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Abstract: Mitochondrial (mt) DNA plays an important role in the fields of forensic and clinical
genetics, molecular anthropology, and population genetics, with mixture interpretation being of
particular interest in medical and forensic genetics. The high copy number, haploid state (only a
single haplotype contributed per individual), high mutation rate, and well-known phylogeny of
mtDNA, makes it an attractive marker for mixture deconvolution in damaged and low quantity
samples of all types. Given the desire to deconvolute mtDNA mixtures, the goals of this study were
to (1) create a new software, MixtureAceMT™, to deconvolute mtDNA mixtures by assessing and
combining two existing software tools, MixtureAce™ and Mixemt, (2) create a dataset of in-silico MPS
mixtures from whole mitogenome haplotypes representing a diverse set of population groups, and
consisting of two and three contributors at different dilution ratios, and (3) since amplicon targeted
sequencing is desirable, and is a commonly used approach in forensic laboratories, create biological
mixture data associated with two amplification kits: PowerSeq™ Whole Genome Mito (Promega™,
Madison, WI, USA) and Precision ID mtDNA Whole Genome Panel (Thermo Fisher Scientific by AB™,
Waltham, MA, USA) to further validate the software for use in forensic laboratories. MixtureAceMT™
provides a user-friendly interface while reducing confounding features such as NUMTs and noise,
reducing traditionally prohibitive processing times. The new software was able to detect the correct
contributing haplogroups and closely estimate contributor proportions in sequencing data generated
from small amplicons for mixtures with minor contributions of ≥5%. A challenge of mixture
deconvolution using small amplicon sequencing is the potential generation of spurious haplogroups
resulting from private mutations that differ from Phylotree. MixtureAceMT™ was able to resolve
these additional haplogroups by including known haplotype/s in the evaluation. In addition, for
some samples, the inclusion of known haplotypes was also able to resolve trace contributors (minor
contribution 1–2%), which remain challenging to resolve even with deep sequencing.

Keywords: forensic biology; next-generation sequencing; massive parallel sequencing; mtDNA;
mixture deconvolution; heteroplasmy

1. Introduction

The field of forensic DNA is evolving rapidly as new technologies and methods be-
come available and are validated. With increased sensitivity and throughput capabilities,
mitochondrial (mt) DNA typing has become increasingly attractive, especially for forensic
investigations involving samples with limited amounts of DNA [1], and including DNA
mixtures [2]. The historic limitation of traditional mtDNA typing has been a lower discrim-
ination potential created by a combination of uniparental inheritance of the mitochondrial
(mito) genome and limited resolution of mixtures associated with Sanger sequencing. The
increased sensitivity currently achievable with massively parallel sequencing (MPS) enables
accurate characterization and reporting of intrinsic, low-level sequence mitogenome vari-
ants [3–7], and an advantage of uniparental inheritance is an expectation that the majority
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of individuals will only contribute one haplotype to a mixed sample making mtDNA an
attractive aid in the assessment of mixed DNA samples [2,8–10].

DNA mixtures have always been a part of forensic casework and have increasingly
become more common in forensic investigations [11,12]. The observed increase in mixed
DNA samples is presumably due to rapidly advancing DNA technologies with increased
sensitivity along with changes in sampling strategies and methodologies [11,13]. An exam-
ple of this advancement is the ability of laboratories to generate profile information from
trace amounts of DNA collected from touched objects. The increased resolution has resulted
in approximately 15% of all evidence samples containing mixtures [14], and a retrospective
study by Melton et al. [15] evaluating 691 casework hair samples indicated that ~9% of the
samples were observed to have a mixture of mtDNA sequences, including heteroplasmic
sequences. When samples with observations of mixed base calls are encountered, most
forensic laboratories do not interpret the results and categorize the findings as inconclu-
sive for reporting purposes [15]. The inability to fully identify and deconvolute mixtures
is a recognized challenge when performing mtDNA analysis. As stated by the Spanish
and Portuguese-Speaking Working Group of the ISFG (GHEP-ISFG) when performing a
multi-laboratory study on mixture interpretation, “It is worth mentioning that mtDNA in
mixture samples is not included in the evaluation of the Intercomparison Exercise program
(IE). This is owed to the difficulties in interpreting mixtures from haplotype sequences from
both technical and theoretical points of view.” [16]. This clearly illustrates that analysis of
mtDNA mixtures is not a routine practice, and that work in this area is needed to provide
the tools necessary to conduct such analyses. In order to retain the evidentiary value of
these mixed samples, forensic laboratories need the ability to deconvolute mixed mtDNA
sequences which will require software and bioinformatic solutions.

A presumed mtDNA mixture is typically not easily resolved, even with an MPS
approach, as reconstructing complete haplotypes from short sequencing reads requires
considerable effort and is not amenable to manual techniques. In addition, the sensitivity of
MPS analysis and the ability to detect low-level mixtures (1–2%) increases the observation
of complicating factors including heteroplasmy in one or more of the contributors and
system-associated analytical noise. While some mixtures are relatively straightforward
and easy to interpret, others are complex and can be challenging to deconvolute. The past
several years has seen a rise in the application of probabilistic genotyping software to short
tandem repeat analysis for the interpretation of mixtures. While strides have been made in
this area allowing for the deconvolution of complex mixtures, there remains a proportion
of cases that cannot be fully resolved. An overview by Coble and Bright [17], focusing on
autosomal mixture interpretation using probabilistic approaches noted, “there is a strong
need to apply probabilistic methods to interpreting mixtures with haploid marker systems”,
such as mtDNA. To date, little work has been done to deconvolute mixtures of mtDNA
sequence from MPS data [2,8,18,19]. The availability of MPS mtDNA data presents an
opportunity to shift this paradigm.

The UNT Center for Human Identification in collaboration with the Tallinn University
of Technology, and a team of researchers at the Universities of California in Santa Cruz
and Davis collaborating with the Children’s Hospital Oakland Research Institute (CHORI),
have taken the first steps towards development of software solutions. The first group
applied phased MPS data for mixture deconvolution and were able to identify the major
contributor in all mixtures but had difficulties in assessing point heteroplasmy (PHP) in
some samples, making it difficult to determine whether the PHP should have been assigned
to the major or minor contributor [18]. This approach showed promise but as noted by the
authors, “mtDNA mixture analysis will become more effective and efficient with advances
in bioinformatics pipelines”. UNT made subsequent advancements in developing pipelines
using approaches focused on population and statistical phasing [8,9]. The mitochondrial
mixture deconvolution and interpretation tool (MMDIT) is an open-source software that
automates mixture deconvolution [8], but the shiny app is tailored to data generated using
the Ion S5 and Converge software (ThermoFisher, Waltham, MA, USA) making it less
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user-friendly for data generated on an Illumina MiSeq or other sequencing platforms. The
second group developed an advanced bioinformatic approach to deconvoluting complex
mtDNA mixtures from MPS data using phylogenetic information [2]. The algorithm,
Mixemt, is an opensource computer program written in Python and executed from a
command line window and has been demonstrated to be effective in the deconvolution of
mtDNA mixtures generated using shotgun sequencing data and a general-purpose DNA
preparation kit. While the improved bioinformatic approach showed increased potential,
the approach used shotgun sequencing as opposed to amplicon sequencing, the latter being
more desirable and more commonly used in forensic laboratories. In addition, Mixemt
utilizes a complex pipeline written in Python, requiring knowledge of command line
coding. Clearly, a powerful bioinformatic approach is necessary for the deconvolution of
mixtures, but in order for the approach to be widely adopted there is a need for the pipeline
to be packaged in a user-friendly graphical user interface that does not require advance
coding knowledge and that can use sequencing data from multiple platforms.

