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Abstract: Numerous studies have shown that combining populations from similar or closely related
genetic breeds improves the accuracy of genomic predictions (GP). Extensive experimentation with
diverse Bayesian and genomic best linear unbiased prediction (GBLUP) models have been developed
to explore multi-breed genomic selection (GS) in livestock, ultimately establishing them as successful
approaches for predicting genomic estimated breeding value (GEBV). This study aimed to assess
the effectiveness of using BayesR and GBLUP models with linkage disequilibrium (LD)-weighted
genomic relationship matrices (GRMs) for genomic prediction in three different beef cattle breeds
to identify the best approach for enhancing the accuracy of multi-breed genomic selection in beef
cattle. Additionally, a comparison was conducted to evaluate the predictive precision of different
marker densities and genetic correlations among the three breeds of beef cattle. The GRM between
Yunling cattle (YL) and other breeds demonstrated modest affinity and highlighted a notable genetic
concordance of 0.87 between Chinese Wagyu (WG) and Huaxi (HX) cattle. In the within-breed GS,
BayesR demonstrated an advantage over GBLUP. The prediction accuracies for HX cattle using
the BayesR model were 0.52 with BovineHD BeadChip data (HD) and 0.46 with whole-genome
sequencing data (WGS). In comparison to the GBLUP model, the accuracy increased by 26.8% for HD
data and 9.5% for WGS data. For WG and YL, BayesR doubled the within-breed prediction accuracy
to 14.3% from 7.1%, outperforming GBLUP across both HD and WGS datasets. Moreover, analyzing
multiple breeds using genomic selection showed that BayesR consistently outperformed GBLUP
in terms of predictive accuracy, especially when using WGS. For instance, in a mixed reference
population of HX and WG, BayesR achieved a significant accuracy of 0.53 using WGS for HX, which
was a substantial enhancement over the accuracies obtained with GBLUP models. The research further
highlights the benefit of including various breeds in the reference group, leading to enhanced accuracy
in predictions and emphasizing the importance of comprehensive genomic selection methods. Our
research findings indicate that BayesR exhibits superior performance compared to GBLUP in multi-
breed genomic prediction accuracy, achieving a maximum improvement of 33.3%, especially in
genetically diverse breeds. The improvement can be attributed to the effective utilization of higher
single nucleotide polymorphism (SNP) marker density by BayesR, resulting in enhanced prediction
accuracy. This evidence conclusively demonstrates the significant impact of BayesR on enhancing
genomic predictions in diverse cattle populations, underscoring the crucial role of genetic relatedness
in selection methodologies. In parallel, subsequent studies should focus on refining GRM and
exploring alternative models for GP.
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1. Introduction

Genomic selection (GS) is currently widely used in domesticated animal breeding [1].
The accuracy of genomic estimated breeding values (GEBV) is primarily contingent upon
the magnitude of the reference population, thus rendering genomic evaluations predomi-
nantly applicable to breeds of substantial size [2]. In China, GS was introduced in Simmental
beef cattle breeding in 2007. Yet, in many small local cattle populations with a large effective
population size, it may be challenging or even impossible to gather a sufficiently large train-
ing population for accurate GEBV prediction. Combining animals from multiple breeds
has been suggested as a strategy to address the limitation of small reference population
sizes. Yet, this method has only had moderate success because of inconsistent connections
between single nucleotide polymorphisms (SNPs) and quantitative trait loci (QTLs) in
various breeds (populations), along with the varying linkage disequilibrium (LD) between
SNPs and QTLs in populations with less genetic similarity [2–6].

