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Abstract: Corylopsis Siebold & Zucc. (Hamamelidaceae) is widely used as a horticultural plant and
comprises approximately 25 species in East Asia. Molecular research is essential to distinguish
Corylopsis species, which are morphologically similar. Molecular research has been conducted using a
small number of genes but not in Corylopsis. Plastid genomes of Corylopsis species (Corylopsis gotoana,
Corylopsis pauciflora, and Corylopsis sinensis) were sequenced using next-generation sequencing tech-
niques. Repeats and nucleotide diversity that could be used as DNA markers were also investigated.
A phylogenetic investigation was carried out using 79 protein-coding genes to infer the evolutionary
relationships within the genus Corylopsis. By including new plastomes, the overall plastid genome
structure of Corylopsis was similar. Simple sequence repeats of 73–106 SSRs were identified in the
protein-coding genes of the plastid genomes, and 33–40 long repeat sequences were identified in the
plastomes. The Pi value of the rpl33_rps18 region, an intergenic spacer, was the highest. Phylogenetic
analysis demonstrated that Corylopsis is a monophyletic group and Loropetalum is closely related to
Corylopsis. C. pauciflora, C. gotoana, and C. spicata formed a clade distributed in Japan, whereas C.
sinensis, C. glandulifera, and C. velutina formed a clade that was distributed in China.

Keywords: Corylopsis; plastid; phylogenetic analysis

1. Introduction

The genus Corylopsis Siebold & Zucc. (Hamamelidaceae), commonly known as winter
haze, comprises approximately 25 species of shrubs and small trees. This genus is restricted
to the Northern Hemisphere, and many are found in East Asia, including Republic of
Korea, Japan, China, and Taiwan [1]. Corylopsis has the following common morphological
characteristics: deciduous shrubs with stellate pubescent branches; petiolate leaves, mem-
branous or leathery blades, ovate to orbicular, margin serrate, raceme inflorescence, usually
blooming before leaves; sepals 5, persistent or deciduous; petals 5 (rarely 4), yellow, ovate
to spathulate [1,2]. Corylopsis species are commonly used as ornamental plants because
of their attractive, yellow-flowered racemes in early spring [3]. In addition, it is used as
a medicinal material; for example, C. coreana decreases the factor-induced generation of
reactive oxygen species, and C. sinensis contains bergenin, which is a traditional Chinese
medicinal material [3–6].

The classification of Corylopsis is controversial among botanists. In 1930, Harms
suggested the intrageneric classification of the genus Corylopsis for the first time [1]. He
divided the genus into five sections (Henryanae, Multiflorae, Pauciflorae, Spicatae, and
Manipurenses) based on morphological characteristics, such as whether the ovary and
hypanthium are fused, petal number, and nectary shape and number [1]. However, a
heterogeneous section existed because the relationships between Corylopsis species that
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were more phenotypically similar could not be identified. Morley and Chao [1] explained
that Corylopsis was divided into two groups, the Himalayan and Chinese, which were
subdivided into continental and offshore groups. Furthermore, they provided a description,
a new classification, and, by extension, a key to Corylopsis. In 2008, Yamanaka et al. [7]
described the morphological characteristics of four species of Corylopsis distributed in Japan.
The suggested morphological traits included leaf blades, inflorescences, stamens, stigmas,
and staminodes. The identification of target species formed through morphological traits is
often difficult, and recent phylogenetic analyses using molecular data, especially plastid
genomes, are in progress [8–12].

Plastids, which are semi-autonomous organelles in plants, participate in the pro-
cesses of photosynthesis and biosynthesis and range in size from 120 to 160 kb in general
land plants [13–15]. The typical structure of the plastid genome consists of four parts
in which two inverted repeats (IRs) divide the boundary between the large single-copy
(LSC) and small single-copy (SSC) regions. Due to the high conservation of plastid protein-
coding gene composition, reconstructing phylogenetic relationships among taxa is essen-
tial [16–18]. Furthermore, it is useful for inferring biogeography, molecular evolution,
and age estimation [19,20]. With the development of next-generation sequencing (NGS),
genomic data can be obtained quickly and easily. Consequently, more genes can be used
for phylogenetic analysis, and the relationships between taxa can be reconstructed through
high-resolution analysis.

