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Abstract: Mercury (Hg) pollution not only poses a threat to the environment but also adversely
affects the growth and development of plants, with potential repercussions for animals and humans
through bioaccumulation in the food chain. Maize, a crucial source of food, industrial materials, and
livestock feed, requires special attention in understanding the genetic factors influencing mercury
accumulation. Developing maize varieties with low mercury accumulation is vital for both maize
production and human health. In this study, a comprehensive genome-wide association study
(GWAS) was conducted using an enlarged SNP panel comprising 1.25 million single nucleotide
polymorphisms (SNPs) in 230 maize inbred lines across three environments. The analysis identified
111 significant SNPs within 78 quantitative trait loci (QTL), involving 169 candidate genes under the Q
model. Compared to the previous study, the increased marker density and optimized statistical model
led to the discovery of 74 additional QTL, demonstrating improved statistical power. Gene ontology
(GO) enrichment analysis revealed that most genes participate in arsenate reduction and stress
responses. Notably, GRMZM2G440968, which has been reported in previous studies, is associated
with the significant SNP chr6.S_155668107 in axis tissue. It encodes a cysteine proteinase inhibitor,
implying its potential role in mitigating mercury toxicity by inhibiting cysteine. Haplotype analyses
provided further insights, indicating that lines carrying hap3 exhibited the lowest mercury content
compared to other haplotypes. In summary, our study significantly enhances the statistical power
of GWAS, identifying additional genes related to mercury accumulation and metabolism. These
findings offer valuable insights into unraveling the genetic basis of mercury content in maize and
contribute to the development of maize varieties with low mercury accumulation.

Keywords: mercury accumulation; maize tissue; genetic loci; genome-wide association analysis

1. Introduction

Mercury (Hg) pollution poses a significant threat to both the environment and plant
growth. Hg is highly toxic and can accumulate in the food chain through methylation,
bioaccumulation and biomagnification, potentially affecting animal and human health [1,2].
As a major source of food, industrial materials and livestock feed, maize plays a crucial
role in global food production and human well-being. However, increasing industrial
activities, automobile usage and pesticide applications have led to rising emissions of
Hg gas and particles into the atmosphere. This atmospheric Hg eventually contaminates
soil through deposition [3–5]. Maize cultivation on contaminated soils introduces risks,
as Hg can accumulate in plant tissues and enter the food chain [6]. Inside plants, Hg
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disrupts critical physiological processes like water and nutrient uptake, transpiration, and
photosynthesis. It also impairs enzyme activity, slowing growth and decreasing biomass
production, and can even cause mortality [7]. The adverse effects of Hg toxicity extend
to humans. Accumulation of Hg in vital organs such as the kidneys and central nervous
system has been linked to harmful impacts [1,8]. Understanding the genetic basis of Hg
accumulation in maize and developing varieties with reduced Hg uptake are essential
strategies for mitigating these threats to both plant and human health.

Recent years have seen a growth in genetic studies investigating Hg accumulation
mechanisms. For instance, quantitative trait locus mapping has identified regions associ-
ated with Hg tolerance in rice and maize [9,10]. Overexpression analyses have revealed
genes that enhance Hg accumulation and tolerance in plants like rice, Arabidopsis and
poplar [11–13]. These findings provide valuable insights but also highlight the complex-
ities of Hg accumulation in plants. Further genetic investigations are needed to better
understand this process. GWAS, utilizing linkage disequilibrium (LD), have emerged as
a powerful tool for dissecting genetic–phenotypic relationships. Compared to traditional
linkage mapping, GWAS allows the analysis of broader, more diverse populations with
higher marker densities, improving mapping resolution to the single-gene level [14]. Maize
is well suited for GWAS due to its rapid LD decay and abundant diversity [15,16]. The first
maize GWAS in 2007 examined 8590 loci in 553 elite maize inbred lines to identify genes
related to oleic acid content in maize kernels [17]. Subsequent studies have identified loci
impacting oil concentration or fatty acid composition in kernels and identified QTL related
to arsenic content in various maize tissues [16,18].

The statistical power of GWAS depends on various factors, including population
size, diversity, marker density, and the choice of statistical models. By optimizing these
aspects, more genetic determinants of target traits can be identified [19]. Studies have
demonstrated that analyzing large germplasm collections with high-density molecular
markers can successfully identify genetic loci [20]. Appropriate statistical models facilitate
a more comprehensive resolution of the genetic structure and relationships [21]. The GWAS
method SUPER augmented power through model optimization [22]. Enhancements in
sequencing depth and marker density facilitate improved genomic coverage, enabling
the identification of both genes and non-genetic contributions to traits [23]. Dissecting
additional maize traits using an enlarged panel revealed further loci [24]. Advancements
in sequencing technology, reduced costs, and continuous GWAS algorithm improvements
have made it an efficient approach for identifying genome–phenotype associations and
genetic bases of complex traits [25,26].

In this study, we re-conducted a GWAS to dissect the genetic basis of Hg content in five
tissues of the 230 maize inbred lines [27]. Our aim was to leverage an expanded SNP panel
and optimized statistical models to identify novel loci governing Hg levels in different
tissues, enhancing understanding of this complex trait. Overall, characterizing the genetic
basis of Hg accumulation in maize has important implications for breeding varieties with
reduced Hg uptake and enhancing food safety and human health.

2. Materials and Methods
2.1. Plant Materials and Field Trials

An association mapping panel (AMP) of 230 diverse maize inbred lines, encompass-
ing temperate, tropical, and subtropical backgrounds, was utilized. The panel consisted
of 151 inbred lines from temperate backgrounds and 79 from tropical/subtropical back-
grounds. In 2012, the AMP underwent cultivation at two distinct locations: Xixian (XX,
114◦72′ E, 32◦35′ N) and Changge (CG, 113◦34′ E, 34◦09′ N) are located in northern China.
XX experienced an average temperature of 15.2 ◦C and rainfall of 873.8 mm, while CG
had an average temperature of 14.3 ◦C and rainfall of 462.8 mm, following a randomized
complete block design with three replications. These locations were chosen specifically for
sampling and evaluating arsenic (As) and mercury (Hg) content. The AMP had previously
been employed in a GWAS study exploring the genetic basis of As and Hg accumula-
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tion in five maize tissues [27]. Notably, the soil at XX and CG exhibited Hg contents of
457.57 ± 31.30 µg kg−1 and 345.40 ± 22.24 µg kg−1 (pH 6.5), respectively. Detailed infor-
mation on maize inbred lines, trial specifics, and field management practices can be found
in a previous study (Supplementary Table S1, [27]).

2.2. Measurement of Hg Content

Hg content was collected from the kernel, axis, stem, bract, and leaf of the AMP at both
XX and CG locations. The phenotypic measurement, as described previously [27], utilized
the same dataset for the current GWAS. To facilitate the GWAS, each combination of tissue
(kernel, axis, stem, bract, and leaf) at each location (XX, CG, and BLUP) was treated as an
individual phenotypic variable. For instance, “Axis_CG” represents the Hg content in the
axis at the Changge location. In total, we obtained 15 phenotypic variables, including 10 for
the five tissues at XX and CG locations and 5 representing the BLUP value of each inbred
line across the two locations.

