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Abstract: Reference genes are used as internal reaction controls for gene expression analysis, and
for this reason, they are considered reliable and must meet several important criteria. In view of the
absence of studies regarding the best reference gene for the analysis of acute leukemia patients, a panel
of genes commonly used as endogenous controls was selected from the literature for stability analysis:
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Abelson murine leukemia viral oncogene
human homolog 1 (ABL), Hypoxanthine phosphoribosyl-transferase 1 (HPRT1), Ribosomal protein
lateral stalk subunit P0 (RPLP0), β-actin (ACTB) and TATA box binding protein (TBP). The stability of
candidate reference genes was analyzed according to three statistical methods of assessment, namely,
NormFinder, GeNorm and R software (version 4.0.3). From this study’s analysis, it was possible
to identify that the endogenous set composed of ACTB, ABL, TBP and RPLP0 demonstrated good
performances and stable expressions between the analyzed groups. In addition to that, the GAPDH
and HPRT genes could not be classified as good reference genes, considering that they presented a
high standard deviation and great variability between groups, indicating low stability. Given these
findings, this study suggests the main endogenous gene set for use as a control/reference for the
gene expression in peripheral blood and bone marrow samples from patients with acute leukemias is
composed of the ACTB, ABL, TBP and RPLP0 genes. Researchers may choose two to three of these
housekeeping genes to perform data normalization.

Keywords: leukemia; reference genes; RT-qPCR; gene expression

1. Introduction

The standard polymerase chain reaction (PCR) was developed in the 1980s by Kary
Mullis and resembles an in vitro elementary form of DNA replication, mimicking the
physiological process that occurs in living organisms. Up to the present time, many
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variations of this technique have been developed, such as Nested-PCR, reverse transcriptase
PCR (RT-PCR), real-time quantitative reverse transcriptase PCR (RT-qPCR) and others [1–3].

Real-time quantitative reverse transcriptase PCR (RT-qPCR) technology has revolu-
tionized the detection landscape in every area of molecular biology. This technique is
based on the conversion of an RNA template to complementary DNA (cDNA), followed
by fluorescent reporter dye detection to measure the amplification at each PCR cycle with
higher sensitivity and specificity [1,3–8].

The RT-qPCR technique is considered as the most reliable and most accurate method
of diagnosis [9–17]. However, numerous failures can occur during the RT-qPCR process,
which can lead to the misinterpretation of results and incorrect conclusions. That is
why the application of an appropriate normalization method is an absolute necessity
to achieve reliable results [18–21]. There are many ways to normalize RT-qPCR data, such
as normalization with genomic DNA, total RNA, artificial molecule (spike) and reference
genes [4,13,20,22–24].

The use of reference genes is considered one of the most effective methods for the
normalization step of the RT-qPCR technique [13]. Reference genes may be used as an in-
ternal reaction control for gene expression analysis, and for this reason, they are considered
reliable and must meet several important criteria. A good reference gene is unaffected
by experimental factors and shows minimal variability between tissues and physiological
states of the organism. Therefore, it is beneficial to choose a reference gene that shows a
similar threshold cycle in studies within different genes of interest [17,18,25–33].

Basic metabolism genes often present the perfect fulfillment of these conditions since
they are expressed at a stable and constant level and are involved in essential cell processes.
Because of that, they can be called housekeeping genes (HKGs). In the past, the validation
process was often avoided and HKGs were used due to a common belief that they are
characterized by constant expression levels regardless of their conditions and origins.
As awareness of the complex expression regulation networks in the cell function grew,
this statement began to be undermined and experimental confirmation of the stability of
candidate genes is now a standard requirement [14,15,34–41].

A relevant number of traits can have different impacts on gene expression, such
as tissue type, developmental stage, related species, abiotic stress, diseases, infections,
alternative splicing, and tumors. Therefore, it is observed that the need for reference
gene validation has been underlined several times in different articles involving different
types of diseases, especially in the oncological area, where types of cancer have different
physiologies and the involvement of several genetic and external factors. Since cancer
encompasses so many variables, molecular studies are required to determine comparative
genes for expression analyses, which is imperative for adequate normalization, whose
task is to compensate for PCR variations resulting from basic difficulties inherent to the
method. Therefore, the ideal is to find genes with undoubtedly stable expression for each
disease/condition model [42–50].

Several studies have already been carried out aiming to validate the reference genes for
different types of cancer, allowing the normalization of gene expression analyses in future
studies. McNeil et al. [47] validated the MRPL19 and PPIA genes as endogenous controls
for analysis of breast cancer patients. For the analysis of endometrial cancer, the most
stable reference genes were RPL30, MT-ATP6 and ACTB according to research conducted
by Ayakannu et al. [51].