As the morphological characteristics of Corylopsis species are similar and difficult
to distinguish, molecular phylogenetic studies on this genus are necessary. Although
Wang et al. [3] reconstructed the phylogenetic relationships of Hamamelidaceae using the
plastid genome, the detailed phylogenetic relationships within the genus Corylopsis are
unknown. Currently, the plastomes of seven species in the genus Corylopsis are registered
in GenBank [3,21–25]. In this study, we aimed to (1) construct an unknown plastid genome
of three species of Corylopsis to identify the phylogenetic relationships within Hamameli-
daceae, (2) investigate repeats to propose DNA markers, and (3) perform a comparative
examination of the plastid genome of Corylopsis and assess the phylogenetic associations.

2. Materials and Methods
2.1. Plant Material and DNA Extraction

Fresh leaves of C. gotoana, C. pauciflora, and C. sinensis were collected from fields
in Japan, the Republic of Korea, and China (Table S1). All voucher specimens were de-
posited in the Herbarium of Korea National Arboretum with the collection numbers coryJ4
(C. gotoana), ESK22-086 (C. pauciflora), and coryc-2 (C. sinensis). After the leaves were dried
with silica gel, the total genomic DNAs were extracted using a DNeasy Plant Mini Kit
(Qiagen Inc., Valencia, CA, USA).

2.2. Genome Assembly and Annotation

A DNA library with an insert size of 550 bp was prepared, and next-generation
sequencing (NGS) was performed using the Illumina MiSeq sequencing system at Macrogen
Inc. (Seoul, Republic of Korea). Total raw reads were imported and trimmed with a 2% error
probability limitation using Geneious Prime ver. 2019.0.4 to remove poor-quality reads [26].
The processed reads were assembled through ‘map to reference’ with C. coreana (GenBank
accession no. NC_040141), which was used as a reference. Reads that were assembled into
the reference genome were subjected to De novo assembly to create a scaffold contig. De
novo assembly was conducted to reassemble the contigs using Geneious Prime [26]. The
gene content and order were annotated using the Geseq tool and Geneious Prime [26,27].

2.3. Comparative Plastid Genome Analysis of Corylopsis

Ten plastid genomes of Corylopsis, three plastid genomes produced in this study, and
seven plastid genomes provided by GenBank were compared. Using Geneious Prime
ver. 2019.0.4, the GC content was calculated and compared. The mVISTA program in
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LAGAN mode was employed to analyze the entire plastome sequences of Corylopsis, with
the annotation of C. coreana (GenBank accession no. NC_040141.1) as the reference [28,29].
IRscope was used to compare and illustrate the boundaries of inverted repeat (IR) and single
copy (SC) sequences for Corylopsis species [30]. Relative synonymous codon usage (RSCU)
for the CDS of the 10 Corylopsis cp genomes was calculated using DAMBE v 7.3.32 [31].
When RSCU > 1, this codon is used at higher frequencies than expected, and RSCU < 1
indicates the opposite. In addition, only genes in the IRA that were repeated in the IR
regions were used.

2.4. Repeats and Nucleotide Diversity Analysis

Simple sequence repeats (SSRs) within Corylopsis were identified using MicroSAtellite
ver. 2.1 (MISA). [32,33]. For MISA, we set the following parameters: ten for mononu-
cleotides, five for dinucleotides, four for trinucleotides, and three for tetra-, penta-, and
hexanucleotide SSR motifs. Long repeat analysis was conducted using the REPuter software
with the following parameters: a minimal repeat size of 30 bp and a Hamming distance of
3 [34]. The nucleotide diversity (Pi) of cp genomes was examined using the DnaSP v. 6.0
program, which analyzed aligned sequences from 10 Corylopsis plastid genomes [35,36]. Pi
values were calculated using a window length of 100 bp and a step size of 25 bp.