2.3. Genotype and GWAS

In this study, the AMP comprises 513 maize inbred lines extensively used in prior
studies [15]. To augment genotyping data, 556,809 SNPs (referred to as 0.55 M) with a
minor allele frequency (MAF) above 0.05 were derived from this set of 513 lines. This
dataset combines 56,110 SNPs from 513 lines and 1.03 million SNPs from 368 lines, a subset
of the 513 lines. The integration of these datasets used a two-step imputation method
based on identity by descent (IBD) and k-nearest neighbors (KNN) algorithms, as described
previously [24]. Notably, utilizing 0.55 M has demonstrated a significant enhancement in
statistical power in GWAS for traits such as oil concentration and tocopherol content when
compared to low-density markers like 56,110 SNPs [28]. Additionally, a second genotype
dataset, comprising 1.25 million SNPs (referred to as 1.25 M) with a MAF ≥ 0.05, was
obtained through an effective imputation method integrating data from four genotyping
platforms [29], including Illumina Maize SNP50 BeadChip [30], deep RNA-sequencing [31],
genotyping by sequencing (GBS) and Affymetrix Axiom Maize 600 K array [32]. This high-
density genotype dataset has been successfully used in previous GWAS studies elucidating
the genetic basis of traits such as oil concentration, amino acids, and arsenic content in
maize kernel and other tissues [18,33,34]. Both genotype datasets, 0.55 M and 1.25 M, were
employed in the subsequent GWAS analysis of the current study, and they are available at
http://www.maizego.org/Resources.html (accessed on 18 February 2024).

GWAS of the 15 variables in the 230 inbred lines underwent analysis in several steps:

(1) Multiple statistical models, namely 5PCs + K, Q, K, and Q + K, were employed.
The 5PCs + K model controls both the top five principal components (PCs) and the
kinship matrix, as used in the study by Zhao et al. [27]. The Q model controls only the
population structure, the K model solely controls the kinship matrix, and the Q + K
model controls both the population structure and the kinship matrix. These analyses
utilized the 0.55 M genotypic datasets, and the optimal statistical model was chosen
based on quantile–quantile (QQ) plots.

(2) GWAS results under 0.55 M were compared between 5PCs + K and the optimal
statistical model to assess whether changing the model could enhance the statistical
power of GWAS.

(3) Under the optimal statistical model, GWAS was conducted using an enlarged geno-
typic dataset (1.25 M). The results from GWAS with the 0.55 M and 1.25 M datasets
were compared to determine if increasing the marker density improved the statistical
power of the analysis.

(4) Finally, the GWAS results of the optimal statistical model under the enlarged 1.25 M
genotypic dataset were used for subsequent analysis. The effective marker number
(En) of the two genotypic datasets was calculated using GEC V1.0 software. The result
indicated that En was 490,548 for the 1.25 M dataset and 250,345 for the 0.55 M dataset.

http://www.maizego.org/Resources.html
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In addition, the software suggested a significance threshold of p ≤ (1/En), which was
used for the association analysis.

2.4. Candidate Gene Identification

In preceding studies, we employed a dataset of 1.25 million SNPs to investigate the
linkage disequilibrium decay among 500 maize inbred lines. The results revealed an LD
decay of approximately 30 kilobases (kb) with an R2 value of 0.1. Consequently, a 30 kb
interval around both the upstream and downstream regions of a significant SNP marker’s
physical position was defined as a locus. For gene identification within these identified loci
from GWAS, we utilized the B73 reference genome (RefGen_v2) and obtained the maize
whole-genome gene list from the Maize Genetics and Genomics Database (MaizeGDB,
http://www.maizegdb.org, accessed on 18 February 2024). This list was employed to
search for candidate genes within each significant locus. The selection of the most likely
candidate gene at each locus was based on functional annotations and expression profiles
of the genes in different tissues of the maize inbred line B73.

2.5. Analysis of Expression Level Association of Candidate Genes

In our study, we performed an analysis to explore the association between gene
expression levels and genetic variation (1.25 M) using expression data from kernels collected
15 days after pollination in the 368 maize inbred lines. This analysis aimed to identify
expression quantitative trait loci (eQTL), which are specific genetic loci associated with
variations in gene expression. To assess the significance of these associations, we applied a
stringent criterion, considering associations as significant only if they met the condition of
p < 1/En, where En represents the effective marker number. This criterion ensures that only
robust and biologically relevant associations between genetic variants (SNPs) and gene
expression levels are deemed significant eQTL.

2.6. Haplotype Analyses of Candidate Genes

Based on the study’s results, we performed a thorough screening of all single nucleotide
polymorphisms (SNPs) within candidate genes using genotype data. Haplotypes were
formed by combining best linear unbiased prediction (BLUP) values from the 230 inbred
lines. Specifically, haplotypes with representation by more than eight inbred lines were
systematically chosen, and their differences were rigorously examined through a t-test, with
a significance threshold set at p < 0.01. Additionally, we meticulously generated a heatmap
illustrating pairwise linkage disequilibrium using the “LDheatmap” package in the R 3.6.0
statistical software [35].

3. Results
3.1. Model Comparison and Selection

Previous research investigated the genetic factors influencing Hg content in various
maize tissues. However, limitations were identified in the statistical model used (5PCs + K),
which exhibited excessive conservatism, leading to reduced detection of true associations
(type II errors). Additionally, the significance threshold for declaring SNP-trait associations
was relatively lenient [36]. To address these limitations, we reanalyzed the Hg content
using different GWAS models and an enlarged SNP panel. We first analyzed the Hg
content using four statistical models (Q, K, Q + K, 5PCs + K) with 0.55 million SNPs.
Examination of quantile–quantile (QQ) plots revealed that the Q model consistently had
the best fit to the data (Figures 1 and S2). Comparing results from the Q and 5PCs + K
models affirmed the improved power of the Q model (Supplementary Figure S1). Using
a Bonferroni-corrected significance threshold (p ≤ 1/EN1, EN1 = 250,345), the Q model
identified 46 significant SNPs associated with 32 QTL, whereas 5PCs + K identified only
three QTL (all also detected by Q). Similarly, the Q model is also found to be superior to
other models at 1.25 M (Supplementary Figure S3).

http://www.maizegdb.org


Genes 2024, 15, 257 5 of 15

Genes 2024, 15, x FOR PEER REVIEW 5 of 15 
 

 

consistently had the best fit to the data (Figures 1 and S2). Comparing results from the Q 
and 5PCs + K models affirmed the improved power of the Q model (Supplementary Figure 
S1). Using a Bonferroni-corrected significance threshold (p ≤ 1/EN1, EN1 = 250,345), the Q 
model identified 46 significant SNPs associated with 32 QTL, whereas 5PCs + K identified 
only three QTL (all also detected by Q). Similarly, the Q model is also found to be superior 
to other models at 1.25 M (Supplementary Figure S3). 