Previous research utilizing SNP markers from the Illumina 50K SNP chip has indicated
that the intervals between markers are excessively wide for maintaining a consistent LD
phase across different breeds, resulting in the accuracies of cross-breed predictions being
negligible [7–9]. The BovineHD BeadChip (HD chip; Illumina Inc., San Diego, CA, USA),
which is a high-density genotyping array containing 777,609 SNPs, was created in 2010,
as stated in the literature. This chip is known for its short-range linkage disequilibrium,
which is anticipated to persist across different breeds of cattle [10]. Conversely, whole-
genome sequencing (WGS), a method developed more recently, has been employed to
encompass a broader array of genetic variants than is possible with SNP arrays. WGS data
are fundamentally distinct from the information acquired through dense SNP chips, as WGS
encompasses all types of genetic variants, including SNPs, indels, copy number variants
(CNVs), and others. Given that WGS data capture all variants, both rare and common,
within a population, they have the potential to offer more precise indicators for causative
mutations, both within and across breeds. Therefore, it is possible for forecasts to utilize
factors beyond the linkage disequilibrium between SNPs and QTL. Consequently, the
integration of WGS data has the potential to enhance the precision of genomic predictions.
In multi-breed prediction scenarios, the incorporation of WGS data may decrease the
necessity for SNP–QTL associations, which can differ among the various breeds under
evaluation [8]. Although Meuwissen reported an advantage of WGS data over dense SNP
data using simulated data, their results were restricted to within-population predictions
and to a small number of QTLs/morgan [11]. Therefore, the advantages of utilizing WGS
data for predicting outcomes across various breeds and unique small populations remain
inadequately understood.

Various methods for GP across multiple breeds have been created, including
GBLUP [12–14] and Bayesian models [8,12,15]. The primary focus of research in multi-
breed GBLUP models lies in the innovation of construction methods for the G-matrix. Zhou
et al. utilized a 50k SNP chip in the analysis of genomic relationship matrices (GRM) for
two breeds, incorporating various sources of information such as LD phase consistency
and marker effects [16,17]. Their study indicated that incorporating LD phase consistencies,
marker effects, or both into the two-breed GRM did not lead to enhanced accuracies in two-
breed predictions. When comparing methods, these researchers confirmed the advantage
of Bayesian approaches compared with genomic BLUP for EBV estimation [2,7,10]. They
stated that setting a large proportion of SNP effects to zero is necessary to take advantage
of the density of the HD chip [7]. This conclusion agreed with conserved QTL–marker
associations at small distances only. Furthermore, adding a polygenic component avoids
spurious SNP–QTL associations due to pedigree relationship [18] and helps to select QTLs
with rare alleles, small effects, or both [19,20]. Inclusion of a polygenic component also
increases the accuracy of GEBV prediction and allows for regression slopes closer to 1 [7,10].

The objective of this study was (1) to compare the prediction performance using
Unweight G-Matrix GBLUP (GUNW-GBLUP), LD Weight G-Matrix GBLUP (GLD-GBLUP),
and BayesR models for within-population and multi-breed reference populations; and (2)
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to assess how much predictive accuracy is gained by using WGS data compared to HD chip
SNP data, with emphasis on divergent cattle breeds with different genetic correlations.

2. Material and Methods
2.1. Ethics Statement

We adhered to guidelines of the China Council on Animal Care, with all steps approved
by the Institute of Animal Science and the Chinese Academy of Agricultural Science in
Beijing. Animal examinations were conducted in accordance with China’s Animal Welfare
Council regulations.

2.2. Animals and Phenotype

The real dataset included 1478 HUAXI cattle (HX), derived from Chinese Simmental
beef cattle, 600 Chinese Wagyu cattle (WG), and 400 Yunling cattle (YL). The HX cattle,
which were bred on five farms located in the Ulgai Grassland of the Xilingole League in
Inner Mongolia, China, were born over a span of 12 years from 2008 to 2020. Following the
weaning stage, the animals were relocated to Beijing for the purpose of fattening, where
they were consistently raised under identical feeding conditions. The WG cattle originated
from Dalian and Haikou cities in China, with birthdates ranging from 2012 to 2022. In
contrast, the YL cattle were born between 2020 and 2023, hailing from Kunming city in
China. The age at which the animals were slaughtered varied between 18 and 32 months.
In this research, slaughter weight (SWT; kg) was analyzed. The SWT was measured prior
to slaughter following a 24 h fasting period.