2.5. Phylogenetic Analyses

To investigate the phylogenetic relationships within Corylopsis, including the three
newly sequenced plastid genomes, 20 cp genome sequences were obtained from NCBI.
Liquidambar styraciflua (GenBank accession No. NC_046938) and Liquidambar orientalis
(GenBank accession no. NC_046937) were designated as the outgroups. For phylogenetic
analysis, 79 protein-coding genes were extracted and aligned using MAFFT ver. 7.313
with the default alignment parameters of the Phylosuite ver. 1.2.2 program [35,37]. The
gaps present in the data were considered as missing values. Maximum parsimony (MP),
maximum likelihood (ML), and Bayesian inference (BI) methods were used to analyze
phylogenetic relationships. The MP analysis was performed using PAUP* v4.0a with
equally weighted and unordered characters [38]. A heuristic search was employed to select
the most parsimonious trees, which involved branch-swapping, tree bisection-reconnection
(TBR), and MulTrees, allowing ten trees to be retained at each step. Bootstrap analyses
comprising 1000 pseudoreplicates were performed to determine individual support values
for each clade.

ModelFinder was used to determine the best model for ML and BI analyses. The
best model for the concatenated data was GTR+F+I+G4, chosen according to Akaike’s
information criterion (AIC) [39]. ML analysis was performed with 5000 replicates of
ultrafast bootstrapping using the IQ-TREE web server [40]. MrBayes v3.2.6 was used
for BI analysis [41]. Markov chain Monte Carlo (MCMC) algorithms were run for two
million generations and sampled every 100 generations. In total, 25% of the generations
were discarded as burn-ins. In Phylosuite, ML and BI analyses were performed using
programs like ModelFinder, IQ-TREE, and MrBayes [37]. The phylogenetic trees were
visualized using FigTree v1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 7
Decemeber 2023)).

3. Results
3.1. Plastid Genome Structure and Comparative Analysis of Corylopsis

Three plastid genomes of Corylopsis were obtained using NGS. The sequenced genomes
had a quadripartite structure common to angiosperms, ranging from 159,363 bp (C. pau-
ciflora) to 159,434 bp (C. gotoana) (Figures 1 and S1). Ten plastid genomes of Corylopsis
species produced in this study and from GenBank were obtained and analyzed. Among the
Corylopsis species, the length of C. multiflora var. nivea was the smallest (158,993 bp), and
C. spicata was the largest (159,507 bp) (Table 1). The overall GC contents of all Corylopsis
were distinct at 38.0% (LSC, SSC, and IR were 36.1%, 32.6–32.7%, and 43.1%, respectively).

http://tree.bio.ed.ac.uk/software/figtree/
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The plastid genomes of the Corylopsis species contained 79 protein-coding genes, 30 tRNAs,
and 4 rRNA genes (Table S2). Among these genes, 15 (atpF, ndhA, ndhB, petB, petD, rpl2,
rpl16, rpoC1, rps16, trnA-UGC, trnG-UCC, trnI-GAU, trnK-UUU, trnL-UAA, and trnV-UAC)
contained only one intron, and 3 (clpP1, pafI, and rps12) contained two introns. In addition,
17 genes (ndhB, rpl2, rpl23, rps7, rps12, ycf2, trnA-UGC, trnI-CAU, trnI-GAU, trnL-CAA,
trnN-GUU, trnR-ACG, trnV-GAC, rrn16, rrn23, rrn4.5, and rrn5) were replicated in the IR
regions. rps12 was recognized as a trans-spliced gene, with its 5′ end located in the LSC
region and its 3′ end in the IR regions.
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Table 1. Comparison of the plastome features of Corylopsis and related taxa. 