 
Figure 1. Comparison of Quantile–Quantile (QQ) plots resulting from GWAS. QQ plots were 
generated based on 0.55 M SNPs using four models (Q, K, Q + K and 5PCs + K) for BLUP values of 
mercury content in maize axis, stem, bract, leaf, and kernel. 

3.2. Boosting GWAS Power through Increased Marker Density 
We then investigated whether increasing the marker density could further improve 
power. Re-running GWAS with 1.25 million SNPs under the Q model revealed more 
significant SNPs than with 0.55 million SNPs (Supplementary Figures S4 and S5). 
Specifically, 1.25 million SNPs identified 111 significant SNPs associated with 78 QTL at 
(p ≤ 1/EN2, EN2 = 490,548, Figure 2), versus 26 SNPs and 22 QTL with 0.55 million SNPs. 
These findings demonstrate that increasing the marker density augments GWAS power to 
discover novel trait-associated loci. 

Figure 1. Comparison of Quantile–Quantile (QQ) plots resulting from GWAS. QQ plots were
generated based on 0.55 M SNPs using four models (Q, K, Q + K and 5PCs + K) for BLUP values of
mercury content in maize axis, stem, bract, leaf, and kernel.

3.2. Boosting GWAS Power through Increased Marker Density

We then investigated whether increasing the marker density could further improve power.
Re-running GWAS with 1.25 million SNPs under the Q model revealed more significant SNPs
than with 0.55 million SNPs (Supplementary Figures S4 and S5). Specifically, 1.25 million SNPs
identified 111 significant SNPs associated with 78 QTL at (p ≤ 1/EN2, EN2 = 490,548, Figure 2),
versus 26 SNPs and 22 QTL with 0.55 million SNPs. These findings demonstrate that increasing
the marker density augments GWAS power to discover novel trait-associated loci.
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at p ≤ 2.0 × 10−6 (EN2 = 490,548), while the black locus corresponds to significance reported in a
previous study at p ≤ 1.0 × 10−4. The threshold lines are colored in red and green, respectively. The
ring represents CG, XX and BLUP from the inside out.

3.3. Significant Loci and Tissue-Specific Variability

To assess the impact of increased marker density on GWAS detection efficiency, we
conducted an analysis at a family-wise error rate of 0.05. In Dataset 1, we identified 24 non-
redundant QTL (p ≤ 4.0 × 10−6, EN1 = 250,345) and in Dataset 2, we identified 61 non-
redundant QTL (p ≤ 2.0 × 10−6, EN2 = 490,548). Only two loci were common between the
two datasets. When the p-value was set to p ≤ 4.0 × 10−6, consistent with Dataset 1, a total of
777 QTL were identified, including 24 non-redundant QTL from Dataset 1 (Figure 3).
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thresholds. Dataset 1 (D1) comprises 0.55 million SNPs, while Dataset 2 (D2) contains 1.25 million
SNPs. P1 and P2 represent the significance thresholds for p ≤ 1/NE, where NE is 250, 345 for D1 and
490, 548 for D2.

Expanding our analysis to different tissues revealed 111 SNP-trait associations across
78 loci categorized into 61 non-redundant QTL at a significance level of p ≤ 2.0 × 10−6

(Table S2). Within the CG environment, 50 SNPs involving 34 loci were identified, each
explaining phenotypic variation ranging from 8.38% to 24.30%. Notably, three significant
SNPs associated with axis tissue were discovered across three QTL, explaining phenotypic
variance ranging from 10.3% to 24.3%, with a mean of 16.8%. Similar findings were observed
for bract, kernel, leaf, and stem tissues. In the Xixian environment, 37 SNPs involving 25 loci
were identified, each explaining 8.47% to 24.71% of the phenotypic variation. For each
tissue, specific SNPs and QTL were discovered, contributing to our understanding of the
genetic basis of these traits. In the BLUP environment, 24 SNPs and 19 loci were identified,
each explaining 9.70% to 23.27% of the variance. Comprehensive analysis across distinct
tissues and locations enriched our understanding of the diverse landscape of significant
loci, highlighting the genetic contributions to these traits.

3.4. Colocalized Loci Identified across Various Tissues and Environments

Notably, we identified 15 non-redundant QTL encompassing 36 SNP-trait associations
consistently detected across tissues and environments (Figure 4). Particularly notewor-
thy were non-redundant QTL associated with stem tissue housing three QTL within a



Genes 2024, 15, 257 7 of 15

127.32~127.37 Mb interval on chromosome 10. These QTL were consistently identified in
all environments, explaining sizable phenotypic variations. Another non-redundant QTL
linked to axis tissue appeared in three environments within a 155.63~155.69 Mb region on
chromosome 6. The observed co-localization patterns indicate stability of these loci against
environmental influences.
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Figure 4. Chromosomal distribution of QTL for Hg content identified by GWAS. QTL positions and
significance (represented by circle size) across the maize genome are indicated by black circles. The
x axis displays physical positions across the maize genome in Mb. A heat map below the x axis
illustrates the density of QTL across the genome, with a window size of 10 Mb. Detailed information
on all detected QTL is provided in Table S2. Different traits are marked by distinct colors as shown
on the right.

3.5. Functional Analysis of Identified Genes

To pinpoint the most likely candidate gene and understand their molecular functions.
Subsequently, we conducted gene ontology (GO) analysis to reveal the functions served by
these genes (Figure 5). Our analysis revealed that these genes predominantly cluster around
essential molecular activities, including DNA binding, arsenate reductase (glutaredoxin)
activity, jasmonate-amino synthetase activity and other functions. This GO analysis pro-
vides valuable insights into the molecular functions of these genes, shedding light on their
involvement in the mechanisms of resistance to metal stress and significantly enhancing
our understanding of their contributions to plant biology.
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3.6. Candidate Gene Analysis

Our exploration into candidate genes within the co-located loci unveiled several note-
worthy findings (Table 1). For example, on chromosome 6, GRMZM2G440968 encodes a
cysteine proteinase inhibitor, which may alleviate mercury toxicity by inhibiting cysteine,
as indicated by its known role in detecting kidney damage [37,38]. Moving to chromosome
10, GRMZM2G005633 encodes Endochitinase B, a pivotal player in bacterial adaptation
to stresses, promoting plant growth and development [39]. GRMZM2G125991 encodes
endoglucanase 7-like, a cellulose-related enzyme potentially involved in responding to cop-
per pollution in willow roots, impacting cellulase content [40]. GRMZM2G125943 encodes
a histidine kinase, recognized for its pivotal role in plant stress and hormone regulation.
Previous studies have illuminated its involvement in responding to challenges such as cold
stress and Cordyceps sinensis mimicry [41,42]. An intriguing observation comes from a
locus (the peak SNP is chr5.S_2356674) on chromosome 5, exclusively detected in the XX en-
vironment, housing seven candidate genes. Notably, GRMZM2G002805, GRMZM2G144188
and GRMZM2G144172 within this locus encode zinc finger proteins, known to play a
role in alternative splicing under conditions of arsenic poisoning. Specifically, As3+ can
displace Zn2+ in ZRANB2, leading to structural changes affecting protein function. Studies
have also highlighted the impact of Hg (II) leading to structural changes affecting protein
function [43–46]. Subsequently, 19 candidate genes were identified in 9 QTL, involved in
protein synthesis and lipid metabolism. Further functional analysis, combining expression
GWAS with the expression levels of 16 genes and 1.25 M SNPs, revealed significant corre-
lations for all 16 genes (Table 1). Haplotype analysis of GRMZM2G440968 demonstrated
three haplotypes, with Hap3 exhibiting the lowest mercury content compared to other
haplotypes. LD analysis within one LD decay distance (±30 kb) upstream and downstream
of the lead SNP unveiled linkage relationships between them, emphasizing co-inheritance
and linkage on the genome (Figure 6). These findings provide valuable insights into the
genetic mechanisms underlying various physiological and metabolic processes in maize.
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Table 1. Candidate genes revealed by multiple locations.