There are still no concrete published studies on the validation of reference genes using
the RT-qPCR technique for gene expression analysis involving acute leukemia patients. Our
group chose to perform validation on both peripheral blood and bone marrow samples, as
these are the two sample types used in our laboratory for the detection of genetic alterations
in acute leukemia patients through the RT-qPCR technique. This validation’s importance is
due to the fact that this methodology is widely used at these patients’ time of diagnosis
but also for the detection of minimal residual disease (MRD), with the ability to identify if
they are having a good treatment response and/or if they are disease free at the end of the
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chemotherapy protocol. Therefore, it is extremely necessary to perform a reference gene
normalization in this technique, so it is as accurate as possible.

Considering the importance of using the reference gene as a control for gene expression
analysis and the lack of studies in the literature that validate the best reference genes to
be used for the analysis of patients with acute leukemias, this work aimed to perform
this validation and normalize expression assays with peripheral blood and bone marrow
samples from these patients.

2. Materials and Methods
2.1. Biological Samples

All adult patients with AML (24) and ALL (25) participating in this study were treated
at the Fortaleza General Hospital (Fortaleza, CE, Brazil) and sought care due to suspicion
of the disease, i.e., samples from all patients were collected during the diagnostic phase.
Samples were collected prospectively from July 2021 to July 2022. Control group samples
(15) were also collected during the same period. Pediatric ALL samples (25) were collected
from 2012 to 2023 at Octávio Lobo Children’s Hospital (Belém, PA, Brazil), also in the
diagnostic phase (Table 1). The diagnosis of these patients was made in the participating
hospitals and local blood centers through tests such as myelogram, immunophenotyping
and karyotyping.

Table 1. Samples examined in this study and patients’ characteristics.

Number of Patients Bone Marrow Peripheral Blood Mean Age (Range) Median Age Gender

AML 24 14 24 51.1 (19–96) 47.5 F: 9
M: 15

ALL 25 14 25 42.5 (19–96) 36 F: 8
M: 17

ALL_Ped 25 - 25 8 (0–18) * 7 *
F: 8

M: 14
NA: 3

Control 15 - 15 33.7 (20–47) 33 F: 10
M: 5

Total 89 28 89

AML: acute myeloid leukemia; ALL: adult acute lymphoblastic leukemia; ALL_Ped: pediatric acute lymphoblastic
leukemia; F: female; M: male; NA: not available. * These numbers were calculated with only 22 patients’ age
information since the remaining 3 were not available.

Patients’ samples were collected in ethylenediaminetetraacetic acid (EDTA) collection
tubes at the time of diagnosis and were packed in a thermal case at 2–4 ◦C for transport
to the laboratory for later processing. After collection, the samples were immediately
processed, going through the buffy coat separation for RNA extraction and conversion into
cDNA. The cDNA samples were stored until the end of the collections, in July 2022, in a
freezer (−2 ◦C to −8 ◦C) for RT-qPCR assays.

This study was approved by both the Ethics Committee of the Ophir Loyola Hospital
(approval number: 2,798,615) and the Ethics Committee of the General Hospital of Fortaleza
(approval number 4,798,575). Informed written consent was obtained from the patients or
the patients’ legal guardians, and all methods were carried out in accordance with Helsinki
guidelines and regulations.

2.2. RNA Extraction and Reverse Transcription of RNA to cDNA

RNA from samples was extracted with TRIzol Reagent® (Invitrogen, Waltham, MA,
USA) according to the manufacturer’s instructions. From 20 µL of RNA, the cDNA was
synthesized using a High-Capacity cDNA Reverse Transcriptase kit (Life Technologies,
Carlsbad, CA, USA) to convert the extracted and purified RNA to cDNA. The conversion
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step was performed on a Veriti® Thermal Cycler (Applied Biosystems, Foster City, CA,
USA). After this step, the samples were stored in a freezer at −20 ◦C until use for analysis.

2.3. Identification of Gene Expression by Quantitative Real-Time Polymerase Chain Reaction
(qPCR)

Quantitative real-time polymerase chain reaction was performed to evaluate the
endogenous expressions that are commonly used in studies of general gene expression.
Information about the genes and probes chosen for the study is shown in Table 2. Regarding
the protocol, for each sample, the following were used: 1 µL of cDNA, 0.5 µL of each
primer/probe, 5 µL of TaqMan® Gene Expression Master Mix (Life Technologies, Carlsbad,
CA, USA) and 3.5 µL of ultra-pure water. RT-qPCR was performed for the following
genes shown in Table 2, and each sample was analyzed in triplicate for experimental
and technique validation, according to the international standards for evaluation of gene
expression by real-time PCR [46,52].

Table 2. Selected endogenous genes for quantitative real-time PCR evaluation.