Taxa 
Length (bp) and GC Content (%) GenBank Acces-

sion Number LSC SSC IR Total 
Corylopsis sinensis * 88,149 (36.1%) 18,704 (32.7%) 26,283 (43.1%) 159,419 (38.0%) PP273282 
Corylopsis sinensis 88,152 (36.1%) 18,701 (32.7%) 26,283 (43.1%) 159,419 (38.0%) MZ590567 

Corylopsis glandulifera 88,134 (36.1%) 18,702 (32.6%) 26,283 (43.1%) 159,402 (38.0%) MZ642354 
Corylopsis velutina 88,146 (36.1%) 18,702 (32.7%) 26,283 (43.1%) 159,414 (38.0%) MZ823391 
Corylopsis gotoana * 88,164 (36.1%) 18,702 (32.7%) 26,284 (43.1%) 159,434 (38.0%) PP273280 

Figure 1. The complete plastid genome of Corylopsis manufactured in this study. Genes located
within the inner portion of the circular structure are transcribed in a clockwise direction, whereas
those positioned on the outer side are transcribed counterclockwise. The dark gray shading within
the inner circle indicates the GC content, while the light gray represents the AT content. Various
colors are used to indicate distinct functional genes. Genes containing intron are denoted with an
asterisk (*).

In the mVISTA analysis, the complete plastid genomes of the 10 species were compared
to the plastids of Loropetalum chinense as a reference (Figure 2). Overall, the plastid genomes
were similar and conserved. In addition, the boundaries of the IRs were investigated
(Figure 3). Most genes were preserved; however, rps19 in C. multiflora var. nivea was located
only at the junction between the LSC and IRb regions.
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Table 1. Comparison of the plastome features of Corylopsis and related taxa.

Taxa
Length (bp) and GC Content (%) GenBank

Accession NumberLSC SSC IR Total

Corylopsis sinensis * 88,149 (36.1%) 18,704 (32.7%) 26,283 (43.1%) 159,419 (38.0%) PP273282
Corylopsis sinensis 88,152 (36.1%) 18,701 (32.7%) 26,283 (43.1%) 159,419 (38.0%) MZ590567

Corylopsis glandulifera 88,134 (36.1%) 18,702 (32.6%) 26,283 (43.1%) 159,402 (38.0%) MZ642354
Corylopsis velutina 88,146 (36.1%) 18,702 (32.7%) 26,283 (43.1%) 159,414 (38.0%) MZ823391
Corylopsis gotoana * 88,164 (36.1%) 18,702 (32.7%) 26,284 (43.1%) 159,434 (38.0%) PP273280

Corylopsis spicata 88,243 (36.1%) 18,716 (32.7%) 26,274 (43.1%) 159,507 (38.0%) MK942341
Corylopsis pauciflora * 88,097 (36.1%) 18,700 (32.7%) 26,283 (43.1%) 159,363 (38.0%) PP273281

Corylopsis coreana 88,166 (36.1%) 18,692 (32.7%) 26,270 (43.1%) 159,398 (38.0%) MG835449
Corylopsis microcarpa 88,185 (36.1%) 18,693 (32.6%) 26,280 (43.1%) 159,438 (38.0%) MZ642356

Corylopsis multiflora var. nivea 87,895 (36.1%) 18,672 (32.6%) 26,213 (43.1%) 158,993 (38.0%) MW043717
Loropetalum chinense 88,160 (36.1%) 18,770 (32.7%) 26,257 (43.1%) 159,444 (38.0%) NC_060831

Loropetalum subcordatum 88,216 (36.1%) 18,494 (32.7%) 25,998 (43.1%) 158,706 (38.0%) NC_037694
Distylium myricoides 87,847 (36.2%) 18,780 (32.5%) 26,233 (43.1%) 159,093 (38.0%) NC_059883
Distylium racemosum 87,863 (36.2%) 18,782 (32.5%) 26,231 (43.1%) 159,107 (38.0%) NC_059886