ID a Chr. Position b Trait Location SNP p Value c R2 d Candidate Gene e Annotation Expressed or
Not f

Verified by
Expression GWAS g

1 4 167403585 Axis BLUP chr4.S_167403585 1.54 × 10−6 0.18 GRMZM2G125943 histidine kinase express Ture
GRMZM2G125991 endoglucanase 7-like express Ture

GRMZM2G029859
pentatricopeptide

repeat-containing protein
At3g16610

express Ture

2 4 167403585 Axis XX chr4.S_167403585 1.33 × 10−6 0.18 GRMZM2G125943 histidine kinase express Ture
GRMZM2G125991 endoglucanase 7-like express Ture

GRMZM2G029859
pentatricopeptide

repeat-containing protein
At3g16610

express Ture

3 5 2356674 Kernel XX chr5.S_2356674 1.31 × 10−6 0.10 GRMZM2G002825 actin-depolymerizing factor 3 express Ture
GRMZM2G002805 zinc finger protein ZAT5 express Ture
GRMZM2G002815 NA express Ture

GRMZM2G144188 dof zinc finger protein
DOF2.4-like not

GRMZM2G144172 dof zinc finger protein
DOF2.4-like express Ture

GRMZM2G003068 NA express Ture

GRMZM2G003108 CRAL/TRIO domain
containing protein express Ture

4 6 155668107 Axis BLUP chr6.S_155668107 2.82 × 10−8 0.13 GRMZM2G566873 NA not
GRMZM2G140805 NA not
GRMZM2G440949 dr1-associated corepressor express Ture
GRMZM2G440968 cystatin 3 express Ture

GRMZM2G140817 putative cytochrome P450
superfamily protein express Ture

5 6 155668107 Axis CG chr6.S_155668107 6.77 × 10−7 0.10 GRMZM2G566873 NA not
GRMZM2G140805 NA not
GRMZM2G440949 dr1-associated corepressor express Ture
GRMZM2G440968 cystatin 3 express Ture

GRMZM2G140817 putative cytochrome P450
superfamily protein express Ture

6 6 155668107 Axis XX chr6.S_155668107 1.46 × 10−8 0.13 GRMZM2G566873 NA not
GRMZM2G140805 NA not
GRMZM2G440949 dr1-associated corepressor express Ture
GRMZM2G440968 cystatin 3 express Ture

GRMZM2G140817 putative cytochrome P450
superfamily protein express Ture
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Table 1. Cont.

ID a Chr. Position b Trait Location SNP p Value c R2 d Candidate Gene e Annotation Expressed or
Not f

Verified by
Expression GWAS g

7 10 127359876 Stem BLUP chr10.S_127359876 8.01 × 10−9 0.23 GRMZM2G005633 Endochitinase B express Ture
GRMZM2G006428 NA express Ture

GRMZM2G006216
S-adenosyl-L-methionine-

dependent methyltransferase
superfamily protein

express Ture

GRMZM2G005939 NA express Ture
8 10 127359876 Stem CG chr10.S_127359876 1.11 × 10−6 0.17 GRMZM2G005633 Endochitinase B express Ture

GRMZM2G006428 NA express Ture

GRMZM2G006216
S-adenosyl-L-methionine-

dependent methyltransferase
superfamily protein

express Ture

GRMZM2G005939 NA express Ture
9 10 127359876 Stem XX chr10.S_127359876 5.81 × 10−9 0.24 GRMZM2G005633 Endochitinase B express Ture

GRMZM2G006428 NA express Ture

GRMZM2G006216
S-adenosyl-L-methionine-

dependent methyltransferase
superfamily protein

express Ture

GRMZM2G005939 NA express Ture

Notes: All QTL with overlapping QTL regions were categorized as a locus. a. ID of loci was numbered according to chromosome and position by an ascending order method; b. Physical
position of each SNP based on B73 RefGen_v2; c. p value of the corresponding trait calculated by Q model; d. The phenotypic variance explained by the corresponding locus; e. A
plausible biological candidate gene in the locus or the nearest annotated gene to the lead SNP. f. Whether the gene is expressed or not; g. validation of the correlation analysis of gene
expression level.
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4. Discussion

In plant GWAS studies, maximizing the statistical power is paramount. Different maize
traits have varying sensitivities to different statistical models, a phenomenon intricately
linked to population structure. Yang’s seminal work underscored the pivotal role of
selecting the most appropriate statistical model to augment GWAS statistical power [24].
Extending this line of inquiry, Zhao et al. conducted a GWAS study on arsenic content
across five maize tissues, meticulously assessing different statistical models to balance
minimizing false positives and optimizing analysis sensitivity. Their findings illuminated
that the K model and Q + K model exhibited excessive conservatism, potentially increasing
type II errors. In contrast, the Q model emerged as the optimal choice, effectively controlling
false positives while preserving power [18].

In the present study, we encountered a similar scenario where both the K model and
Q + K model demonstrated unwarranted stringency, while the Q model provided an ideal
balance. Therefore, we selected the Q model to investigate the genetic basis of Hg content
in five maize tissues. Using this model with 0.55 M SNPs, we identified more significant
SNPs and loci compared to the previous study. However, increasing marker density and
population size can further enhance GWAS power, as demonstrated by others [24,47]. To
explore this, we reanalyzed the data using 1.25 M SNPs under the Q model. Directly
comparing the results revealed substantial gains in power, with over double the number of
significant SNPs and loci detected. This increase derives from a richer representation of
the genome’s genetic variation, consistent with prior reports. Innovative statistical models
have also proven effective by optimizing genetic and pedigree relationships [48]. Thus,
both expanding genotype data and refining statistical models contribute synergistically to
the increased statistical power of GWAS.