The principal objective of the current study was to assess a probabilistic approach
to mitogenome mixture analysis that can be easily implemented as a tool in forensic
laboratories. This was accomplished by combining Mixemt with a user-friendly software
package, MixtureAce MT™ (NicheVision Forensics, LLC, Akron, OH, USA), to deconvolute
mitochondrial mixtures using phylogenetic principles. Biological and in-silico mixtures
were used to characterize the range and applicability of the new probabilistic approach.

2. Materials and Methods
2.1. In-Silico Mixtures

The initial evaluation of the Mixemt algorithm was accomplished using an in-silico
dataset generated from small amplicon sequencing data. The in-silico dataset consisted of
126 two- (n = 63) and three-person (n = 63) mixtures created using previously sequenced
(MiSeq) sole-source buccal swab samples enriched for mitogenome using the Promega
PowerSeq™ Whole Mito System kit (Table S1). Sole-source samples were haplotyped using
the revised Cambridge reference sequence (rCRS; [20,21]) and GeneMarker® HTS (GM
HTS; SoftGenetics, State College, PA, USA) and haplogroups were determined using Hap-
logrep2 [22]. Samples were selected to ensure a diverse cross section of different haplotype
populations representing various similar and dissimilar haplotypes and included hetero-
plasmic (nine individuals with one site, three individuals with two sites, and 19 individuals
with no sites of heteroplasmy; with a minor allele frequency (MAF) range of 6.4–47.0%)
and homoplasmic contributors (Table S2). Considering the Expectation Maximization (EM)
algorithm and Phylotree database used by the Mixemt software for mixture deconvolution,
similarity was determined through the evaluation of haplogroup defining (diagnostic)
single nucleotide polymorphisms (SNPs) and calculation of the number of SNPs shared
between mixture contributors (percent shared haplogroup defining SNPs).

For the in-silico mixtures, pair-wise comparisons of the different haplotype combi-
nations indicated that the range of percent shared haplogroup defining SNPs for similar
haplotypes was 10–89.3% while the dissimilar haplotypes had a range of 0–7.7%. Once
contributor samples were identified, a bioinformatic pipeline was used to create mixture
files. Briefly, Samtools (v. 1.11; [23]) was used on GeneMarker® HTS (GM HTS; SoftGe-
netics, State College, PA) generated alignment files (bam files) to subset and sort reads
mapping to the rCRS for each sole-source contributor. Bamtools, v.2.5.2 [24], then converted
each mapped and sorted bam file into two fastq files (read 1 & read 2) and seqtk (1.3-r116-
dirty; https://github.com/lh3/seqtk.git was used to create randomly selected without
replacement subsets of reads from each fastq file. Fastq subsets were combined in various
ratios, 1:1, 1:3, 3:1 for two-person and 1:1:1, 1:3:3, 3:3:1 for three-person mixtures, with each
mixture consisting of a total of 720 K and 840 K read fragments, respectively.

https://github.com/lh3/seqtk.git
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2.2. Biological Mixtures

To effectively assess the new combined software tool for deconvoluting mixtures, it
was important to create a set of biological mixtures that were different from the in-silico
mixtures used in the initial evaluation. Again, samples were selected to ensure a diverse
cross section of different haplotype populations representing various similar and dissimilar
haplotypes and included heteroplasmic (two individuals with one site, three individuals
with two sites, and six individuals with no sites of heteroplasmy; with a MAF range of
2.4–41.1%) and homoplasmic contributors (Table S3). The biological dataset of 120 two-
and three-person mixtures (Table S4) was generated using two amplification methods: the
PowerSeq™ Whole Mito System (n = 60; Promega™ Corporation) and Precision ID mtDNA
Whole Genome Panel (n = 60; Thermo Fisher Scientific by Applied Biosystems™,Waltham,
MA, USA,). The PowerSeq™ System spans the entire mitogenome using a single multiplex
of 161 overlapping amplicons (average length 167 bp), while the Precision ID Panel is
composed of 162 amplicons (in two multiplexes) with an average amplicon length of 162 bp.
The library preparation for the PowerSeq kit followed the manufacturer recommendations
while the library preparation for the Precision ID kit was replaced with an Illumina ampliseq
library preparation to allow for MiSeq sequencing. Biological mixtures were created using
sole source buccal samples combined in various ratios and included a range of similar and
dissimilar haplotype combinations (Table S2). Briefly, genomic DNA was isolated from
buccal samples, mtDNA was quantified for each extract using a custom mtDNA qPCR
assay [25], extracts were mixed together in various ratios (99:1, 49:1, 19:1, 9:1, and 1:1 for
two-person mixtures; 3:3:1, 1:1:1, and 1:3:3 for three-person mixtures), and amplified using
the two commercially available whole mtgenome amplification kits. All sequencing was
conducted on a MiSeq instrument. Samples were batched in groups of 30 plus controls.

2.3. Creation of the User-Friendly Graphical User Interface: MixtureAce MT™

The principal objective was to develop software for the implementation of the EM
method of Vohr et al. [2] in a user environment suitable for routine use by forensic laborato-
ries and for PCR-targeted sequence data. Unlike Vohr, who implemented his method in
Linux and specifically applied it to shotgun sequencing data, the new software runs in a
cloud environment compatible with Windows platforms, and accommodates data from
PCR-targeted sequencing, including the PowerSeq mtDNA kit and the Precision ID kit.
In addition, the new software implements methods for reducing noise from sequencing
errors and from sequences arising from potential nuclear mtDNA segments (NUMTs)
or heteroplasmy.

MixtureAce MT™ software uses MPS generated sequencing files to determine the
number of contributors and their respective mtDNA haplogroup in suspected mixed
DNA samples. The software is designed to be easily used in a typical forensic laboratory
environment with a user-friendly graphical user interface (Figure S1) allowing for the
uploading of sequencing files, selection of parameter settings for analysis, and displaying
results. Sequence files from suspected mixtures can be in a fastq or bam file format with
the fastq format being required for application of noise filtration features.