2.3. Genotyping Data

DNA was extracted from blood samples obtained from the three cattle breeds. Illumina
BovineHD BeadChips were utilized for genotyping, containing a total of 777,962 SNPs.
We conducted SNP quality control for each breed using PLINK v1.9 [21]. SNP genotypes
for individuals were removed if the call rate (CR) was less than 90%, the minor allele
frequency (MAF) was below 0.01, or if the SNP genotype frequency showed a significant
deviation from the Hardy–Weinberg Equilibrium (p < 1.0 × 10−6). Only autosomal SNPs
were included in the subsequent analyses. Subsequently, a total of 1478 individuals and
672,060 SNPs were retained and phased using BEAGLE v4.1 with default parameters, as
outlined by Browning [22].

A total of 44 unrelated HX, 20 WG, and 20 YL cattle specimens were selected for the
purpose of conducting genetic resequencing of the whole genome. Each animal sample
was subjected to library preparation using the Illumina Hiseq 2500 genome sequencing
system (Illumina Inc., San Diego, CA, USA). Each sample was sequenced about 20X on
average with a range of 17X to 25X, with X representing the number of times each base was
sequenced [23].

We obtained a total of 9,621,765,847 reads, which were subsequently subjected to our
quality control procedures. After the imputation process, a total of 12,468,401 markers
were obtained for chromosomes 1–29 among the breeds. A more detailed description was
presented in our recent publication [23].

2.4. Genetic Correlations

We utilized the persistence of the LD phase between populations to determine the
genetic relationship among the breeds. In this method, we calculated the correlation of
linkage disequilibrium (r2) of adjacent marker pairs on each autosome and used the average
correlation to represent the genetic relationship [24,25]. The calculation of r was proposed
by Hill and Robertson [26], and r2 was calculated as:

r2 =
D2

f (A) f (a) f (B) f (b)
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where D = f (AB)− f (A) f (B), and f (AB), f (A), f (a), f (B), and f (b) are the observed
frequencies of haplotype AB and alleles A, a, B, and b, respectively.

2.5. Statistical Models
2.5.1. GBLUP Model

The GBLUP method was used in this study to predict breeding values [27]. The model
was given by:

y = Xb + Zg + e

where y is a vector of the phenotypes, X is a design matrix relating the fixed effects to each
animal, b is a vector of fixed effects, Z is a design matrix allocating records to genetic values,
g is a vector of additive genetic effects for an individual, and e is a vector of random normal
deviates with variance σ2

e . In addition, var(g) = Gσ2
g where G is the genomic relationship

matrix and σ2
g is the genetic variance for this model. The vector g contains animals with

phenotypic data but can be extended to animals without phenotypes.

2.5.2. Multi-Breed GBLUP

The same trait from different breeds was regarded as two different traits in the multi-
trait GBLUP model [17]. The model was given by:(

y1
y2

)
=

(
1µ1
1µ2

)
+

(
Z1 0
0 Z2

)(
a1
a2

)
+

(
e1
e2

)
where y1 was the vector of the phenotype of breed 1 and y2 was the vector of the phenotype
of breed 2. The variables µ1 and µ2 represent the respective means of the two breeds,
vectors a1 and a2 represent the genomic breeding values, vectors e1 and e2 represent the
residual effects, and Z1 and Z2 represent incidence matrices associating genomic breeding
values with y1 and y2, respectively. For a detailed description of the model assumptions,
please refer to Zhou et al. [17].

2.5.3. Unweight G-Matrix (GUNW)

The G-matrix was constructed with four parts alone in the GUNW [28]. Two blocks
were constructed within a breed for the purpose of analyzing the G-matrix, with identical
construction methods used for each block. However, allele frequencies were computed
separately for each individual breed. The between-breed blocks were created through a
mathematical process involving the multiplication of genotypes from two different breeds
and subsequent division by the geometric mean of the sum of 2p(1 − p) values from each
breed. This process allowed for the calculation of the genomic relationship coefficient (g ij

)
between individual i from breed 1 and individual j from breed 2, as given by:

gij =
∑m

k=1 M1(i,k)M2(j,k)√
∑ 2p1,k(1 − p1,k)∑ 2p2,k(1 − p2,k)

where M1 and M2 represent the genotype matrices of breed 1 and breed 2, respectively; m
is the total number of markers; and p1,k and p2,k denote the observed allele frequencies of
A2 at locus k for breed 1 and breed 2, respectively.