Analysis of candidate genes revealed several with notable functions. For example,
GRMZM2G162413 plays a key role in resisting ear rot and temperature stress [49]. Another
significant candidate, GRMZM2G011520 encodes arsenate reductase critical for arsenic
detoxification [50]. GRMZM5G877941 links to growth inhibition and senescence under
methylglyoxal stress [51]. GRMZM2G150496 exhibits hypersensitivity to arsenate stress and
reduced uptake compared to wild-type [52]. The emerging candidate GRMZM2G440968
encodes a cysteine proteinase inhibitor that may alleviate mercury toxicity by inhibiting
cysteine, as indicated by its role in detecting kidney damage and ameliorating nephrotoxic-
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ity. We speculate that plants may undergo oxidative stress under mercury stress, leading
to the production of reactive oxygen species and causing damage to cellular components.
Cysteine proteinase inhibitors, by regulating the activity of cysteine proteinases, may help
modulate the plant’s response to oxidative stress and maintain cellular homeostasis under
mercury exposure (Supplementary Figure S6).

Mercury poisoning poses a substantial threat, with potential exposure pathways in-
cluding ingestion through the food chain or contact with mercury-containing air, water,
or specific occupational settings, leading to adverse effects on the nervous system [8].
Intriguingly, research indicates that even mercury levels below 50 µg/g in hair can pose
neurological risks, manifesting as sensory disturbances [53]. Furthermore, studies under-
score the neurobehavioral and neurochemical toxicity associated with prolonged low-dose
cinnabar (HgS) exposure, shedding light on the sedative and neurotoxic effects of this
mineral medicine [54]. The primary approach to mitigating mercury poisoning involves
chelation therapy, designed to enhance methylmercury excretion by forming complexes
with mercury ions. However, existing chelating agents have limitations, including reduced
therapeutic efficacy and the potential loss of essential elements like iron and calcium. Some
chelating agents may even exhibit toxicity [55,56]. Consequently, effective mercury poison-
ing treatment remains a formidable challenge. Amid these challenges, the cultivation of
mercury-tolerant maize emerges as a promising solution to address mercury poisoning.
Additionally, exploration of organic selenium compounds and thiourea resin has shown
promise in reducing methylmercury toxicity. However, these agents primarily focus on
excretion rather than tissue repair. Research has also spotlighted the beneficial effects of
natural plant extracts in mitigating the toxic impact of methylmercury and reducing metal
neurotoxicity. Notably, garlic’s mercaptans bind with methylmercury, reducing its toxicity.
Fisetin, derived from various fruits, effectively reduces brain methylmercury accumulation
and related toxicity. These findings open avenues for exploring natural substances in maize
with therapeutic potential against mercury poisoning [57,58].

5. Conclusions

In this study, we leveraged an enlarged SNP panel comprising 1.25 million SNPs and
improved statistical models to re-conduct a genome-wide association study of mercury
content in five tissues of 230 maize inbred lines. Compared to prior research utilizing lower-
density markers, our approach identified considerably more significant quantitative trait loci
associated with mercury accumulation. Specifically, we uncovered 74 additional QTL, for
a total of 169 candidate genes implicated in mercury content, of which 142 have annotated
functions. Notably, GRMZM2G440968, encoding a cysteine proteinase inhibitor, emerges
as a potential key regulator in alleviating mercury toxicity in plants. By inhibiting cysteine
proteinases, this gene may help mitigate the strong binding of mercury to cysteine thiolate
anions in vital enzymes. Haplotype analysis showed that lines containing haplotype 3
exhibited significantly lower mercury levels. Through enhanced marker density and improved
modeling, our research provides deeper insights into the genetic mechanisms underlying
mercury accumulation in maize. Ultimately, these findings are critical for developing maize
varieties with reduced mercury content, thereby contributing to broader efforts at ensuring
food safety and human health. In conclusion, we demonstrate that augmenting GWAS
approaches can uncover additional genetic factors influencing metal stress tolerance in plants.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/genes15020257/s1, Table S1. Pedigree information of the 230 inbred lines
used in this study. Table S2. List of candidate genes and their annotations. Figure S1. Comparison of
Manhattan plots resulting from GWAS, based on 0.55 M SNPs, using Q model and 5PCs + K model
for mercury content in maize axis, stem, bract, leaf, and kernel at BLUP environments. Figure S2.
Comparison of quantile–quantile (QQ) plots resulting from GWAS, based on 0.55 M SNPs, using three
models (Q, K, and Q + K) for mercury content in maize axis, stem, bract, leaf, and kernel in three
environments. Figure S3. Comparison of quantile–quantile (QQ) plots resulting from GWAS, based on
1.25 M SNPs, using three models (Q, K, and Q + K) for mercury content in maize axis, stem, bract, leaf,
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and kernel in three environments. Figure S4. Comparison of quantile–quantile (QQ) plots resulting from
GWAS, based on 0.55 M SNPs and 1.25 M SNPs, using Q model for mercury content in maize axis, stem,
bract, leaf, and kernel in three environments. Figure S5. Comparison of Manhattan plots resulting from
GWAS, based on 0.55 M SNPs and 1.25 M SNPs, using Q model for mercury content in maize axis, stem,
bract, leaf, and kernel in three environments. Figure S6. Schematic representation of GRMZM2G440968
modulating cysteine protease in response to oxidative stress.

Author Contributions: Z.F.; Methodology, Y.S. and J.H.S.; Software, J.Z. and X.J.; Investigation, W.L.,
H.D., Z.X. and L.S.; Data curation, X.Z.; Writing—original draft, J.G., J.L. and X.Z.; Writing—review
& editing, X.Z.; Project administration, X.Z. and J.T.; Funding acquisition, X.Z. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China
(32171980 to X.Z.); the project was funded by the China Postdoctoral Science Foundation (2020M682295
to X.Z.), the Henan Province Science and Technology Attack Project (232102110181 to X.Z.), the Henan
Provincial Higher Education Key Research Project (24B210003 to X.Z.), the First-class postdoctoral
research grant in Henan Province (202001032 to X.Z.), and the Research start-up fund to youth talents
of Henan Agricultural University (30500563 to X.Z.).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets supporting the conclusions of this article are included
within the article (and its supplementary files). Genotypic data could download from http://www.
maizego.org/Resources.html (accessed on 18 February 2024), and the phenotypic data could obtain
from reference [27] or be shared on reasonable request of the corresponding authors.

Acknowledgments: We thank the research group of Jianbing Yan at Huazhong Agricultural Univer-
sity for providing genotypic data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rahman, Z.; Singh, V.P. The relative impact of toxic heavy metals (THMs) (arsenic (As); cadmium (Cd); chromium (Cr)(VI);

mercury (Hg); and lead (Pb)) on the total environment: An overview. Environ. Monit. Assess. 2019, 191, 419. [CrossRef]
2. Shao, R.; Zhang, J.; Shi, W.; Wang, Y.; Tang, Y.; Liu, Z.; Sun, W.; Wang, H.; Guo, J.; Meng, Y.; et al. Mercury stress tolerance in

wheat and maize is achieved by lignin accumulation controlled by nitric oxide. Environ. Pollut. 2022, 307, 119488. [CrossRef]
3. Boerleider, R.Z.; Roeleveld, N.; Scheepers, P. Human biological monitoring of mercury for exposure assessment. AIMS Environ.