Standard implementation of the MixtureAce MT™ software is cloud-based on a
hosted Linux server due to the required Linux operating system and processing power
requirements, which can be significant. The user interface on the cloud-based format runs as
an application in a browser running on a local Windows computer. To date, the MixtureAce
MT™ user interface has been validated on the following browsers: Chrome, Brave, and
Microsoft Edge. An alternative implementation is also available and consists of running
MixtureAce MT™ inside the Windows Subsystem for Linux (WSL) which is built into
Windows versions 10 and later. In the alternative implementation, the browser-embedded
user interface points to the WSL rather than to an external server. MixtureAce MT™
preprocesses the sequencing input file to reduce noise and expedite the deconvolution
process. Preprocessing reduces false signals that may affect haplogroup calls and reduces
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confounding features such as NUMTs and noise through the targeting of sequencing error,
primer-directed errors, and NUMT contamination.

Sequencing error is corrected in paired-end MPS sequencing files based on the propo-
sition that when paired reads are generated from the same PCR amplicon and differ at a
given nucleotide position (np) both reads cannot be correct. To accomplish error correction,
the reverse read is reverse-complemented, orienting both reads in the forward direction rel-
ative to the reference sequence, the two reads are compared, and if the sequencer-generated
base call at two or fewer nps differ between the two strands, then the base call with the
higher sequencer-generated quality score is determined to be the correct base call and the
lower-quality base is replaced with the correct base call [26].

Another type of error targeted by preprocessing is error resulting from the use of
degenerative PCR primers in the amplification of target DNA, or primer-directed error. A
PCR primer sequence is called degenerate if one or more of its nps have several possible
bases [27]. Most PCR primer sets used by vendors of forensic DNA analysis kits contain a
percentage of primers that are a mixture of primer sequences intended to increase the ampli-
fication efficiency for the target amplicon based on the known frequencies of polymorphic
nps within the human mitogenome. The presence of a mixture guarantees that a certain
percentage of the primers will be mismatched to the template and yet still be able to amplify
at low levels as non-specific amplification products and be incorporated into the resultant
amplicon. The incorporation of these mismatched primers into the amplicon can present as
low-level variants or erroneous sequences (noise) that are not actually present in the DNA
template sequence [28,29]. In addition, mtgenome amplification kits typically generate
overlapping amplicons, and therefore amplicons can encompass the primer position of
a neighboring primer pair, and some forensic kits, notably the PowerSeq kit, are known
to incorporate PCR primers internally to the amplicon through run-on amplification, or
amplicon concatenation mechanisms [30]. To reduce primer-directed error, known primer
sequences were trimmed from sequencing reads when they appeared at one or both termini
of reads.

Identification and filtering of potential NUMTs is accomplished via differential align-
ment analysis. Briefly, input sequencer reads are aligned to both the nuclear and the
mitogenome and a Levenshtein distance is used to determine the difference between each
read and the two different alignments. Levenshtein distance between two strings (i.e.,
strings of DNA sequence) is the number of insertions, deletions, and/or substitutions
required to transform a source string (i.e., input sequencer read) into a target string (i.e.,
reference sequence string). The more different two strings of sequence are, the higher
the Levenshtein number. More specifically, input sequencer reads are evaluated for sim-
ilarity to the human nuclear genome to identify candidate NUMT reads [31]. Reads are
aligned to the Hg38 reference genome (UCSC, December 2013 assembly of the human
genome, GRCh38 Genome Reference Consortium Human Reference 38) using bowtie2 [32],
a Levenshtein distance is calculated, and reads that have not been soft-clipped and have
a Levenshtein distance less than three are sub-set as candidate NUMT reads. Next the
candidate reads are mapped by the Burrows-Wheeler Aligner [33] to a “circularized” rCRS
mitochondrial reference (circularization permits accurate alignment of amplicons across
the control region) and the Levenshtein distance is again calculated. Reads are classified as
NUMT reads and removed from the input sequencer reads if the Levenshtein distance to
the nuclear reference is less than the Levenshtein distance to the mitochondrial reference,
meaning the read has greater similarity to the nuclear genome sequence.

After preprocessing, contributor proportions and haplogrouping estimates are gener-
ated using the probabilistic technique of Vohr et al. [2]. In this method, both the contributor
proportions and the haplogroup of each contributor is estimated simultaneously. The
method finds the maximum likelihood estimate of both parameters using an expectation
maximization procedure [34]. The method is phylogenetically directed in the sense that
individual reads are assigned likelihoods of belonging to each individual haplogroup of the
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Phylotree build 17 [35]. The software identifies the best-supported haplogroups as those
receiving the most support from read likelihoods and counts.

MixtureAce MT™ reports the topmost supported haplogroups and the contribution
proportion of the best-supported haplogroups. The haplogroup calls are substantiated by a
listing of the phylogenetically diagnostic variant positions (diagnostic SNPs) that point to
the haplogroup call and provide a partial haplotype from the haplogroup defining SNPs. A
schematic of the MixtureAce MT™ pipeline is presented in Figure 1.
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2.4. Statistical Analysis and Figures

Statistical analysis and figure generation was done in R [36] and RStudio [37]. Datasets
were assessed using Shapiro-Wilks normality testing (stats package; Rv4.3.1) and found to
have non-normal distributions. Subsequent testing employed non-parametric testing using
Wilcoxon rank sum test (stats package; Rv4.3.1). Plotting was done in ggplot2_3.4.3 [38]
and used cowplot_1.1.1 [39].

3. Results
3.1. In-Silico Mixtures

For the two- and three-person in-silico mixtures, Mixemt was able to detect the correct
haplogroups for 95% of contributors and increased to 100% when closely related (i.e.,
R11 detected versus the exact haplogroup of R11a) haplogroups were included. Major
and minor contributors were successfully identified in all mixtures at all dilution ratios
(Figure 2).

To assess the accuracy of haplogroup contribution estimation by Mixemt in the in-
silico mixtures the actual proportion of fragments subsetted to generate the mixtures
was subtracted from the Mixemt estimated proportions. This resulted in negative values
representing an underestimation and positive values expressing overestimation. Two-
person mixtures with similar and dissimilar haplotypes were not found to be significantly
different (p = 0.98) with a range of −0.61 to 0.22 and an average of −0.07 (7% under
estimation) for similar haplotypes and a range of −0.65–0.048 and an average of −0.07 for
dissimilar haplotypes. Three-person mixtures were also not significantly different (p = 0.37)
and slightly more accurate on average with similar haplotypes ranging from −0.27 to 0.093
and an average of −0.055 and dissimilar mixtures ranging from −0.16 to 0.13 and averaging
−0.050. Wilcoxon testing of the median values for the two- and three-person mixtures
indicated that the difference was also insignificant (p = 0.99). Figure 3 presents the actual
frequencies versus Mixemt estimated frequencies for all samples.
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Figure 2. Frequency estimates for in-silico mixtures of 2- and 3-individuals at various dilution ratios.
Filled circles and triangles represent contributors for which Mixemt identified the exact haplogroup
and outlined circles and triangles represent identification of a closely related haplogroup. Samples
that produced spurious haplogroups are represented by a “+”.