Gene
Symbol Gene Name Chromosome

Location Function Amplicon Size Assay Number

ABL1
Abelson murine leukemia

viral oncogene human
homolog 1

Chr.9:
130713881–130887675

Protein tyrosine
kinase involved in
a variety of cellular

processes

60 Hs01104728_m1

ACTB β-actin Chr.7:
5527148–5530601

Cytoskeletal
structural protein 63 Hs01060665_g1

GAPDH Glyceraldehyde-3-
phosphate dehydrogenase

Chr.12:
6534405–6538375

Oxidoreductase in
glycolysis and

gluconeogenesis
157 Hs02786624_g1

HPRT1
Hypoxanthine

phosphoribosyl-
transferase 1

Chr.X:
134460165–134500668

Purine synthesis in
salvage pathway 82 Hs2800695_m1

RPLP0 Ribosomal protein lateral
stalk subunit P0

Chr.12:
120196700–120201211

Ribosomal protein
translation 76 Hs00420895_gH

TBP TATA box binding protein Chr.6:
170554333–170572870

Regulation of
transcription DNA
and component of
the DNA-binding
protein complex

TFIID

91 Hs00427620_m1

The gene-expression levels were based on absolute and relative analyses and calculated
using the 2−∆∆CQ (delta delta cycle quantification) method, using the healthy samples as the
calibrator/control [46,52]. Fold change data are represented as mean ± standard deviation
of three independent experiments.

2.4. Data Analysis Based on the Gene Expression Omnibus (GEO) Database

We used the Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/gds
(accessed on 12 July 2023)), a public repository of high-throughput gene expression data, as
a reference model to profile ACTB, ABL, GAPDH, HPRT, TBP and RPLP0 expression in acute
leukemias. The spreadsheet created with all the Ct (cycle threshold) data of all endogenous
genes and all the analyzed samples is available as a Supplementary file. The file contains
4 spreadsheets: metadata template, matrix non-normalized template, matrix normalized
template and fold change template. The metadata template spreadsheet contains the
description of all samples used in the study, such as the numbering of each patient, leukemia
type and sample type information. The matrix non-normalized template spreadsheet

https://www.ncbi.nlm.nih.gov/gds
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reports all the raw Ct averages of each analyzed sample, where the rows correspond to the
reference genes used in the research and the columns correspond to the samples tested.
The matrix normalized template spreadsheet contains target gene signals normalized to
housekeeping genes, e.g., 2−∆Ct, where −∆Ct = −(Ct_Target − Ct_HKG), where the rows
correspond to the reference genes used in the research and the columns correspond to
the samples tested. And finally, the last spreadsheet, fold change template, reports the
fold change data, e.g., SAMPLEtest target gene signal normalized to housekeeping gene
(2−∆Cttest)/SAMPLEcontrol target gene signal normalized to HKG (2−∆Ctcontrol), where the
rows correspond to the reference genes used in the research and the columns correspond to
the samples tested.

2.5. Statistical Analysis

The stability of candidate reference genes was analyzed according to three statistical
methods of assessment, namely, the Delta Ct method, the estimation of the intra- and inter-
group variation (NormFinder) [53] and pairwise comparison (GeNorm) [43]. In addition, a
deeper and more individual analysis was carried out using a Kruskal–Wallis (KKW) test
in the R software [54], and comprehensive ranking orders of these candidate genes were
available from the four methods.

GeNorm uses a pairwise comparison-based model to select, from a panel of candidate
HKGs, the gene pair showing the least variation in expression ratio across the samples.
It calculates a measure of gene stability (M) of each gene based on the average pairwise
variation between all tested genes. Genes with the lowest M values are those demonstrating
the most stable expression. This calculation is based on the principle that it stepwise
excludes the gene with the highest M value. In addition, GeNorm involves a cut-off value
of 0.15, below which the inclusion of an additional reference gene is not required. This
cut-off value of 0.15 is suggested by Vandesompele et al. (2002) when multiple control
genes are used as a normalization factor [43].

NormFinder uses a model-based approach to estimate not only the overall expres-
sion variation of the candidate normalization genes but also the variation between the
sample subgroups of the sample set. The candidates with the lowest intergroup and intra-
group variations give the lowest S stability value and are therefore ranked higher as more
stable [53].

The R software (https://www.r-project.org, accessed on 14 September 2023) allows a
deep analysis. To evaluate the potential endogenous genes, three analyses were performed:
(i) using all samples, (ii) using only peripheral blood (PB) samples and (iii) using only bone
marrow (BM) samples.

The Kruskal–Wallis (KKW) test was performed for each gene to identify significant
differences among the four groups (control, AML, ALL and ALL_Ped). Additionally, the
sum of the square differences between each condition mean (Ct) and standard deviation
and the gene mean (Ct) and standard deviation were calculated. These values indicate the
mean and standard deviation variation among different groups. Greater values indicate
more variance among groups [55,56].