Sci. 2017, 4, 251–276. [CrossRef]
4. Wang, C.; Wang, Z.; Gao, Y.; Zhang, X. Planular-vertical distribution and pollution characteristics of cropland soil Hg and the

estimated soil-air exchange fluxes of gaseous Hg over croplands in northern China. Environ. Res. 2021, 195, 110810. [CrossRef]
5. Zhang, L.; Wong, M.H. Environmental mercury contamination in China: Sources and impacts. Environ. Int. 2017, 33, 108–121.

[CrossRef]
6. Sun, T.; Wang, Z.; Zhang, X.; Niu, Z.; Chen, J. Influences of high-level atmospheric gaseous elemental mercury on methylmercury

accumulation in maize (Zea mays L.). Environ. Pollut. 2020, 265 Pt B, 114890. [CrossRef]
7. Liu, S.; Wang, X.; Guo, G.; Yan, Z. Status and environmental management of soil mercury pollution in China: A review. J. Environ.

Manag. 2021, 277, 111442. [CrossRef]
8. Rocha, J.; Aschner, M.; Dorea, J.G.; Ceccatelli, S.; Farina, M.; Silveira, L. Mercury toxicity. J. Biomed. Biotechnol. 2012, 2012, 831890.

[CrossRef]
9. Wang, C.; Wang, T.; Mu, P.; Li, Z.; Yang, L. Quantitative Trait Loci for Mercury Tolerance in Rice Seedlings. Rice Sci. 2013,

20, 238–242. [CrossRef]
10. Fu, Z.; Li, W.; Zhang, Q.; Wang, L.; Zhang, X.; Song, G.; Fu, Z.; Ding, D.; Liu, Z.; Tang, J. Quantitative trait loci for mercury

accumulation in maize (Zea mays L.) identified using a RIL population. PLoS ONE 2014, 9, e107243. [CrossRef]
11. Hu, T.; Liu, Y.; Zhu, S.; Qin, J.; Li, W.; Zhou, N. Overexpression of OsLea14-A improves the tolerance of rice and increases Hg

accumulation under diverse stresses. Environ. Sci. Pollut. Res. Int. 2019, 26, 10537–10551. [CrossRef]
12. Sun, L.; Ma, Y.; Wang, H.; Huang, W.; Wang, X.; Han, L.; Sun, W.; Han, E.; Wang, B. Overexpression of PtABCC1 contributes to

mercury tolerance and accumulation in Arabidopsis and poplar. Biochem. Biophys. Res. Commun. 2018, 497, 997–1002. [CrossRef]
13. Xu, S.; Sun, B.; Wang, R.; He, J.; Xia, B.; Xue, Y.; Wang, R. Overexpression of a bacterial mercury transporter MerT in Arabidopsis

enhances mercury tolerance. Biochem. Biophys. Res. Commun. 2017, 490, 528–534. [CrossRef]
14. Yu, J.; Buckler, E.S. Genetic association mapping and genome organization of maize. Curr. Opin. Biotechnol. 2006, 17, 155–160.

[CrossRef] [PubMed]

http://www.maizego.org/Resources.html
http://www.maizego.org/Resources.html
https://doi.org/10.1007/s10661-019-7528-7
https://doi.org/10.1016/j.envpol.2022.119488
https://doi.org/10.3934/environsci.2017.2.251
https://doi.org/10.1016/j.envres.2021.110810
https://doi.org/10.1016/j.envint.2006.06.022
https://doi.org/10.1016/j.envpol.2020.114890
https://doi.org/10.1016/j.jenvman.2020.111442
https://doi.org/10.1155/2012/831890
https://doi.org/10.1016/S1672-6308(13)60124-9
https://doi.org/10.1371/journal.pone.0107243
https://doi.org/10.1007/s11356-019-04464-z
https://doi.org/10.1016/j.bbrc.2018.02.133
https://doi.org/10.1016/j.bbrc.2017.06.073
https://doi.org/10.1016/j.copbio.2006.02.003
https://www.ncbi.nlm.nih.gov/pubmed/16504497


Genes 2024, 15, 257 14 of 15

15. Xiao, Y.; Liu, H.; Wu, L.; Warburton, M.; Yan, J. Genome-wide Association Studies in Maize: Praise and Stargaze. Mol. Plant 2017,
10, 359–374. [CrossRef] [PubMed]

16. Li, H.; Peng, Z.; Yang, X.; Wang, W.; Fu, J.; Wang, J.; Han, Y.; Chai, Y.; Guo, T.; Yang, N.; et al. Genome-wide association study
dissects the genetic architecture of oil biosynthesis in maize kernels. Nat. Genet. 2013, 45, 43–50. [CrossRef] [PubMed]

17. Beló, A.; Zheng, P.; Luck, S.; Shen, B.; Meyer, D.J.; Li, B.; Tingey, S.; Rafalski, A. Whole genome scan detects an allelic variant of
fad2 associated with increased oleic acid levels in maize. Mol. Genet. Genom. 2008, 279, 1–10. [CrossRef]

18. Zhao, Z.; Zhang, H.; Fu, Z.; Chen, H.; Lin, Y.; Yan, P.; Li, W.; Xie, H.; Guo, Z.; Zhang, X.; et al. Genetic-based dissection of arsenic
accumulation in maize using a genome-wide association analysis method. Plant Biotechnol. J. 2018, 16, 1085–1093. [CrossRef]

19. Korte, A.; Farlow, A. The advantages and limitations of trait analysis with GWAS: A review. Plant Methods 2013, 9, 29. [CrossRef]
20. Huang, X.; Zhao, Y.; Wei, X.; Li, C.; Wang, A.; Zhao, Q.; Li, W.; Guo, Y.; Deng, L.; Zhu, C.; et al. Genome-wide association study of

flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat. Genet. 2011, 44, 32–39. [CrossRef]
21. Wang, S.B.; Feng, J.Y.; Ren, W.L.; Huang, B.; Zhou, L.; Wen, Y.J.; Zhang, J.; Dunwell, J.M.; Xu, S.; Zhang, Y.M. Improving power

and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Sci. Rep. 2016, 6, 19444.
[CrossRef]

22. Wang, Q.; Tian, F.; Pan, Y.; Buckler, E.S.; Zhang, Z. A SUPER powerful method for genome wide association study. PLoS ONE
2014, 9, e107684. [CrossRef]

23. Li, X.; Zhu, C.; Yeh, C.T.; Wu, W.; Takacs, E.M.; Petsch, K.A.; Tian, F.; Bai, G.; Buckler, E.S.; Muehlbauer, G.J.; et al. Genic and
nongenic contributions to natural variation of quantitative traits in maize. Genome Res. 2012, 22, 2436–2444. [CrossRef]

24. Yang, N.; Lu, Y.; Yang, X.; Huang, J.; Zhou, Y.; Ali, F.; Wen, W.; Liu, J.; Li, J.; Yan, J. Genome wide association studies using a new
nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genet.
2014, 10, e1004573. [CrossRef]

25. Tian, F.; Bradbury, P.; Brown, P.; Hung, H.; Sun, Q.; Flint-Garcia, S.; Rocheford, T.R.; McMullen, M.D.; Holland, J.B.; Buckler,
E.S. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat. Genet. 2011,
43, 159–162. [CrossRef] [PubMed]