Spurious haplogroups were observed in the in-silico dataset with 25 spurious hap-
logroups identified in seven different pairs of individuals in the 2-person mixtures and
63 spurious haplogroups identified in 10 different sets of individuals in the 3-person mix-
tures. Due to the number of spurious haplogroups observed, analysis of the in-silico
datasets was extended, reprocessing a subset of samples with spurious haplogroups in Mix-
emt and applying the known haplogroup function to include the contributor haplotypes in
the deconvolution. Inclusion of known haplotypes resolved the spurious haplogroups.

3.2. Biological Mixtures

Biological mixtures were evaluated using GeneMarker HTS (GM HTS, SoftGenetics,
State College, PA, USA) and the new combined tool, MixtureAce MT™. GM HTS analysis
of sequencing files from the PowerSeq panel produced an average coverage of 10,345x with
an average maximum of 43,212x and an average minimum coverage of 1204x, while the
Precision ID kit produced an average coverage of 3858x with an average 17,916x maximum
and 74.5x minimum coverage. The proportion of the mtgenome with coverage less than
2000x was 1.8% (average) for the the PowerSeq kit and 25.7% (average) for the Precision
ID kit.

Evaluation of the Precision ID dataset showed that MixtureAce MT™ was able to detect
the correct haplogroups for 95% of contributors in samples with minor contribution ≥ 5%,
and that the minor contributor failed to be detected in 72% of mixtures with minor frequen-
cies of 1–2% (Figure 4).
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Figure 3. Summary results of Mixemt generated estimated haplogroup proportions and actual
fragment proportions used to generate the mixture. (A) in-silico 2-person and (B) in-silico 3-person
mixtures. The jitter function was applied for better visualization of overlapping datapoints.

Spurious haplogroups were observed in the Precision ID mixtures with 7 spurious
haplogroups identified in two different pairs of individuals in the 2-person mixtures and
11 spurious haplogroups identified in four different sets of individuals in the 3-person
mixtures. Extended testing of the inclusion of known contributors was conducted on the
Precision ID dataset, using 28 mixtures that produced spurious haplogroups and repro-
cessing those samples with the inclusion of two known contributors. When two known
contributor haplotypes were included in the deconvolution, all spurious haplogroups were
resolved and produced exact match (n = 65) or close match (n = 3) for major and minor
contributors. The inclusion of known haplotype also increased the resolution of trace
contributors present in all seven of the samples that had dropout of the minor contributor
at 2% and in 1/8 samples with dropout at 1% minor contributor.

Evaluation of the PowerSeq dataset showed that MixtureAce MT™ was able to detect
the correct haplogroups for 100% of contributors in samples with minor contribution ≥ 5%.
The minor contributor failed to be detected in 83% of mixtures with minor frequencies of
1–2% (Figure 5).
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Figure 4. Frequency estimates for Precision ID amplified biological mixtures of 2- and 3- individuals
at various dilution ratios. Filled circles and triangles represent contributors for which MixtureAce
MT™ identified the exact haplogroup and outlined circles and triangles represent identification of a
closely related haplogroup. Contributors not detected by the software are represented by an “x” and
samples that produced spurious haplogroups are represented by a “+”.

Spurious haplogroups were again observed in the PowerSeq WGM dataset with 18 spu-
rious haplogroups identified in the same two pairs of individuals in the 2-person mixtures
and 11 spurious haplogroups identified in the same 10 sets of individuals in the 3-person
mixtures that were observed in the Precision ID dataset. Since the same spurious hap-
logroups were observed in the same samples as the Precision ID samples set, an evaluation
of the inclusion of known haplotypes was not conducted on the PowerSeq mixtures.

To assess the accuracy of MixtureAce MT™ to estimate the haplogroup contributions
in the biological mixtures, an independent assessment of the contributor proportions was
generated using GM HTS and subtracted from the MixtureAce MT™ estimated propor-
tions for mixture ratios ≥ 5%. This resulted in negative values representing an underes-
timation and positive values expressing overestimation. The accuracy the Precision ID
two-person mixtures with similar haplotypes ranged from −0.25 to 0.21 with an average
of −0.010 (1% under estimation) while mixtures with dissimilar haplotypes ranged from
−0.15–0.15 and had an average of −0.010. The proportion estimates for the PowerSeq
dataset were less accurate and tended to overestimate proportions for two-person mixtures
with similar (−0.11 to 0.32, avg. 0.04) and dissimilar (−0.012 to 0.09, avg. 0.04) haplotypes.
A similar result was produced for the three-person mixtures with similar (−0.12 to 0.10,
avg. −0.017) and dissimilar (−0.31 to 0.22, avg. −0.034) haplotypes in the Precision ID
dataset and similar (−0.097 to 0.089, avg. −0.018) and dissimilar (−0.17 to 0.068, avg.
−0.026) haplotypes in the PowerSeq dataset. Wilcoxon testing indicated a statistically
significant difference within the PowerSeq dataset when comparing two-person and three-
person mixtures (p = 0.00013), but did not indicate a significant difference when comparing
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two-person and three-person mixtures in the Precision ID dataset (p = 0.29) or two-person
similar and dissimilar haplotypes (Precision ID p = 0.73; PowerSeq p = 0.55), or 3-person
similar and dissimilar haplotypes (Precision ID p = 0.79, PowerSeq p = 0.86). Comparison
between the Precision ID and PowerSeq datasets also showed no significant difference
(p = 0.071). Figure 6 presents the GM HTS estimated proportions versus MixtureAce MT™
estimated frequencies for all samples.
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Figure 5. Frequency estimates for PowerSeq WGM amplified biological mixtures of 2- and 3- individu-
als at various dilution ratios. Filled circles and triangles represent contributors for which MixtureAce
MT™ identified the exact haplogroup and outlined circles and triangles represent identification of a
closely related haplogroup. Contributors not detected by the software are represented by an “x” and
samples that produced spurious haplogroups are represented by a “+”.