2.5.4. LD Weight G-Matrix (GLD)

The correlation of SNP effects between breeds can vary across the genome, so it is not
valid to assume that the covariance is consistent for all SNPs [17]. We considered LD phase
consistency when creating the two-breed GRM. Within-breed blocks of the GLD matrices
were constructed without weighting, while differential marker weighting was only applied
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to between-breed blocks. For example, gij of individual i in breed 1 and individual j in
breed 2 was calculated as:

gij =
∑m

k=1 M1(i,k)M2(j,k)wk√
∑ 2p1,k(1 − p1,k)∑ 2p2,k(1 − p2,k)

where wk represents the weight on marker k. LD phase consistencies were measured as
correlations of all pairwise r2

LD between two breeds (indicated as corLD). The r2
LD measured

LD between any pair of markers within a marker interval. We divided all SNPs (common
to both breeds) into three intervals of different sizes, which contained 10 SNPs in each
interval. We used these makers in each interval to calculate the LD phase consistencies
(corLD) and took r2

LD as the weight for all of the SNPs in the corresponding interval. For
each locus, we calculated the r2

LD of the ten nearest loci and calculated the correlation of
r2

LD between two breeds as weights. If there was only one shared pair, we used the mean of
all SNP pairs instead. M1, M2, m, p1,k, and p2,k were the same as above.

2.5.5. BayesR Model

We used the hybrid variant of the BayesR model [29] that first used an expectation-
maximization (EM) module, followed by a Monte Carlo Markov chain (MCMC) model for
10,000 iterations, fitting the following model:

yi = Xb +
p

∑
j=1

mijαj + Wv + ei

where yi is a vector of the phenotypes; mij is the genotype covariate at locus j for individual
i (coded as 0, 1, 2); p is the number of genotyped loci; αj is a vector of allele substitution
effects for locus j; W is a design matrix of genotypes; and v a vector of variant effects,
drawn from 4 normal distributions with N (0,0*σ2

g ), N (0,0.0001*σ2
g ), N (0,0.001*σ2

g ), and N
(0,0.01*σ2

g ) where σ2
g is the additive genetic variance and prior distribution of the proportion

of variants per distribution P ~ Dirichlet(α), with α = [1,1,1,1]; and ei is a vector of random
residuals for individual i. Fixed effects or general mean, in this case, were assigned flat
priors [1,30]. Fix effects and covariates, including gender, farm, breed, birth year, and
individual age of slaughter (day), were considered in the model.

The results of each model were evaluated using the accuracy of predictions. The
prediction accuracy (rGEBV,ŷ) was measured with Pearson’s correlation coefficient, calcu-
lated as rGEBV,ŷ = Cor(GBEV, ŷ) where ŷ is the residual value after correcting the fixed
effect. Each dataset was randomly divided into five groups, with four groups used as a
training dataset and the remaining group used for validation, and 10 replicates of 5-fold
cross-validation were employed for each trait. Accuracy was determined as the mean of
the results for five-fold cross-validation procedures. We sampled 100 random individuals
to compose the training population, and the remaining individuals composed the reference
population [31].

3. Results
3.1. Descriptive Statistics of the Analyzed Traits

Table 1 presents a comprehensive summary of the statistical attributes of slaughter
weights across three distinct cattle breeds: Huaxi cattle (SWTHX), Chinese Wagyu cattle
(SWTWG), and Yunling cattle (SWTYL). WG had the highest average slaughter weights
at 605.10 kg, a phenomenon that could potentially be attributed to the advanced age at
which WG cattle were typically slaughtered. By contrast, YL cattle exhibited the lowest live
weights prior to slaughter, measuring only 372 kg. The coefficient of variation ranged from
9.68% to 14.88% across the three breeds, suggesting a relative dispersion of data points. The
limited phenotypic variation within each population indicated a high quality of phenotype



Genes 2024, 15, 253 6 of 12

data for the three breeds. Heritability estimates were 0.40 for SWTHX , 0.53 for SWTWG, and
0.49 for SWTYL, suggesting a moderate to high genetic influence on these traits.