26. Zhao, K.; Tung, C.W.; Eizenga, G.C.; Wright, M.H.; Ali, M.L.; Price, A.H.; Norton, G.J.; Islam, M.R.; Reynolds, A.; Mezey, J.; et al.
Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat. Commun. 2011, 2, 467.
[CrossRef] [PubMed]

27. Zhao, Z.; Fu, Z.; Lin, Y.; Chen, H.; Liu, K.; Xing, X.; Liu, Z.; Li, W.; Tang, J. Genome-wide association analysis identifies loci
governing mercury accumulation in maize. Sci. Rep. 2017, 7, 247. [CrossRef] [PubMed]

28. Wang, H.; Xu, S.; Fan, Y.; Liu, N.; Zhan, W.; Liu, H.; Xiao, Y.; Li, K.; Pan, Q.; Li, W.; et al. Beyond pathways: Genetic dissection
of tocopherol content in maize kernels by combining linkage and association analyses. Plant Biotechnol. J. 2018, 16, 1464–1475.
[CrossRef]

29. Liu, H.; Luo, X.; Niu, L.; Xiao, Y.; Chen, L.; Liu, J.; Wang, X.; Jin, M.; Li, W.; Zhang, Q.; et al. Distant eQTLs and Non-coding
Sequences Play Critical Roles in Regulating Gene Expression and Quantitative Trait Variation in Maize. Mol. Plant 2017,
10, 414–426. [CrossRef]

30. Li, Q.; Yang, X.; Xu, S.; Cai, Y.; Zhang, D.; Han, Y.; Li, L.; Zhang, Z.; Gao, S.; Li, J.; et al. Genome-wide association studies identified
three independent polymorphisms associated with alpha-tocopherol content in maize kernels. PLoS ONE 2012, 7, e36807.

31. Fu, J.; Cheng, Y.; Linghu, J.; Yang, X.; Kang, L.; Zhang, Z.; Zhang, J.; He, C.; Du, X.; Peng, Z.; et al. RNA sequencing reveals the
complex regulatory network in the maize kernel. Nat. Commun. 2013, 4, 2832. [CrossRef] [PubMed]

32. Elshire, R.; Glaubitz, J.; Sun, Q.; Poland, J.; Kawamoto, K.; Buckler, E.; Mitchell, S. A robust; simple genotyping-by-sequencing
(GBS) approach for high diversity species. PLoS ONE 2011, 6, e19379. [CrossRef]

33. Deng, M.; Li, D.; Luo, J.; Xiao, Y.; Liu, H.; Pan, Q.; Zhang, X.; Jin, M.; Zhao, M.; Yan, J. The genetic architecture of amino acids
dissection by association and linkage analysis in maize. Plant Biotechnol. J. 2017, 15, 1250–1263. [CrossRef]

34. Liu, H.; Wang, X.; Warburton, M.L.; Wen, W.; Jin, M.; Deng, M.; Liu, J.; Tong, H.; Pan, Q.; Yang, X.; et al. Genomic; Transcriptomic;
and Phenomic Variation Reveals the Complex Adaptation of Modern Maize Breeding. Mol. Plant 2015, 8, 871–884. [CrossRef]
[PubMed]

35. Liu, B.; Zhang, B.; Yang, Z.; Liu, Y.; Yang, S.; Shi, Y.; Jiang, C.; Qin, F. Manipulating ZmEXPA4 expression ameliorates the
drought-induced prolonged anthesis and silking interval in maize. Plant Cell 2021, 33, 2058–2071. [CrossRef]

36. Huang, X.; Wei, X.; Sang, T.; Zhao, Q.; Feng, Q.; Zhao, Y.; Li, C.; Zhu, C.; Lu, T.; Zhang, Z.; et al. Genome-wide association studies
of 14 agronomic traits in rice landraces. Nat. Genet. 2010, 42, 961–967. [CrossRef]

37. Khorchid, A.; Ikura, M. Bacterial histidine kinase as signal sensor and transducer. Int. J. Biochem. Cell Biol. 2006, 38, 307–312.
[CrossRef]

38. Yu, X.; Meng, X.; Xu, M.; Zhang, X.; Zhang, Y.; Ding, G.; Huang, S.; Zhang, A.; Jia, Z. Celastrol ameliorates cisplatin nephrotoxicity
by inhibiting NF-kappaB and improving mitochondrial function. EBioMedicine 2018, 36, 266–280. [CrossRef]

39. Stratton, A.; Ericksen, M.; Harris, T.V.; Symmonds, N.; Silverstein, T.P. Mercury(II) binds to both of chymotrypsin’s histidines,
causing inhibition followed by irreversible denaturation/aggregation. Protein Sci. 2017, 26, 292–305. [CrossRef]

40. Cao, Y.; Ma, C.; Chen, H.; Chen, G.; White, J.C.; Xing, B. Copper stress in flooded soil: Impact on enzyme activities; microbial
community composition and diversity in the rhizosphere of Salix integra. Sci. Total Environ. 2020, 704, 135350. [CrossRef]
[PubMed]

https://doi.org/10.1016/j.molp.2016.12.008
https://www.ncbi.nlm.nih.gov/pubmed/28039028
https://doi.org/10.1038/ng.2484
https://www.ncbi.nlm.nih.gov/pubmed/23242369
https://doi.org/10.1007/s00438-007-0289-y
https://doi.org/10.1111/pbi.12853
https://doi.org/10.1186/1746-4811-9-29
https://doi.org/10.1038/ng.1018
https://doi.org/10.1038/srep19444
https://doi.org/10.1371/journal.pone.0107684
https://doi.org/10.1101/gr.140277.112
https://doi.org/10.1371/journal.pgen.1004573
https://doi.org/10.1038/ng.746
https://www.ncbi.nlm.nih.gov/pubmed/21217756
https://doi.org/10.1038/ncomms1467
https://www.ncbi.nlm.nih.gov/pubmed/21915109
https://doi.org/10.1038/s41598-017-00189-6
https://www.ncbi.nlm.nih.gov/pubmed/28325924
https://doi.org/10.1111/pbi.12889
https://doi.org/10.1016/j.molp.2016.06.016
https://doi.org/10.1038/ncomms3832
https://www.ncbi.nlm.nih.gov/pubmed/24343161
https://doi.org/10.1371/journal.pone.0019379
https://doi.org/10.1111/pbi.12712
https://doi.org/10.1016/j.molp.2015.01.016
https://www.ncbi.nlm.nih.gov/pubmed/25620769
https://doi.org/10.1093/plcell/koab083
https://doi.org/10.1038/ng.695
https://doi.org/10.1016/j.biocel.2005.08.018
https://doi.org/10.1016/j.ebiom.2018.09.031
https://doi.org/10.1002/pro.3082
https://doi.org/10.1016/j.scitotenv.2019.135350
https://www.ncbi.nlm.nih.gov/pubmed/31822423