3.3. Preprocessing

One of the major drawbacks of the previously available software for mtDNA mixture
deconvolution has been that implementation can be time-consuming [10]. MixtureAce
MT™ reduces confounding features such as potential NUMTs and noise which reduces
the time required for the EM algorithm and heuristic filters to produce haplogroup and
frequency estimates. Figure 7 highlights the general positive correlation between fragment
count and time, the influence of dissimilar and similar haplotypes within the in-silico
dataset, as well as the decrease in run time for Precision ID samples that were preprocessed
with MixtureAce MT™ and the PowerSeq dataset without preprocessing.
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Figure 6. Summary results of GeneMarker estimated biological mixture proportions versus Mix-
tureAce MT™ estimated proportions for (A) 2-person and (B) 3-person mixtures amplified using the
PowerSeq and Precision ID amplification kits. Note: the PowerSeq 2-person dataset failed to resolve
1% minor contributors and therefore the 0.99 and 0.01 plots have no datapoints. The jitter function
was applied for better visualization of overlapping datapoints.

A summary of the preprocessing metrics for the Precision ID mixture dataset including
input reads, read correction run time, primmer trimming run time, alignment run time,
number of possible NUMTs identified, the run times for NUMT identification & removal,
the number of NUMTs ultimately removed, and the total time required for preprocessing is
provided in Table 1.
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Figure 7. Mixture deconvolution run time based on the sequencing file size represented as the number
of sequencing fragments used for haplogroup and frequency estimation. Pink: PowerSeq datasets, no
pre-processing. Green: Precision ID datasets preprocessed with MixtureAce MTTM. Blue: in-silico
datasets, no preprocessing.

Table 1. Summary MixtureAce MT™ preprocessing data for Precision ID biological mixtures.

Input FastQ
Reads

Read
Correction
Time (min)

Primer
Trimming

Time (min)

Circular
Alignment
Time (min)

NUMT
Candidates

NUMT ID
Time (min)

NUMT’s
Removed

NUMT
Removal

Time (min)
Total Run

Time (min)

Average 387,591 9.68 12.33 4.4 60,195 2.84 3915 2.42 31.66

Maximum 621,856 18.4 25.7 11.7 100,402 5.7 8114 5.3 64.20

Minimum 230,247 5.5 6.2 2.7 28,445 1.8 885 1.1 17.60

3.4. Random Reduction

To further investigate the time requirements for the deconvolution process and to
assess depth of coverage requirements, a subset of preprocessed biological mixture samples
(n = 14) was run with an initial average number of fragments of 800 K (mtgenome coverage
of ~10 K) that were randomly reduced to various fragment counts ranging from 1.5 K to 20 K
fragments per mixture. The sample subset contained similar and dissimilar haplotypes in
two- and three-person mixtures at various ratios. Identifiers for the biological mixtures are
structured as: contributor 1:contributor 2 and contain sample number & major haplogroup
clade for each contributor with the mixture ratio given in parentheses. All mixtures tested
except for 5U:10U (19:1), 7D:5U (49:1) and 4D:7D (99:1) produced correct haplogroups
for the initial reduction to 20 K fragments (~215x mtgenome coverage; Table 2). For the
trace contributors at 49:1 and 99:1 the read fragments were further increased to 35 K and
50 K but still failed to identify the minor contributors. The correct identification of exact
major and exact minor contributors was observed in eight of the remaining eleven samples
when reduced to 10 K fragments, four samples (plus one sample with an exact major and a
closely related minor haplogroup reported) at 3 K, and two samples were still producing the
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correct contributors when reduced to a total of 1500 read fragments per sample. Some of the
mixtures continued to produce spurious haplogroups similar to the additional haplogroups
reported for samples with the full complement of fragments.

Table 2. Minimum number of reduced fragments per biological mixture sample required for the
correct identification of major and minor contributors by MixtureAce MTTM. Biological mixture
identifiers given as contributor 1 sample number major haplogroup clade:contributor 2 sample
number major haplogroup clade (mixture ratio contributor 1:contributor 2). Coverage (cov) is the
corresponding average depth of coverage across the mtgenome for the given number of fragments.

Minor Dropout Minimum Number Fragments for Correct Major/Minor

20K
(~215x cov)

20K
(~215x cov)

10K
(~100x cov)

3K
(~32x cov)

1.5K
(~16x cov)

5U:10U (19:1) 4D:7D (19:1) 6J:8J (19:1) 4D:7D (1:1) 1J:6J (1:1)

7D:5U (49:1) 10U:2K:5U (1:3:3) 10U:7D (9:1) 10U:9A (9:1) 9A:10U:4D (1:1:1)

4D:7D (99:1) 10U:3K:2K (1:3:3) 10U:9A (19:1)
9A:11A (9:1)
major exact
minor close

Average runtime based on the number of fragments

Full complement 20K 10K 3K 1.5K

3.2 h 1.2 h 0.6 h 0.2 h 0.1 h

4. Discussion

In this study, Mixemt was able to correctly identify the haplogroups for 95–100% of
contributors in both in-silico and biological mixtures, and successfully identified the major
and minor contributors in all in-silico mixture ratios and 95% of biological mixtures with
minor contribution ≥ 5%. The accuracy of Mixemt to estimate haplogroup proportions
closely followed the actual mixture proportions and, on average, were slightly less than
the true contribution. The observations in this study on haplogroup identification and
estimated proportions are similar to the findings by Vohr in the original Mixemt study,
with the underestimation of proportions most likely due to the software not redistributing
a portion of the fragments assigned to closely related and/or low frequency haplogroups
during the evaluation of all haplogroups [2]. Other observations in the present work differ
from the Vohr study with an increased incidence of spurious or additional haplogroups
and an increased level of minor dropout at higher fragment depths.

The number of spurious haplogroups in both the in-silico and the biological datasets
in this study were higher than what Vohr observed. This could be due to differences
in a shotgun versus an amplicon sequencing approach, the differences in the number of
fragments in each mixture, or differences in Mixemt settings, but is most likely due to
the present study having a small amplicon size, a high number of fragments per sample,
differences in contributor haplotypes and mixture combinations, and multiple contributors
having haplotype differences (private mutations) from Phylotree haplogroup defining
polymorphisms. Due to a low density of variants in the coding region, private mutations in
the coding region are unlikely to overlap any other variant site within the same fragment,
and the small size of fragments (~200 bps) generated by our sequencing protocol also
reduce the chance that multiple variants will be located on the same fragment. In this study,
all of the additional haplogroups belonged to the H subclade of Phylotree and resulted
from the identification of 1 or 2 diagnostic variants. For example, in-silico mixture 787 (B2o),
832 (L1c2b1a’b) had additional haplogroups H3aq (1018A) and H27/H27e (11719A and
16129A) for each of the three ratios (1:1, 1:3, and 3:1). All three of these variants are
contained in the haplotype of individual 832, are not associated with the haplogroup
L1c2b1a’b, but are diagnostic for H3aq and H27/H27e. The Vohr study noted spurious H
subclade haplogroups and saw an increase in additional haplogroups when the number



Genes 2024, 15, 194 14 of 17

of sample fragments (10 K, 20 K, and 40 K) was increased. While Vohr observed spurious
H haplogroups when one of the true haplogroups (true: H1 [2]) in a mixture was closely
related to the additional haplogroup (spurious H1s and H26), this was only observed
for three out of eleven 3-person in-silico combinations in our dataset. Ultimately, all of
the spurious haplogroups in our datasets were resolved by adding known haplotypes
during deconvolution. The addition of known haplotypes also led to resolution of the
minor contributor in all of the 49:1 and in one 99:1 biological mixtures. Inclusion of
known haplotype (profile) information in mixture deconvolution is a common practice in
forensic cases as persons of interest are commonly known or suspected to be contributors
in DNA mixtures.