To select the best endogenous gene set, we utilized an interactive methodology in-
volving multiple steps: (i) we calculated the endogenous mean for each sample; (ii) we
excluded outlier samples (|MeanCt| > 2); (iii) the Kruskal–Wallis test was applied to assess
variations in the endogenous means across different conditions; (iv) in cases where signifi-
cant differences were identified among conditions or groups, the least stable endogenous
gene was systematically removed from the analysis and the excluded samples removed
in step (ii) were then reintegrated, and the process recommenced from step (i); (v) if there
are no significant differences among groups, the survival endogenous gene set is selected
(Figure 1).

https://www.r-project.org
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Figure 1. Flowchart of the steps used to select the best endogenous gene set. This figure illustrates the
methodology utilized during this study’s statistical analysis in the R software. KKW: Kruskal–Wallis;
WMW: Wilcoxon–Mann–Whitney.

To identify the less stable endogenous gene, the following criteria were applied:
(i) gene significant differences among conditions; (ii) standard deviation values; (iii) sum of
the square differences of the mean and standard deviation between conditions/groups and
the gene; (iv) NormFinder and GeNorm stability values.

To evaluate the variation of potential endogenous genes in ALL and AML groups in
different origin samples (PB and BM), a two-way ANOVA ranking was used. The statistical
significance threshold was set at p-value < 0.05 for all analyses [57–59].

3. Results

In order to identify the best reference genes for gene expression studies in peripheral
blood and/or bone marrow samples of acute leukemia patients, a qPCR assay based on
TaqMan detection for the expression analysis of the six selected genes (ACTB, ABL, GAPDH,
HPRT, TBP and RPLP0) was used.

The gene ranking according to GeNorm indicates that TBP is the gene with the most
stable expression for adult ALL and AML patients, with stability values of 0.098 and 0.073,
respectively, and HPRT is the gene with the most stable expression for both pediatric ALL
patients and normal samples, with a stability value of 0.059 and 0.040, respectively (Table 3).

Table 3. GeNorm endogenous gene stability value (M).

ABL ACTB GAPDH HPRT TBP RPLP0

ALL 0.113 0.104 0.128 0.100 0.098 0.121
AML 0.087 0.083 0.090 0.098 0.073 0.091

ALL_Ped 0.059 0.066 0.082 0.059 0.060 0.071
Control 0.045 0.052 0.067 0.040 0.044 0.044

GeNorm program did not allow the identification of the different groups in its analyses; therefore, each group
was analyzed separately.
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NormFinder identified a different result from GeNorm, probably because it was
possible to identify the different sample groups during the analysis. The ACTB gene was
the most stable gene followed by the RPLP0 gene, which had stability values of 0.47 and
0.52, respectively. The least stable reference gene candidate was GAPDH with a stability
value of 1.78 (Table 4).

Table 4. NormFinder endogenous gene stability value ranking.

Gene Stability Value

Overall *
1 ACTB 0.47
2 RPLP0 0.52
3 HPRT 0.72
4 ABL 0.86
5 TBP 0.91
6 GAPDH 1.78

* The NormFinder normalizer program allowed a single analysis of all study samples subdivided by groups
(AML, ALL, ALL_Ped and control), identifying the reference genes with the best overall performance.

The R software allowed a deep analysis, as this tool is capable of performing intergroup
and intragroup analyses, ensuring a more adequate evaluation of the endogenous genes.
Table 5 summarizes the results obtained through the analyses performed in the R software,
including Kruskal–Wallis results, gene standard deviation, sum of mean square difference
and sum of standard deviation square difference. Among all the results, we highlight that
it was possible to observe that the ACTB gene presented a very good performance with low
mean and standard deviation values (1.52 and 1.69, respectively), as well as little difference
in the standard deviation between all groups (Table 5).

Table 5. Software R endogenous candidates’ analysis.

ABL GAPDH ACTB HPRT TBP RPLP0

Kruskal–Wallis
p-value 0.176 0.000 0.046 0.000 0.914 0.368

Gene Standard
Deviation 2.421 3.352 1.698 2.150 2.472 2.362

Sum of Mean
Square Difference 0.893 22.500 0.487 3.256 0.286 0.385

Sum of Standard
Deviation Square

Difference
2.448 7.396 0.626 0.715 1.223 3.170

The analysis made in this study showed that the GAPDH and HPRT genes could not
be classified as good reference genes, considering that they presented a high standard
deviation and great variability between groups, indicating low stability. From these results,
it can be considered that GAPDH and HPRT do not behave as good endogenous genes for
the expression analysis of acute leukemia samples; therefore, they should not be used.