Table 1. Summary statistics of the analyzed traits.

Trait Number Mean SD C.V Minimum Maximum Heritability

SWTHX 1302 544.05 80.95 14.88 318 790 0.40 (0.04)
SWTWG 600 605.10 72.05 11.91 594 1001 0.53 (0.06)
SWTYL 400 372 36.01 9.68 295 420 0.49 (0.07)

Note: SWTHX , slaughter weight for Huaxi cattle, kg; SWTWG , slaughter weight for Chinese Wagyu cattle, kg;
SWTYL, slaughter weight for Yunling cattle, kg; C.V: coefficient of variation, %.

3.2. Genomic Relationship of Two Breeds

Figure 1 illustrates the genetic relationship among the three cattle breeds: YL, WG,
and HX. The off-diagonal elements represent the genetic relationships between breeds.
The genetic similarity between YL and WG was represented as 0.51, between YL and
HXN as 0.44, and between WG and HX as 0.87. These values suggested a moderate
genetic relationship between YL and the other two breeds, and a high genetic similarity
between WG and HX. It was calculated based on the persistence of the LD phase between
populations to determine the genetic relationship among breeds. The values ranged from
−1 to 1, where 1 indicates identical genetic makeup and values approaching 0 indicate
lower genetic similarity. Furthermore, Figure S1 and Figure S2 respectively show the LD
decay trends of the three breeds and the results of PCA cluster analysis, which to some
extent indicate the kinship among breeds, thus verifying the reliability of the results in
Figure 1.
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Yunling cattle (YL).

3.3. Prediction Accuracy of Within-Breed GS

Table 2 compares the prediction accuracy of the two genomic selection methods,
GBLUP and BayesR, using high-density chip data (HD) and whole-genome sequencing data
(WGS) across the three cattle breeds: Huaxi (HX), Chinese Wagyu (WG), and Yunling (YL).
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Table 2. Prediction accuracies of different methods for within-breed genomic selection.

refPop Method
SNP Density

HD WGS

HX
GBLUP 0.41 (0.013) 0.42 (0.010)
BayesR 0.52 (0.010) 0.46 (0.008)

WG
GBLUP 0.34 (0.017) 0.34 (0.012)
BayesR 0.38 (0.010) 0.38 (0.011)

YL
GBLUP 0.28 (0.021) 0.28 (0.019)
BayesR 0.30 (0.016) 0.32 (0.011)

Note: refPop, reference population; HD, high-density chip data; WGS, whole-genome sequencing data; HX, Huaxi
cattle; WG, Chinese Wagyu cattle; YL, Yunling cattle. The standard error of prediction accuracy is in parentheses.

The BayesR model demonstrated prediction accuracies of 0.52 and 0.46 for HX cat-
tle using BovineHD BeadChip data (HD) and whole-genome sequencing data (WGS),
respectively. Compared to the GBLUP model, the BayesR model exhibited increases in
accuracy of 26.8% for HD data and 9.5% for WGS data. Additionally, BayesR doubled the
within-breed prediction accuracy for WG and YL cattle to 14.3% from 7.1%, surpassing the
performance of GBLUP across both HD and WGS datasets. For Chinese Wagyu cattle, both
GBLUP and BayesR showed equal accuracies of 0.34 (± 0.017 and ± 0.012, respectively)
with HD. Similarly, with WGS, both methods yielded an accuracy of 0.38, but with slightly
different standard errors (GBLUP: ± 0.012, BayesR: ± 0.011). In Yunling cattle, GBLUP
demonstrated accuracies of 0.28 (± 0.021) with HD and 0.28 (± 0.019) with WGS. BayesR
showed a slightly better performance, with accuracies of 0.30 (± 0.016) for HD and 0.32
(± 0.011) for WGS.

The table demonstrated that BayesR generally provided higher prediction accuracies
compared to GBLUP, especially in the Huaxi cattle breed. The impact of SNP density (HD
vs. WGS) varied depending on the breed and the method, with notable differences in Huaxi
cattle but less so in the other breeds.