The biological datasets in this study had an average of 500,000 and 1 million reads
for the Precision ID and PowerSeq amplifications, respectively. With an average fragment
length of 200 bps for both amplification kits, and considering 5% minor contribution, this
relates to approximately 300- and 600-fold coverage, and approximately 60- and 120-fold
coverage for a 1% minor contribution across the mtgenome. At this high number of
fragments, for both amplification kits, the major and minor contributors were correctly
identified for 5% minor contribution but only one out of 15 mixtures (10U:7D; 49:1) with
a minor contribution of 1–2% was resolved. The Vohr study found that in-silico samples
consisting of 3000 fragments of approximately 300 bps (~3 fold coverage for 5% minor
contribution) often failed to detect contributors present at less than 10% and increasing
mixtures to 10,000 fragments could resolve minor contributors at 5% (our calculation: 9-fold
coverage), but required 20,000–40,000 fragments to recover 1% (our calculation: 4- to 7-fold
coverage) contribution in 20 and 31 out of 50 mixtures, respectively. The reason for the
differences is unclear but could be due to differences in sequencing approaches and average
fragment length or differences in contributor haplotypes and combinations.

Heteroplasmy and Haplotype Reconstruction

The in-silico dataset contains nine individuals with one site, three individuals with two
sites, and 19 individuals with no sites of heteroplasmy with MAFs ranging from 6.4 to 47.0%.
Across all mixtures in the in-silico dataset, there was one trio of individuals (399:886:918)
that had a spurious haplogroup that was possibly due to the 16093C heteroplasmic site
(MAF 25.9%) in individual 886. A spurious haplogroup, H27 [1] was reported for each of
the mixture ratios for this combination of individuals. The 16093C diagnostic SNP was
observed with an estimated proportion of 12.4% in the 1:1:1 mixture, 11.7% in the 1:3:3
mixture, and 12.4% in the 3:3:1 mixture. No other indications of complications due to
heteroplasmy were found in the in-silico or biological datasets. The biological dataset
contains two individuals with one site, three individuals with two sites, and six individuals
with no sites of heteroplasmy with a MAF range of 2.4–41.1%.

Haplotype reconstruction was attempted for a small subset of samples using the
MixtureAce MT™ reported diagnostic variants. The proportion of the haplotype that was
able to be reconstructed ranged from ~12% for minor contributors in mixtures with highly
similar haplotypes to ~65% for major contributors in mixtures with similar haplotypes and
both contributors in mixtures with dissimilar haplotypes. While complete reconstruction
of an individual’s haplotype is not reported by MixtureAce MT™, the reported haplogroup
along with the estimated proportions (unequal proportions required) enable most samples
to be fully reconstructed through manual investigation of the sequencing pileup in an
alignment software.

5. Conclusions

Overall, MixtureAce MT™ effectively detects the correct contributing haplogroups
and closely estimates contributor proportions in sequencing data generated from small
amplicons for mixtures with minor contribution ≥ 5%. The new software provides a user-
friendly interface and reduces confounding features such as NUMTs and noise, reducing
traditionally prohibitive processing times. Based on this study, processing times can
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be further diminished through random reduction of samples to 20 K fragments while
maintaining the ability to successfully identify contributor haplogroups and reducing the
time to run a sample by approximately 60%.

A challenge of mixture deconvolution using small amplicon sequencing is the genera-
tion of spurious haplogroups resulting from private mutations that differ from Phylotree
but these additional haplogroups can be resolved by including known haplotype/s in the
evaluation. The inclusion of known haplotypes can also help to resolve trace contributors
(minor contribution 1–2%), which remain challenging to resolve even with deep sequenc-
ing. The outcomes of this work will help to increase the effectiveness of forensic mtDNA
analysis, decrease the time and cost of data analysis compared to current standard practices,
and allow for separation of components of a mitogenome mixture.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes15020194/s1, Table S1: List of in-silico mixtures. (A) two person mixtures; (B) three
person mixtures. Both tables list contributor ID, contributor haplogroup, the number of unique and
shared haplogroup defining SNPs, and our determination of whether the mixture was considered
to consist of similar or dissimilar haplotypes, Table S2: List of in-silico mixture contributors with
haplogrep2 generated haplogroup and GM HTS generated haplotype and heteroplasmy information.
Heteroplasmy is presented as rCRS nucleotide-nucleotide position-alternative nucleotide- frequency
(%), Table S3: List of biological mixture contributors with haplogrep2 generated haplogroup and
GM HTS generated haplotype and heteroplasmy information. Heteroplasmy is presented as rCRS
nucleotide-nucleotide position-alternative nucleotide- frequency (%), Table S4: List of biological mix-
tures. (A) two-person mixtures; (B) three-person mixtures. Both tables list contributor ID, contributor
haplogroup, the number of unique and shared haplogroup defining SNPs, and our determination of
whether the mixture was considered to contain similar or dissimilar haplotypes. Figure S1: Screen
shot images of the MixtureAce MT™ user-friendly interface. (A) Sample identification and run status,
(B) Data type selection, (C) Data file upload, (D) Advanced options, (E) Contributor detection options,
F. Deconvoluting mtDNA mixtures by expectation maximization.

Author Contributions: Conceptualization, J.A.M. and M.M.H.; methodology, J.A.M. and M.M.H.;
laboratory processing, A.A.; data analysis, A.A. and J.A.M.; software, B.Y.; data curation, J.A.M.
and M.M.H.; writing—original draft preparation, J.A.M.; visualization, J.A.M.; writing—review and
editing, A.A., B.Y. and M.M.H.; funding acquisition, J.A.M. and M.M.H. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the National Institute of Justice (NIJ), grant number 2020-DQ-
BX-0004.

Institutional Review Board Statement: All work in this study was conducted under the Pennsylvania
State University internal review board (IRB) approved project #STUDY00014305.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Dataset available on request from the authors.

Acknowledgments: The authors would like to thank Jeff Smith (Nichevision, LLC, Akron, OH, USA)
for technical support on this project.

Conflicts of Interest: Author Brian Young is a consultant in bioinformatics and statistics and is Chief
Scientist at NicheVision Forensics where he developed the MixtureAce MT™ software.