In addition, it was possible to identify that the endogenous gene set composed of ACTB,
ABL, TBP and RPLP0 demonstrated good performances and stable expressions between
the analyzed groups. The expression levels for many of these genes fluctuate dramatically
both within and across datasets (Figure 2). The origin of the sample (peripheral blood or
bone marrow) may also have an influence on the reference gene expression (Figure 3).
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Figure 2. Box-plot graph indicating the range of Ct values of the reference genes by group. ALL:
adult acute lymphoblastic leukemia; ALL_Ped: pediatric acute lymphoblastic leukemia; AML: acute
myeloid leukemia. This figure, obtained through R software analysis, illustrates the mean Ct of
each endogenous candidate in the different groups analyzed, allowing the visualization of which
endogenous genes showed greater expression instability and which were more stable. The smaller the
mean Ct variation and the smaller the variation between the groups, the more stable the endogenous
gene evaluated.

As most endogenous gene validation studies report, we have observed, in our study, an
expression variation of endogenous candidates in the different types of samples tested (bone
marrow and peripheral blood). However, in general, the expression variation observed
was not as high. In Figure 3, it is possible to identify that the endogenous genes ACTB and
ABL are the two most suitable for studies that rely on both types of samples since there is
a lower variation in expression between bone marrow and peripheral blood. If the study
relies only on peripheral blood samples, researchers can choose two or three endogenous
genes from the ACTB, ABL, TBP and RPLP0 gene set.
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Figure 3. Box-plot graph indicating the range of Ct values of reference genes by sample origin. BM:
bone marrow; PB: peripheral blood. This figure, obtained through R software analysis, illustrates the
mean Ct of each endogenous candidate according to the type of sample analyzed (bone marrow and
peripheral blood). Only the AML and adult ALL groups participated in this analysis since they were
the only two groups that had both sample types.

4. Discussion

The normalization of gene expression in a group of samples is necessary to validate
the stability of the expression of a reference gene under experimental conditions, such as
sample type and disease type, for example, before its use in studies. In the literature, it
is possible to observe that most works use the standardization programs GeNorm and
NormFinder to search for the most appropriate reference genes for their studies. However,
although these tools are capable of analyzing endogenous genes in different groups to
try to identify specific behaviors for each of them, they do not conduct it in a completely
satisfactory way [51,60–63].

In studies of normalization and validation of endogenous genes to disease models, the
statistical test must be performed between endogenous Ct-case and endogenous Ct-control.
If there is a large difference between both Cts, the use of the endogenous gene in question
is not feasible, since it is being influenced by the conditions. Furthermore, it was observed
during our statistical analysis that it is necessary to remove assays whose endogenous gene
presents outlier behavior (endogenous Ct > 2 × SD of the average of endogenous Cts). It is
of great importance to verify whether there is a correlation between endogenous Ct and
target Ct, considering that it may characterize experimental bias.

Since this work had four distinct groups, pediatric ALL, adult ALL, adult AML, and
control, checking the data through these tools, it was possible to perceive that when they
were analyzed all together, there was a loss of intragroup variability; on the other hand,
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when the analyzes were performed separately by group, there was a loss of intergroup
variability. Thus, it was not possible to actually elect the most appropriate endogenous
gene using these tools for the proposed study. For this reason, additional analyses were
performed using the R software [43,53,54,64].

Currently, the most frequently used reference genes for general expression studies are
B-actin (ACTB), glyceraldehyde-3- phosphate dehydrogenase (GAPDH) and hypoxanthine-
guanine phosphoribosyl transferase 1 (HPRT1) [13,65–69].

The GAPDH gene is involved in many cell processes such as membrane transport
and membrane fusion, microtubule assembly, nuclear RNA export, protein phosphotrans-
ferase/kinase reactions, DNA replication and DNA repair. With this in mind, GAPDH
expression would be expected to vary as it has a diverse range of functions unrelated to its
glycolytic activity [70].

This study’s analysis determined that the GAPDH gene presented the most unstable
behavior between the analyzed endogenous genes. Our findings agree with several other
studies that have scrutinized the stability of the commonly known reference gene GAPDH
and have demonstrated that it should be used with caution as its expression varied con-
siderably, and it was consequently unsuitable as a reference gene in some cases [12,70–73].
However, some studies have shown different results regarding the expression stability of
GAPDH, as it was identified as one of the best housekeeping genes in the analysis of a great
variety of tissue type [74–76].

The HPRT gene is also widely used as an endogenous control in many studies of
gene expression in different types of cancer. This gene is found in all cells as a soluble
cytoplasmic enzyme. Although HPRT is found in all types of somatic cells, significantly
higher levels are found in the central nervous system [77,78]. Many studies have shown
that the HPRT gene presents the behavior of a good reference gene, both used alone and
associated with other genes such as TBP and GAPDH, among others [11,71,79–82].

A study by Jacques B. de Kok and colleagues chose HPRT as the reference gene with the
highest accuracy when used as a single normalization gene in several types of solid tumors,
such as colorectal, breast, prostate, skin, and bladder tissues, with tumors ranging from
noninvasive to metastatic carcinomas. In this study, the authors analyzed 13 housekeeping
genes (LRP, ACTB, CYC, GAPDH, PGK, B2M, BGUS, HPRT, TBP, TfR, PBGD, ATP6 and
rRNA) in order to elect which one was most stable [83].

