Nicotiana tabacum (40), Camelina sativa
(45), and Musa acuminate (54) [48]. The loquat has a larger number of SBP genes than most
plants [48], indicating that its genome may have undergone whole-genome duplication
(WGD), which can be confirmed by a previous study [25].

The phylogenetic analysis of SBP protein sequences from several plant species in
previous studies has grouped SBP protein sequences into seven to nine groups [43,44,49], and
this study divided the SBP protein sequences from the loquat, tomato, and A. thaliana into
seven clades. The analysis of physicochemical properties, gene structure, and conserved
motifs revealed that the SBP proteins within the same clade have similar physicochemical
properties and gene structure (the same motif combination and position), suggesting close
relationships among them. In the phylogenetic tree, EjSBP01, EjSBP08, EjSBP14, EjSBP19,
EjSBP22, EjSBP23, and EjSBP28 were grouped in the same clade with the tomato SBP
protein SlCnr, which is involved in carotenoid biosynthesis and fruit ripening [7]. Proteins
within the same clade show close relationships and usually share similar functions [50].
Therefore, EjSBP01, EjSBP08, EjSBP14, EjSBP19, EjSBP22, EjSBP23, and EjSBP28 may have
similar functions to those of SlCnr.

The development of loquat fruit usually covers 120–150 DAP from blossom to mat-
uration, which can be divided into three stages, including the green stage, breaker stage,
and mature stage [51,52]. Based on the flesh color at the mature stage, loquat fruit can be
divided into white-fleshed and yellow-fleshed fruit [21,53], which differ remarkably in the
composition and accumulation of carotenoids [51]. The breaker stage is a key stage for the
synthesis and accumulation of carotenoids in loquat fruit, and the key genes (DXS, DXR,
PSY, PDS, CYCB, and ZDS) for carotenoid biosynthesis are upregulated at this stage [54].
Fu et al. revealed that EjPSY2A, an important gene for carotenoid accumulation in ripening
fruit, showed low expression in the root, stem, leaf, and green fruit, but high expression
in the fruit at the breaker stage [55]. In our study, there were zero, eight, and one DEGs
between yellow- and white-fleshed fruit at the green, breaker, and mature stage, respec-
tively. The expression levels of the eight DEGs were detected during fruit development
using qPCR with specific primers. qPCR and transcriptome analysis generated consistent
results in terms of the expression patterns of the eight DEGs at the breaker stage, indicating
the reliability of our transcriptome data. Moreover, the completely opposite expression
patterns of EjSBP01 and EjSBP19 between yellow- and white-fleshed fruit during fruit
development resulted in greater differences in their expression levels at the mature stage,
suggesting that these two genes may play important roles in loquat fruit development, and
their close relationship with the tomato SBP protein SlCnr indicated that they may play
crucial roles in carotenoid biosynthesis and fruit ripening of the loquat.

5. Conclusions

A total of 28 EjSBP genes were identified in the loquat genome by conducting a
comprehensive and systematic genome-wide identification analysis. The 28 EjSBP genes
were unevenly distributed on 12 chromosomes of the loquat genome and grouped into
seven clades with detailed analysis of the phylogenetic relationship, collinearity, gene
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structure, conserved motifs, and cis-elements of EjSBP proteins. Gene expression analysis
suggested that the EjSBP genes play important roles in loquat fruit development at the
breaker stage. EjSBP01 and EjSBP19 with a close relationship with SlCnr may participate in
the synthesis and accumulation of carotenoids in loquat fruit. Our present work provides
an important foundation for the future research of the biological functions of EjSBP genes
in carotenoid synthesis and accumulation during loquat fruit development.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes15010023/s1, Table S1: The differentially expressed genes were
detected between yellow- and white-fleshed fruits at the three developmental stages, respectively;
Table S2: The specific primers used in the qPCR.
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