3.4. Accuracy of Multi-Breed GS

Table 3 presents the prediction accuracies of GUNW-GBLUP, GLD-GBLUP, and BayesR
models using high-density chip data (HD) and whole-genome sequencing data (WGS) in
various combinations of reference populations (refPop) for HX, WG, and YL cattle breeds.

Table 3. Prediction accuracies of different methods for multi-breed genomic selection.

refPop Method
HX WG YL

HD WGS HD WGS HD WGS

HX + WG
GUNW -GBLUP 0.41 (0.014) 0.44 (0.013) 0.34 (0.014) 0.35 (0.015) 0.10 (0.014) 0.11 (0.013)
GLD-GBLUP 0.42 (0.015) 0.46 (0.016) 0.35 (0.013) 0.38 (0.013) 0.10 (0.014) 0.12 (0.012)

BayesR 0.48 (0.014) 0.53 (0.012) 0.4 (0.016) 0.44 (0.014) 0.13 (0.019) 0.17 (0.016)

HX + YL
GUNW -GBLUP 0.41 (0.015) 0.44 (0.017) 0.13 (0.015) 0.15 (0.013) 0.3 (0.011) 0.31 (0.015)
GLD-GBLUP 0.41 (0.019) 0.45 (0.018) 0.13 (0.019) 0.16 (0.015) 0.32 (0.015) 0.34 (0.019)

BayesR 0.43 (0.016) 0.48 (0.013) 0.15 (0.014) 0.19 (0.012) 0.33 (0.016) 0.38 (0.011)

WG + YL
GUNW -GBLUP 0.11 (0.018) 0.12 (0.017) 0.34 (0.015) 0.35 (0.018) 0.31 (0.017) 0.32 (0.017)
GLD-GBLUP 0.13 (0.017) 0.15 (0.015) 0.35 (0.015) 0.37 (0.017) 0.33 (0.013) 0.35 (0.011)

BayesR 0.18 (0.016) 0.2 (0.013) 0.41 (0.018) 0.44 (0.018) 0.34 (0.016) 0.38 (0.014)

HX + WG + YL
GUNW -GBLUP 0.42 (0.013) 0.44 (0.017) 0.35 (0.014) 0.36 (0.016) 0.31 (0.012) 0.32 (0.018)
GLD-GBLUP 0.42 (0.019) 0.45 (0.017) 0.36 (0.016) 0.4 (0.013) 0.32 (0.017) 0.34 (0.016)

BayesR 0.45 (0.012) 0.49 (0.012) 0.43 (0.018) 0.48 (0.015) 0.34 (0.018) 0.39 (0.013)

Note: refPop, reference population; HD, high-density chip data; WGS, whole-genome sequencing data; HX, Huaxi
cattle; WG, Chinese Wagyu cattle; YL, Yunling cattle. The standard error of prediction accuracy is in parentheses.
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The results highlighted significant differences in prediction accuracies between the
GBLUP and BayesR models across different breeds and genomic data types. Notably,
BayesR generally exhibited higher prediction accuracies than GBLUP models. For instance,
in the HX + WG refPop, BayesR achieved prediction accuracies of 0.48 ± 0.014 with HD and
0.53 ± 0.012 with WGS in HX cattle, outperforming the GBLUP models. Similarly, across
different refPop combinations, BayesR consistently demonstrates superior performance in
capturing the genetic architecture of the traits, particularly with WGS data. Meanwhile, the
average prediction accuracy of GUNW − GBLUP in the multi-breed strategy was similar
to the within-breed strategy, and the prediction accuracy of GLD − GBLUP was usually
higher than that of GUNW − GBLUP in the multi-breed and within-breed strategies.

Furthermore, the table also underscored the impact of different reference populations
on prediction accuracy. The inclusion of multiple breeds in the reference population
generally enhanced the prediction accuracy for each breed, indicating the benefit of multi-
breed genomic selection approaches in capturing broader genetic variation.