Hamamelis mollis 88,301 (36.1%) 18,762 (32.5%) 26,334 (43.1%) 159,731 (38.0%) NC_037881
Sinowilsonia henryi 87,507 (36.4%) 18,768 (32.8%) 26,233 (43.1%) 158,741 (38.2%) NC_036069
Mytilaria laosensis 89,016 (35.9%) 18,127 (32.8%) 26,399 (43.1%) 159,941 (37.9%) NC_048997

Rhodoleia championii 88,144 (35.8%) 18,131 (32.3%) 26,420 (42.9%) 159,115 (37.7%) NC_045276
Liquidambar styraciflua 88,891 (36.1%) 18,977 (32.4%) 26,441 (43.0%) 160,750 (37.9%) NC_046938
Liquidambar orientalis 88,882 (36.1%) 18,947 (32.4%) 26,471 (43.1%) 160,771 (37.9%) NC_046937

* Sequenced in this study.
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Figure 2. Using mVISTA plots, the alignment of plastid genome sequences was conducted to evaluate
the percent sequence identity of the plastid genomes of 10 Corylopsis species, with Loropetalum chinense
(NC_060831.1) serving as the reference. The x-axis represents the coordinate in the plastid genome,
while the y-axis represents the average percentage of sequence similarity in the aligned regions,
which ranges from 50% to 100%. Genome regions are categorized as protein-coding, rRNA-coding,
tRNA-coding, or conserved noncoding sequences (CNS).
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(IRB/LSC), JSB (IRB/SSC), JSA (IRA/LSC), and JLA (IRA/LSC) represent the junction sites between
two adjacent regions in the genome.

The relative synonymous codon usage (RSCU) of Corylopsis plastomes was com-
puted using all protein-coding genes (Figure 4 and Table S3). The analysis confirmed
that Corylopsis plastid genomes contained 61 codons encoding 20 amino acids. A total
of 22,146–22,815 codons exist. Of the 61 codons, 29 had RSCU values greater than one.
Methionine and tryptophan had a single codon. All codons had an RSCU > 1 end in the
A/U at the third nucleotide position (except for UCC, which encodes Ser in C. coreana). On
the other hand, out of the codons with RSCU values of one or less, only one had an A/U
ending, whereas 31 codons had a G/C ending. In C. coreana, two Ser-encoding codons had
a bias different from that in other species; when encoding Ser, UCC was used more often
than UCA. The exact values for each species of Corylopsis are shown in Table S3.
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3.2. Repeat Analysis and Nucleotide Diversity Assessment

Simple sequence repeats (SSRs), also known as microsatellites, are short repeats
composed of 1–6 nucleotide sequences of DNA segments within the genome. The SSRs
for Corylopsis are shown in Figure 5a. As a result of the analysis, Corylopsis had 88 SSRs,
and the species with the most number of SSRs was C. spicata, and C. multiflora var. nivea
exhibited the lowest number of SSRs. This is because the number of mononucleotides is
relatively large and small compared to that in other species. Among SSRs of Corylopsis,
mononucleotides occupied the largest proportion (78.33%), most of which were A/T
mononucleotides, followed by dinucleotide SSRs (10.05%), tetranucleotide SSRs (6.09%),
trinucleotide SSRs (3.27%), and pentanucleotide SSRs (2.26%) (Figure 5a and Table S4).

In addition, we investigated forward, reverse, complement, and palindromic repeat
sequences within the plastid genome of Corylopsis (Figure 5b and Table S5). Although the
IR regions were repeated sections, the analysis results excluded them from Figure 5b. The
average number of repeats in Corylopsis was 37, with a minimum of 33 repeats (C. multiflora
var. nivea) and a maximum of 40 (C. spicata). Most of these were composed of forward
and palindromic repeats. Complement repeats were found in only three species, C. spicata,
C. coreana, and C. microcarpa, of which C. coreana had two complement repeats. Most species
had one reverse repeat, whereas C. pauciflora had two reverse repeats. However, C. multiflora
var. nivea confirmed the absence of reverse repeats.