References
1. Canale, L.C.; Parson, W.; Holland, M.M. The Time Is Now for Ubiquitous Forensic MtMPS Analysis. WIREs Forensic Sci. 2022,

4, e1431. [CrossRef]
2. Vohr, S.H.; Gordon, R.; Eizenga, J.M.; Erlich, H.A.; Calloway, C.D.; Green, R.E. A Phylogenetic Approach for Haplotype Analysis

of Sequence Data from Complex Mitochondrial Mixtures. Forensic Sci. Int. Genet. 2017, 30, 93–105. [CrossRef]
3. Rebolledo-Jaramillo, B.; Su, M.S.-W.; Stoler, N.; McElhoe, J.A.; Dickins, B.; Blankenberg, D.; Korneliussen, T.S.; Chiaromonte,

F.; Nielsen, R.; Holland, M.M.; et al. Maternal Age Effect and Severe Germ-Line Bottleneck in the Inheritance of Human
Mitochondrial DNA. Proc. Natl. Acad. Sci. USA 2014, 111, 15474–15479. [CrossRef]

https://www.mdpi.com/article/10.3390/genes15020194/s1
https://www.mdpi.com/article/10.3390/genes15020194/s1
https://doi.org/10.1002/wfs2.1431
https://doi.org/10.1016/j.fsigen.2017.05.007
https://doi.org/10.1073/pnas.1409328111


Genes 2024, 15, 194 16 of 17

4. Just, R.S.; Scheible, M.K.; Fast, S.A.; Sturk-Andreaggi, K.; Röck, A.W.; Bush, J.M.; Higginbotham, J.L.; Peck, M.A.; Ring, J.D.;
Huber, G.E.; et al. Full MtGenome Reference Data: Development and Characterization of 588 Forensic-Quality Haplotypes
Representing Three U.S. Populations. Forensic Sci. Int. Genet. 2015, 14, 141–155. [CrossRef]

5. Li, M.; Rothwell, R.; Vermaat, M.; Wachsmuth, M.; Schröder, R.; Laros, J.F.J.; Van Oven, M.; De Bakker, P.I.W.; Bovenberg, J.A.; Van
Duijn, C.M.; et al. Transmission of Human MtDNA Heteroplasmy in the Genome of the Netherlands Families: Support for a
Variable-Size Bottleneck. Genome Res. 2016, 26, 417–426. [CrossRef]

6. Holland, M.M.; Makova, K.D.; McElhoe, J.A. Deep-Coverage MPS Analysis of Heteroplasmic Variants within the Mtgenome
Allows for Frequent Differentiation of Maternal Relatives. Genes 2018, 9, 124. [CrossRef]

7. McElhoe, J.A.; Wilton, P.R.; Parson, W.; Holland, M.M. Exploring Statistical Weight Estimates for Mitochondrial DNA Matches
Involving Heteroplasmy. Int. J. Legal Med. 2022, 136, 671–685. [CrossRef]

8. Mandape, S.N.; Smart, U.; King, J.L.; Muenzler, M.; Kapema, K.B.; Budowle, B.; Woerner, A.E. MMDIT: A Tool for the Deconvolu-
tion and Interpretation of Mitochondrial DNA Mixtures. Forensic Sci. Int. Genet. 2021, 55, 102568. [CrossRef] [PubMed]

9. Smart, U.; Cihlar, J.C.; Mandape, S.N.; Muenzler, M.; King, J.L.; Budowle, B.; Woerner, A.E. A Continuous Statistical Phasing
Framework for the Analysis of Forensic Mitochondrial DNA Mixtures. Genes 2021, 12, 128. [CrossRef]

10. Wisner, M.; Erlich, H.; Shih, S.; Calloway, C. Resolution of Mitochondrial DNA Mixtures Using a Probe Capture next Generation
Sequencing System and Phylogenetic-Based Software. Forensic Sci. Int. Genet. 2021, 53, 102531. [CrossRef]

11. Bieber, F.R.; Buckleton, J.S.; Budowle, B.; Butler, J.M.; Coble, M.D. Evaluation of Forensic DNA Mixture Evidence: Protocol for
Evaluation, Interpretation, and Statistical Calculations Using the Combined Probability of Inclusion. BMC Genet. 2016, 17, 125.
[CrossRef]

12. Ladd, C.; Lee, H.C.; Yang, N.; Bieber, F.R. Interpretation of Complex Forensic DNA Mixtures. Croat Med. J. 2001, 42, 244–246.
[PubMed]

13. Haned, H.; Benschop, C.C.G.; Gill, P.D.; Sijen, T. Complex DNA Mixture Analysis in a Forensic Context: Evaluating the Probative
Value Using a Likelihood Ratio Model. Forensic Sci. Int. Genet. 2015, 16, 17–25. [CrossRef] [PubMed]

14. Hampikian, G. The Dangers of DNA Testing. New York Times, 2018.
15. Melton, T.; Dimick, G.; Higgins, B.; Lindstrom, L.; Nelson, K. Forensic Mitochondrial DNA Analysis of 691 Casework Hairs. J.

Forensic Sci. 2005, 50, 73–80. [CrossRef] [PubMed]
16. Toscanini, U.; Gusmão, L.; Álava Narváez, M.C.; Álvarez, J.C.; Baldassarri, L.; Barbaro, A.; Berardi, G.; Betancor Hernández, E.;

Camargo, M.; Carreras-Carbonell, J.; et al. Analysis of Uni and Bi-Parental Markers in Mixture Samples: Lessons from the 22nd
GHEP-ISFG Intercomparison Exercise. Forensic Sci. Int. Genet. 2016, 25, 63–72. [CrossRef] [PubMed]

17. Coble, M.D.; Bright, J.-A. Probabilistic Genotyping Software: An Overview. Forensic Sci. Int. Genet. 2019, 38, 219–224. [CrossRef]
18. Churchill, J.D.; Stoljarova, M.; King, J.L.; Budowle, B. Massively Parallel Sequencing-Enabled Mixture Analysis of Mitochondrial

DNA Samples. Int. J. Legal Med. 2018, 132, 1263–1272. [CrossRef] [PubMed]
19. Kim, H.; Erlich, H.A.; Calloway, C.D. Analysis of Mixtures Using next Generation Sequencing of Mitochondrial DNA Hypervari-

able Regions. Croat Med. J. 2015, 56, 208–217. [CrossRef]
20. Anderson, S.; Bankier, A.T.; Barrell, B.G.; de Bruijn, M.H.L.; Coulson, A.R.; Drouin, J.; Eperon, I.C.; Nierlich, D.P.; Roe, B.A.;

Sanger, F.; et al. Sequence and Organization of the Human Mitochondrial Genome. Nature 1981, 290, 457–465. [CrossRef]
21. Andrews, R.M.; Kubacka, I.; Chinnery, P.F.; Lightowlers, R.N.; Turnbull, D.M.; Howell, N. Reanalysis and Revision of the

Cambridge Reference Sequence for Human Mitochondrial DNA. Nat. Genet. 1999, 23, 147. [CrossRef]
22. Weissensteiner, H.; Pacher, D.; Kloss-Brandstätter, A.; Forer, L.; Specht, G.; Bandelt, H.J.; Kronenberg, F.; Salas, A.; Schönherr, S.