4. Discussion
4.1. Impact of BayesR and GBLUP on GEBV in Single and Multiple Breed Genomic Selection

The study’s results indicated that BayesR outperformed GBLUP in genomic selection
(GS), particularly in multi-breed scenarios involving Huaxi (HX), Wagyu (WG), and Yuling
(YL) cattle breeds. The ability of BayesR to handle polygenic traits and complex genetic
architectures led to higher prediction accuracies compared to GBLUP. This superiority
was most evident in Huaxi cattle, where BayesR achieved prediction accuracies of 0.52
with high-density (HD) chip data and 0.46 with whole-genome sequencing (WGS) data,
significantly exceeding those of GBLUP. These findings aligned with those of Wang et al.
(Wang et al. 2016) and Irene et al. (van den Berg et al. 2017), who showed that the accuracy
with the hybrid model was equal to that with BayesR, which confirmed that the hybrid
model is an efficient alternative to BayesR. This superiority is particularly evident in multi-
breed genomic selection scenarios, highlighting the potential of BayesR in handling the
complex genetic architecture of diverse cattle populations.

The efficacy of genomic predictions utilizing GBLUP is contingent upon the magnitude
of the reference population [20,32]. Consequently, when a substantial reference population
was accessible for a singular breed of HX, GBLUP attained a significant portion of the
prospective accuracy for genomic predictions, thereby rendering the utilization of nonlinear
BayesR techniques for prediction or WGS genomic markers seemingly inconsequential [9].
However, Habier et al. [33] indicated that the efficacy of genomic prediction using GBLUP
with medium-density SNPs diminishes when more robust predictions are required, partic-
ularly for predicting the genetic merit of distantly-related animals, such as those in future
generations or from different breeds. They further reported the inferior predictive perfor-
mance of GBLUP over successive generations in comparison to BayesB [33]. Nevertheless,
our findings demonstrate the merits of employing nonlinear genomic prediction methods
for multi-breed predictions.

4.2. Effect of Using LD Information Weighted GRM on GEBV Accuracy

In our findings, it was observed that the prediction accuracy of GLD-GBLUP generally
slightly surpassed that of GUNW-GBLUP when employing both multi-breed and within-
breed strategies. The use of LD information in weighting GRMs can impact the accuracy
of GEBV [34]. LD-weighted matrices capture the non-uniform distribution of informative
markers across the genome, which is crucial for traits influenced by regions with high
LD. Such weighting schemes can enhance the prediction ability to capture the genetic
architecture of traits, thereby improving prediction accuracy. This approach is particularly
beneficial in populations with varying marker density and LD patterns, enabling more
precise estimation of genetic similarities and differences.

However, concurrently, certain articles present an alternative perspective. The study
conducted by Zhou et al. revealed that the inclusion of LD phase consistencies, marker
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effects, or a combination of both in the weighting of the G-matrices in Nordic Holstein
and Nordic Red cattle did not result in any notable improvement in the accuracies of the
two-breed predictions [17].

4.3. Influence of Genetic Correlation between Different Breeds on GEBV Accuracy

Variations in complex traits across populations can be attributed to disparities in
genetic and environmental factors [28]. In the current study, the application of LD phase
persistence in determining relationships among breeds demonstrated the impact of LD-
weighted GRMs on GEBV accuracy. This underscores the importance of considering LD
information in GRM construction, especially in multi-breed genomic selection scenar-
ios [25].

The examination of genetic correlations among populations offers valuable insight
into the variations in genetic architecture of traits across different populations [35]. This
is pivotal for genomic prediction strategies, as evidenced by Lund et al. and Brøndum
et al., who showed improved prediction accuracy using closely related breeds in reference
groups [3,35]. The study reiterates the necessity of considering genetic correlation and
relatedness between populations when transferring genomic information across breeds.
A diminished genetic correlation between populations suggests that causal loci exhibit
distinct effects and/or that diverse causal loci underlie the trait [28].