However, our study also identified that the HPRT gene presents low stability in
samples of patients with acute leukemias and is not indicated as a suitable endogenous
gene. Some other studies have also reported that the HPRT gene exhibits high expression
variability and have classified it as an inadequate reference gene, corroborating the data
found in this work [84,85].

By using the previously described method, the endogenous genes GAPDH and HPRT
were removed from the analysis due to poor performance. Both genes presented high
standard deviation and high variability between the analyzed groups, characterizing bad
behavior for a reference gene. Therefore, our study proposes the set of endogenous genes
ACTB, ABL, TBP and RPLP0 as the most appropriate for the analysis of expression assays
of acute leukemia samples.

The ACTB gene is an abundant and highly conserved cytoskeleton structural protein
that is widely distributed in all eukaryotic cells and that plays critical roles in multiple
cell processes. It is usually regarded as a constitutive housekeeping gene, assuming that
its expression is normally unaffected by most experimental or physiological conditions.
Therefore, ACTB has been widely used as a reference gene for expression analysis in many
types of tissues [10,35,86,87].

In this study, the ACTB gene was reported as one of the most stable endogenous genes
analyzed, presenting low mean and standard deviation values intragroup and between all
four groups. This gene has also been reported as a good reference gene in other studies of
different types of cancers, but especially in breast cancer expression analysis [47,88–90].
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However, the ACTB gene was found to be differentially expressed in many different
types of cancer such as liver, melanoma, renal, colorectal, gastric, pancreatic, esophageal,
lung, breast, prostate, ovarian cancers, leukemia, and lymphoma under certain condi-
tions. This suggests that it might be an unsuitable endogenous gene for expression
analysis [9,87,91,92]. Some studies reported ACTB as an unsuitable reference gene [67,71,73,93,94].

In a recent study, Gupta and colleagues performed an identification and validation
of the optimal reference genes for standardizing the gene expression profiling diagnostic
panel of Ph-like B-lineage acute lymphoblastic leukemia. They reported that EEF2, GAPDH
and PGK1 are optimal and stable endogenous genes for specific gene quantification in
Ph-like ALL cases as compared to ABL1, ACTB, B2M, RNA18S, GUSB and TBP [95].

Two other genes that showed stable gene expression were two protein-coding genes,
ABL and TBP, respectively, according to mean values and standard deviation. The ABL gene
is an oncogene likely associated with many roles of cell cycle regulation, stress responses,
integrin signaling and neural development [96–98]. The TATA-binding protein (TBP), in
turn, has been considered a universal transcription factor that is required for initiation by
all three nuclear RNA polymerases, and it is also a component of the DNA-binding protein
complex of transcription factor II D (TFIID). This gene is associated with a variety of factors
that play important roles in the regulation of gene expression [10,99].

The ABL gene was constantly expressed in the peripheral blood of healthy individuals
at levels comparable to other analyzed reference genes in different studies, including studies
with chronic myelogenous leukemia (CML) expression analysis [100–102]. Furthermore,
a study published by Weisser et al. in 2004 reported that ABL was a suitable endogenous
gene for monitoring minimal residual disease in acute myeloid leukemia patients [103].

Altogether, the data from many different studies show the relevance of TBP gene
expression stability, indicating that it is a suitable reference gene to be used as a control in
studies of various kinds of diseases, including some types of cancer such as bladder cancer
and glioblastoma. However, the majority of these studies also showed that the use of TBP
associated with other reference genes presented an even better performance [92,93,104–108].

RPLP0 is a ribosomal protein that is responsible for recruiting both translation factors
and other ribosomal proteins to the ribosomal complexes, facilitating protein synthesis.
Usually, it is strongly expressed in normal lymph nodes, skin, spleen and fetal brain tissue,
expressed at lower levels in normal lung, bladder and placenta and not expressed in normal
colon, kidney and bone marrow [109–111].

What was observed in this study in relation to the RPLP0 gene is what is usually
demonstrated in the other endogenous gene validation studies for gene expression tech-
niques. The RPLP0 gene presents a relatively good expression stability in several studies,
but it is not the most suitable reference gene [44,112–115].

Table 6 summarizes all the endogenous gene normalization and validation studies
that were mentioned in the discussion of this work, allowing for better data visualization,
such as model (tissue type), number of patients, analyzed samples, endogenous genes
tested, endogenous gene with best behavior and year of each study. Through this table, it
is possible to observe that most reference genes’ stability varies among different disease
models, demonstrating that performing this kind of validation study before any gene
expression analysis is very important.