Genes 2024, 15, 257 15 of 15

41. Liu, Y.N.; Liu, B.Y.; Ma, Y.C.; Yang, H.L.; Liu, G.Q. Analysis of reference genes stability and histidine kinase expression under
cold stress in Cordyceps militaris. PLoS ONE 2020, 15, e0236898. [CrossRef] [PubMed]

42. Kumar, M.; Verslues, P. Stress physiology functions of the Arabidopsis histidine kinase cytokinin receptors. Physiol. Plant 2015,
154, 369–380. [CrossRef]

43. Abbehausen, C. Zinc finger domains as therapeutic targets for metal-based compounds—An update. Metallomics 2019, 11, 15–28.
[CrossRef]

44. Banerjee, M.; Ferragut Cardoso, A.P.; Lykoudi, A.; Wilkey, D.W.; Pan, J.; Watson, W.H.; Garbett, N.C.; Rai, S.N.; Merchant, M.L.;
States, J.C. Arsenite Exposure Displaces Zinc from ZRANB2 Leading to Altered Splicing. Chem. Res. Toxicol. 2020, 33, 1403–1417.
[CrossRef]

45. Razmiafshari, M.; Kao, J.; d’Avignon, A.; Zawia, N.H. NMR identification of heavy metal-binding sites in a synthetic zinc finger
peptide: Toxicological implications for the interactions of xenobiotic metals with zinc finger proteins. Toxicol. Appl. Pharmacol.
2001, 172, 1–10. [CrossRef]

46. Sivo, V.; D’Abrosca, G.; Baglivo, I.; Iacovino, R.; Pedone, P.V.; Fattorusso, R.; Russo, L.; Malgieri, G.; Isernia, C. Ni(II); Hg(II); and
Pb(II) Coordination in the Prokaryotic Zinc-Finger Ros87. Inorg. Chem. 2019, 58, 1067–1080. [CrossRef]

47. Zhang, X.; Warburton, M.L.; Setter, T.; Liu, H.; Xue, Y.; Yang, N.; Yan, J.; Xiao, Y. Genome-wide association studies of drought-
related metabolic changes in maize using an enlarged SNP panel. Theor. Appl. Genet. 2016, 129, 1449–1463. [CrossRef]

48. Tibbs Cortes, L.; Zhang, Z.; Yu, J. Status and prospects of genome-wide association studies in plants. Plant Genome 2021, 14, e20077.
[CrossRef]

49. Liao, X.; Sun, J.; Li, Q.; Ding, W.; Zhao, B.; Wang, B.; Zhou, S.; Wang, H. ZmSIZ1a and ZmSIZ1b play an indispensable role in
resistance against Fusarium ear rot in maize. Mol. Plant Pathol. 2023, 24, 711–724. [CrossRef]

50. Kumari, N.; Jagadevan, S. Genetic identification of arsenate reductase and arsenite oxidase in redox transformations carried out
by arsenic metabolising prokaryotes—A comprehensive review. Chemosphere 2016, 163, 400–412. [CrossRef]

51. An, B.; Lan, J.; Deng, X.; Chen, S.; Ouyang, C.; Shi, H.; Yang, J.; Li, Y. Silencing of D-Lactate Dehydrogenase Impedes Glyoxalase
System and Leads to Methylglyoxal Accumulation and Growth Inhibition in Rice. Front. Plant Sci. 2017, 8, 2071. [CrossRef]

52. Sun, Y.; Xu, W.; Wu, L.; Wang, R.; He, Z.; Ma, M. An Arabidopsis mutant of inositol pentakisphosphate 2-kinase AtIPK1 displays
reduced arsenate tolerance. Plant Cell Environ. 2016, 39, 416–426. [CrossRef]

53. Maruyama, K.; Yorifuji, T.; Tsuda, T.; Sekikawa, T.; Nakadaira, H.; Saito, H. Methyl mercury exposure at Niigata; Japan: Results of
neurological examinations of 103 adults. J. Biomed. Biotechnol. 2012, 2012, 635075. [CrossRef]

54. Huang, C.; Liu, S.; Lin-Shiau, S. Neurotoxicological effects of cinnabar (a Chinese mineral medicine; HgS) in mice. Toxicol. Appl.
Pharmacol. 2007, 224, 192–201. [CrossRef]

55. Canabady-Rochelle, L.L.; Harscoat-Schiavo, C.; Kessler, V.; Aymes, A.; Fournier, F.; Girardet, J.M. Determination of reducing
power and metal chelating ability of antioxidant peptides: Revisited methods. Food Chem. 2015, 183, 129–135. [CrossRef]

56. Torres-Fuentes, C.; Alaiz, M.; Vioque, J. Iron-chelating activity of chickpea protein hydrolysate peptides. Food Chem. 2012, 134,
1585–1588. [CrossRef]

57. Chang, J.; Zhou, Y.; Wang, Q.; Aschner, M.; Lu, R. Plant components can reduce methylmercury toxication: A mini-review.
Biochim. Biophys. Acta Gen. Subj. 2019, 1863, 129290. [CrossRef]

58. Li, Y.; Takada, M.; Mizuno, N. Premotor neurons projecting simultaneously to two orofacial motor nuclei by sending their
branched axons. A study with a fluorescent retrograde double-labeling technique in the rat. Neurosci. Lett. 1993, 152, 29–32.
[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1371/journal.pone.0236898
https://www.ncbi.nlm.nih.gov/pubmed/32785280
https://doi.org/10.1111/ppl.12290
https://doi.org/10.1039/C8MT00262B
https://doi.org/10.1021/acs.chemrestox.9b00515
https://doi.org/10.1006/taap.2001.9132
https://doi.org/10.1021/acs.inorgchem.8b02201
https://doi.org/10.1007/s00122-016-2716-0
https://doi.org/10.1002/tpg2.20077
https://doi.org/10.1111/mpp.13297
https://doi.org/10.1016/j.chemosphere.2016.08.044
https://doi.org/10.3389/fpls.2017.02071
https://doi.org/10.1111/pce.12623
https://doi.org/10.1155/2012/635075
https://doi.org/10.1016/j.taap.2007.07.003
https://doi.org/10.1016/j.foodchem.2015.02.147
https://doi.org/10.1016/j.foodchem.2012.03.112
https://doi.org/10.1016/j.bbagen.2019.01.012
https://doi.org/10.1016/0304-3940(93)90475-Z
https://www.ncbi.nlm.nih.gov/pubmed/7685867

	Introduction 
	Materials and Methods 
	Plant Materials and Field Trials 
	Measurement of Hg Content 
	Genotype and GWAS 
	Candidate Gene Identification 
	Analysis of Expression Level Association of Candidate Genes 
	Haplotype Analyses of Candidate Genes 

	Results 
	Model Comparison and Selection 
	Boosting GWAS Power through Increased Marker Density 
	Significant Loci and Tissue-Specific Variability 
	Colocalized Loci Identified across Various Tissues and Environments 
	Functional Analysis of Identified Genes 
	Candidate Gene Analysis 

	Discussion 
	Conclusions 
	References