Furthermore, genetic correlations offer valuable insight into the feasibility of utilizing
data from multiple populations for the purpose of genomic prediction. In cases where
the genetic correlation is low, the efficacy of merging populations into a single training
population or incorporating information regarding the distribution of causal variants across
populations, as practiced in multi-task Bayesian models [36,37], is unlikely to enhance the
accuracy of estimated genetic values. This is primarily due to the expected dissimilarities
in effects and locations of causal loci.

To carry out genomic prediction across multiple populations, it is not necessary
to have a detailed and precise understanding of genetic (co)variances and correlations.
Thus, the precision of estimated genetic values remains fairly uniform across different
techniques for computing the GRM [38–40]. However, for forecasting accuracy in such
scenarios, it is crucial to have an accurate estimation of genetic correlations [41]. In academic
contexts, the amalgamation of populations is advantageous when the training population
for one of the groups is limited in size and there exists a substantial degree of genetic
relatedness and correlation between the populations. This circumstance is particularly
evident in the scenario of subpopulations originating from the same breed but residing in
disparate environments.

4.4. Impact of Marker Density on the Accuracy of Genomic Estimated Breeding Values

The study also addresses the influence of marker density on the accuracy of genomic
predictions, highlighting that increased marker density enhances GEBV accuracy both in
within- and multi-breed GS. This aligns with the understanding that higher marker density
captures more genetic variation, providing a more detailed genetic profile for selection.
This is particularly significant in multi-breed genomic selection contexts.

Irene et al. [15] demonstrated that the utilization of simulated data revealed superior
accuracy in the analysis of sequencing data compared to the analysis of HD SNP genotypes.
Specifically, the employment of WGS data conferred a significant advantage over the HD
dataset, thereby leading to higher accuracy in all scenarios involving sequencing data as
opposed to the HD dataset. The authors utilized authentic data to demonstrate that the
superiority of WGS over HD genotyping was significantly less pronounced in the Red
Holstein validation population compared to the Australian Red validation population. This
discrepancy can be attributed to the conservation of LD over shorter distances across breeds
compared to within breeds. Consequently, the utilization of sequencing data is believed to
offer advantages in multi-breed and across-breed prediction scenarios [42].



Genes 2024, 15, 253 10 of 12

There are two factors contributing to the enhanced accuracy achieved through the
utilization of sequencing data: firstly, it has the potential to encompass a greater extent of
genetic variability, and secondly, it can encompass QTLs with substantial effects in cases
where there is an absence of high-density SNPs in complete LD with said QTLs. Irene
et al. suggested that predictive models based on sequencing data should prioritize variants
that are in closer proximity to the QTL, or even coincide with the QTL itself, as this LD
is more effectively preserved in the validation population. Furthermore, the adoption of
sequencing data serves to mitigate the issue of missing heritability [15].

5. Conclusions

The research findings indicate that BayesR outperforms GBLUP in multi-breed ge-
nomic predictions, particularly for breeds with divergent genetic backgrounds. Enhanced
SNP marker density enhances the accuracy of these predictions. The study demonstrates
that incorporating genetic relationships into genomic prediction models enhances predic-
tion accuracy in cattle populations. Further investigation is warranted to refine genomic
prediction models and enhance breeding strategies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes15020253/s1, Figure S1. Plot of linkage disequilibrium (LD,
r2) against distance between SNPs in Huaxi cattle (HX), Chinese Wagyu cattle (WG), and Yunling
cattle (YL) genomes. Solid curves show the expected decay of LD in the genome-wide data, as well
as within and outside the divergence regions, estimated by nonlinear regression of r2. Figure S2.
Principal component analysis with first and second components (PCs) with the three different breeds.
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CNV Copy number variant
CR Call rate
EM Expectation-maximization
GBLUP Genome-enabled best linear unbiased prediction
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GRM Genomic relationship matrices
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HX Huaxi cattle
HW Hardy–Weinberg Equilibrium
LD Linkage disequilibrium
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MAF Minor allele frequencies
MCMC Markov chain Monte Carlo
PCV Phenotypic coefficient of variation
QTL Quantitative trait locus
SNP Single nucleotide polymorphism
SWT Slaughter weight
WG Chinese Wagyu cattle
WGS Whole-genome sequencing
YL Yunling cattle
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