Genes 2024, 15, 151 12 of 19

Table 6. Analysis of the previous studies of normalization and validation of endogenous genes compared to this current study.

Model (Tissue Type) Number of Patients Analyzed Sample Endogenous Genes Tested Endogenous Genes with
Best Behavior Year Reference

Acute leukemias 89 Peripheral blood and bone
marrow

ACTB, ABL, GAPDH, HPRT1, TBP and
RPLP0 ACTB, ABL, TBP and RPLP0 2024 Present study

Acute myeloid Leukemia 29 Peripheral blood ABL1, G6PDH, B2M and PBGD G6PDH and ABL 2004 [103]

ALL, Ph-like B-lineage 23 Peripheral blood

ABL1, GUSB, EEF2, 18S, ACTB, GAPDH,
TBP, PGK1, B2M, JCHAIN, SPATS2L, CA6,

NRXN3, MUC4, CRLF2, ADGRF1 and
BMPR1B

EEF2, GAPDH and PGK1 2023 [95]

B-cell chronic
lymphocytic leukemia 30 Peripheral blood ACTB, B2M, GAPDH, GUSB, HMBS,

HPRT1, MRPL19, TBP and UBC B2M, HPRT1 and GUSB 2010 [71]

Bladder and colon cancer 58 Tumor biopsies

FLOT2, ATP5B, HSPCB, S100A6, TEGT,
CFL1, FLJ20030, TPT1, UBB, TBC, RPS23,
GAPD, ACTB, CLTC, NACA, SU11 and

TUBA6

UBC, GAPD and TPT1 for colon
and HSPCB, TEGT and ATP5B

for bladder
2004 [53]

Bladder cancer 14 Tissue biopsies ACTB, ALAS1, G6PD, GAPD, HMBS,
HPRT1, K-α-1, SDHA and TBP SDH and TBP 2006 [106]

Breast cancer 87 Tumor biopsies and cell lines SF1, TARDBP, THRAP3, QRICH1, TRA2B,
SRSF3, YY1, DNAJC8, RNF10 and RHOA

SF1, TRA2B, THRAP3, RHOA
and QRICH1 2021 [60]

Breast cancer - Cell line (MCF-10A) 18S, 28S, ACTB, PPIA, GAP and RPL32 18S and ACTB 2005 [88]

Breast cancer 40 Tumor biopsies GAPDH, TFRC, RPLP0, GUSB, HPRT1, UPA
and ACTB ACTB and TFRC 2011 [89]

Breast cancer 23 Tumor biopsies

ACTB, GAPD, TBP, SDHA, HPRT, HMBS,
B2M, PPIA, GUSB, YWHAZ, PGK1, RPL41,
PUM1, RPLP0, MRPL19, TTC22, IL22RA1

and ZNF224

ACTB and SDHA 2009 [90]

Breast, gastric,
esophageal, colon,
rectum, and lung

carcinomas

327 Tissue biopsies ACTB, GAPDH, GUSB, RPLPO and TFRC The optimal reference genes
were tissue-specific 2014 [115]
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Table 6. Cont.

Model (Tissue Type) Number of Patients Analyzed Sample Endogenous Genes Tested Endogenous Genes with
Best Behavior Year Reference

Brown adipose tissue - Tissue biopsies 18S, B2M, GAPDH, LRP10, PPIA, RPLP0,
UBC and YWHAZ PSMB2, GNB2 and GNB1 2015 [45]

Cancer stem cells -
Cell lines (RD, MG63, HOS,
Saos-2, A673, MDA-MB-231

and ACHN)

18S, ACTB, B2M, G6PD, GAPDH, GUSB,
HMBS, HPRT1, PGK1, PPIA, RPL13a,

SDHA, TBP, TUBB and YWHAZ
GAPDH, TBP and PPIA 2016 [93]

Cervical cancer - Cell lines (SiHa, HeLa and
ME180) ACTB, B2M, GAPDH, HPRT1 and TBP B2M, GAPDH, HPRT1 and TBP 2018 [62]

Colon - Rat tissue biopsies GAPD, ACTB, Cyclophilin A, HPRT, AcRP0,
L32, 18S and 28S AcRP0 2004 [82]

Colon, breast, prostate,
skin, and bladder 16 Tissue biopsies LRP, BACT, CYC, GAPDH, PGK, B2M,

BGUS, HPRT, TBO, TfR, PBGD and ATP6 HPRT 2005 [83]

Colon, liver, pancreas,
rectum, lung, cervix,

ovary, prostate,
umbilical, breast, spleen,

etc.