HaploGrep 2: Mitochondrial Haplogroup Classification in the Era of High-Throughput Sequencing. Nucleic Acids Res. 2016, 44,
W58–W63. [CrossRef]

23. Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Align-
ment/Map Format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [CrossRef]

24. Barnett, D.W.; Garrison, E.K.; Quinlan, A.R.; Stromberg, M.P.; Marth, G.T. BamTools: A C++ API and Toolkit for Analyzing and
Managing BAM Files. Bioinformatics 2011, 27, 1691–1692. [CrossRef] [PubMed]

25. Gallimore, J.M.; McElhoe, J.A.; Holland, M.M. Assessing Heteroplasmic Variant Drift in the MtDNA Control Region of Human
Hairs Using an MPS Approach. Forensic Sci. Int. Genet. 2018, 32, 7–17. [CrossRef] [PubMed]

26. Edgar, R.C.; Flyvbjerg, H. Error Filtering, Pair Assembly and Error Correction for next-Generation Sequencing Reads. Bioinformat-
ics 2015, 31, 3476–3482. [CrossRef]

27. Linhart, C.; Shamir, R. The Degenerate Primer Design Problem: Theory and Applications. J. Comput. Biol. 2005, 12, 431–456.
[CrossRef] [PubMed]

28. Kwok, S.; Chang, S.Y.; Sninsky, J.J.; Wang, A. A Guide to the Design and Use of Mismatched and Degenerate Primers. Genome Res.
1994, 3, S39–S47. [CrossRef]

29. McElhoe, J.A.; Holland, M.M. Characterization of Background Noise in MiSeq MPS Data When Sequencing Human Mitochondrial
DNA from Various Sample Sources and Library Preparation Methods. Mitochondrion 2020, 52, 40–55. [CrossRef] [PubMed]

30. Huszar, T.I.; Wetton, J.H.; Jobling, M.A. Mitigating the Effects of Reference Sequence Bias in Single-Multiplex Massively Parallel
Sequencing of the Mitochondrial DNA Control Region. Forensic Sci. Int. Genet. 2019, 40, 9–17. [CrossRef]

31. Lopez, J.V.; Yuhki, N.; Masuda, R.; Modi, W.; O’Brien, S.J. Numt, a Recent Transfer and Tandem Amplification of Mitochondrial
DNA to the Nuclear Genome of the Domestic Cat. J. Mol. Evol. 1994, 39, 174–190. [CrossRef]

https://doi.org/10.1016/j.fsigen.2014.09.021
https://doi.org/10.1101/gr.203216.115
https://doi.org/10.3390/genes9030124
https://doi.org/10.1007/s00414-022-02774-5
https://doi.org/10.1016/j.fsigen.2021.102568
https://www.ncbi.nlm.nih.gov/pubmed/34416654
https://doi.org/10.3390/genes12020128
https://doi.org/10.1016/j.fsigen.2021.102531
https://doi.org/10.1186/s12863-016-0429-7
https://www.ncbi.nlm.nih.gov/pubmed/11387631
https://doi.org/10.1016/j.fsigen.2014.11.014
https://www.ncbi.nlm.nih.gov/pubmed/25485478
https://doi.org/10.1520/JFS2004230
https://www.ncbi.nlm.nih.gov/pubmed/15830999
https://doi.org/10.1016/j.fsigen.2016.07.010
https://www.ncbi.nlm.nih.gov/pubmed/27500650
https://doi.org/10.1016/j.fsigen.2018.11.009
https://doi.org/10.1007/s00414-018-1799-3
https://www.ncbi.nlm.nih.gov/pubmed/29468381
https://doi.org/10.3325/cmj.2015.56.208
https://doi.org/10.1038/290457a0
https://doi.org/10.1038/13779
https://doi.org/10.1093/nar/gkw233
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btr174
https://www.ncbi.nlm.nih.gov/pubmed/21493652
https://doi.org/10.1016/j.fsigen.2017.09.013
https://www.ncbi.nlm.nih.gov/pubmed/29024924
https://doi.org/10.1093/bioinformatics/btv401
https://doi.org/10.1089/cmb.2005.12.431
https://www.ncbi.nlm.nih.gov/pubmed/15882141
https://doi.org/10.1101/gr.3.4.S39
https://doi.org/10.1016/j.mito.2020.02.005
https://www.ncbi.nlm.nih.gov/pubmed/32068127
https://doi.org/10.1016/j.fsigen.2019.01.008
https://doi.org/10.1007/BF00163806


Genes 2024, 15, 194 17 of 17

32. Langmead, B.; Salzberg, S.L. Fast Gapped-Read Alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [CrossRef]
33. Li, H.; Durbin, R. Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform. Bioinformatics 2009, 25, 1754–1760.

[CrossRef] [PubMed]
34. Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum Likelihood from Incomplete Data Via the EM Algorithm. J. R. Stat. Soc. Ser. B

1977, 39, 1–22. [CrossRef]
35. van Oven, M.; Kayser, M. Updated Comprehensive Phylogenetic Tree of Global Human Mitochondrial DNA Variation. Hum

Mutat 2009, 30, E386–E394. [CrossRef]
36. R Core Team. R: A Language for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. Available

online: https://www.R-project.org/ (accessed on 20 December 2023).
37. RStudio Team. RStudio: Integrated Development for R; RStudio PBC: Boston, MA, USA, 2020. Available online: http://www.rstudio.

com/ (accessed on 20 December 2023).
38. Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016.
39. Wilke, C. Cowplot: Streamlined Plot Theme and Plot Annotations for “Ggplot2”. 2020. Available online: https://CRAN.R-

project.org/package=cowplot (accessed on 20 December 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1093/bioinformatics/btp324
https://www.ncbi.nlm.nih.gov/pubmed/19451168
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1002/humu.20921
https://www.R-project.org/
http://www.rstudio.com/
http://www.rstudio.com/
https://CRAN.R-project.org/package=cowplot
https://CRAN.R-project.org/package=cowplot

	Introduction 
	Materials and Methods 
	In-Silico Mixtures 
	Biological Mixtures 
	Creation of the User-Friendly Graphical User Interface: MixtureAce MT™ 
	Statistical Analysis and Figures 

	Results 
	In-Silico Mixtures 
	Biological Mixtures 
	Preprocessing 
	Random Reduction 

	Discussion 
	Conclusions 
	References