72 Tissue biopsies GAPDH GAPDH varies a lot between
tissues 2005 [76]

Colorectal cancer 64 Peripheral blood ACTB, B2M, GAPDH, HPRT1, SDHA TBP,
IL-1B and CCL4 HPRT1, SDHA and TBP 2020 [73]

Endometrial cancer (type
1 or type 2) 15 Endometrial biopsies

RPL30, MT-ATP6, 18S, ACTB, TBP, RPLP0,
PES1, POLR2A, TFRC, HPRT1, ABL1,

GADD45A, HMBS, CDKN1A, RPL37A,
UBC, GAPDH, CDKN1B, CASC3, POP4,

PGK1, GUSB, YWHAZ, PPIA, RPS17,
MRPL19, B2M, EIF2B1, ELF1, PSMC4,

PUM1 and IPO8

PSMC4, PUM1 and IPO8 for
type 1 and UBC, MRPL19, PGK1

and PPIA for type 2
2020 [51]

Glioblastoma 30 Tumor biopsies
ACTB, GAPDH, GUSB, HMBS, HPRT1, TBP,
18S, TG1, TG2, TG3, TG4, TG5, TG6, TG7,

TG8, GT9, TG10, TG11 and TG12
TBP and HPRT1 2009 [108]

Hepatocellular
carcinoma 65 Tumor biopsies ACTB, GAPDH, B2M, HPRT1 and TBP TBP and HPRT 2008 [80]
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Table 6. Cont.

Model (Tissue Type) Number of Patients Analyzed Sample Endogenous Genes Tested Endogenous Genes with
Best Behavior Year Reference

Hippocampal tissue 25 Tissue biopsies ACTB, GAPDH, HPRT, NSE, SDHA and
SYP HPRT, NSE, SDHA and SYP 2012 [81]

Hypoxia and
hyperglycemia model - Umbilical cords RPLP0, GAPDH, GUSB, TFRC and ACTB TFRC and RPLP0 2014 [114]

Lung cancer - Cell lines (A549, NCI-H446
and NCI-H460)

18S, GAPDH, RPLP0, ACTB, PPIA, PGK1,
B2M, RPL13A, HPRT1 and TBP ACTB, PPIA and PGK1 2015 [113]

Lung, breast, colon,
prostate, and pancreas 326 Tissue biopsies HPRT HPRT should no longer be used

as an endogenous standard 2019 [84]

Lymphoid malignancies 92 Cell lines, tumor biopsies
and peripheral blood

18S, RPLP0, GAPD, PPIA, PRKG1, TBP,
ACTB, B2M and GUSB PRKG1 and TBP 2003 [104]

Melanoma - Cell lines (IC8 and T1C3) GAPDH, 18S and ACTB 18S 2001 [91]

Myoblasts 15 Tissue biopsies ACTA1, MYOG, MYH3, ACTB, B2M,
GAPDH, PPIA, RPLP0 and TBP RPLP0 and TBP 2009 [112]

Myocardial infarction - Mouse myocardial infarction
tissue sample

ACTB, B2M, EEF1A1, GAPDH, HPRT,
POLR2A, PPIA, RPL13a, TBP and TPT1 HPRT, RPL13A and TPT1 2011 [79]

Oral cancer 68 Saliva B2M, MT-ATP6, RPL30, RPL37A, RPL0,
RPS17 and UBC

MT-ATP6, RPL30, RPL37A,
RPLP0 and RPS17 2016 [61]

Placenta 20 Placenta tissue B2M, GAPDH, HMBS, HPRT, SDHA, TBP,
YWHAZ and LEP SDHA, TBP and YWHAZ 2004 [105]

Renal cell carcinoma 25 Tissue biopsies
ACTB, ALASI, GAPDH, HMBS, HPRT1,
PPIA, RPLP0, SDHA, TBP, TUBB and

ADAM9
PPIA and TBP 2007 [92]

Wound healing model - Skin and wound samples
from mice

B2M, TBP, GAPDH, GUSB, RPLP2, ACTB
and 18S GAPDH, TBP and B2M 2010 [107]
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5. Conclusions

Given these findings, this study suggests the main endogenous gene set for use as a
control/reference for the analysis of gene expression in peripheral blood and bone marrow
samples from patients with acute leukemias is composed of the ACTB, ABL, TBP and RPLP0
genes. Researchers may choose two to three of these endogenous controls to perform data
normalization.

In addition, the statistical analysis in this type of study is indispensable. It is important
to verify the variation of endogenous gene expression between groups. Once the calculation
of delta Ct is made, the variability of endogenous gene expression is transferred to the
target. Then, if there is a high endogenous gene variability between groups, potential
differences found on the target may not really indicate target variation but actually the
influence of the endogenous variation.

Therefore, it is extremely necessary to perform the reference gene validation for any
gene expression study, considering that the endogenous gene used influences the reliability
and accuracy of these studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes15020151/s1, Spreadsheet created with all the CT data
of all endogenous controls and all analyzed samples in GEO database format. The file contains
4 spreadsheets: metadata template, matrix non-normalized template, matrix normalized template
and fold change template.
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