Genes 2024, 15, 380 8 of 16
Genes 2024, 15, x FOR PEER REVIEW 8 of 17 
 

 

 
Figure 5. Analyses of repeats in the 10 plastid genome of Corylopsis. (a) The number of SSR motifs 
in Corylopsis. (b) Number of different repeat types in Corylopsis. 

To identify phylogenetically divergent hotspots, a nucleotide diversity (Pi) analysis 
of the complete plastid genome of Corylopsis was performed (Figure 6 and Table S6). Var-
iable sites in the IR region were more conserved than those in the SC region. The Pi value 
was the highest at 0.02135 (rpl33_rps18), followed by 0.01237 (petD_rpoA), 0.00765 (trnG-
GCC_trnfM-CAU), and 0.00756 (rps8_rpl14), all of which were intergenic spacers. Within 
the protein-coding genes, ndhE exhibited the highest Pi value (0.00327), followed by rps16 
(0.003), rps19 (0.00279), and ndhF (0.00275). 

Figure 5. Analyses of repeats in the 10 plastid genome of Corylopsis. (a) The number of SSR motifs in
Corylopsis. (b) Number of different repeat types in Corylopsis.

To identify phylogenetically divergent hotspots, a nucleotide diversity (Pi) analysis of
the complete plastid genome of Corylopsis was performed (Figure 6 and Table S6). Variable
sites in the IR region were more conserved than those in the SC region. The Pi value
was the highest at 0.02135 (rpl33_rps18), followed by 0.01237 (petD_rpoA), 0.00765 (trnG-
GCC_trnfM-CAU), and 0.00756 (rps8_rpl14), all of which were intergenic spacers. Within
the protein-coding genes, ndhE exhibited the highest Pi value (0.00327), followed by rps16
(0.003), rps19 (0.00279), and ndhF (0.00275).
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3.3. Phylogenetic Analyses of Corylopsis and Related Taxa

Phylogenetic analyses were conducted using concatenated 79 protein-coding genes,
employing maximum parsimony (MP), maximum likelihood (ML), and Bayesian inference
(BI) methods. Consistently, all three tree constructions displayed identical topologies, with
high support values at each node.

Twenty species were used to reconstruct phylogenetic relationships within Hamameli-
daceae (Figure 7). Liquidambar styraciflua and L. orientalis (Altingiaceae) were designated as
outgroups. In Hamamelidaceae, Rhodoleioideae, including Rhodoleia, was sister to the re-
maining taxa. Hamamelidoideae, including Sinowilsonia, Hamamelis, Distylium, Loropetalum,
and Corylopsis, were located in the upper clade and divided into two major clades: Sinowilso-
nia, Hamamelis, and Distylium, Loropetalum, and Corylopsis. The genus closest to Corylopsis
was identified as Loropetalum, with a high support value.

The genus Corylopsis was monophyletic, and most nodes showed high levels of support.
C. multiflora var. nivea was sister to the remaining Corylopsis, followed by C. microcarpa
and C. coreana. C. pauciflora, C. spicata, and C. gotoana formed one clade, and C. pauciflora
was confirmed to be the sister of the other species, with relatively weak support values in
the MP and ML analyses (62 and 72, respectively). Another clade consisted of C. velutina,
C. glandulifera, and C. sinensis, where C. velutina was sister to the other species.
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4. Discussion
4.1. Comparison of Plastid Genomes and Characteristics of Corylopsis

Several studies have used plastid genomes to identify the characteristics of target
species and comprehend phylogenetic relationships within taxa [16–18]. This study con-
firmed that the plastid genome of Corylopsis has a typical quadripartite structure. The
plastomes of the three species of Corylopsis completed in this study were based on Illumina
MiSeq sequencing and had a length of 159,363 bp (C. pauciflora) to 159,434 bp (C. gotoana)
and an average GC content of 38.0%. The GC content of the IR regions is relatively higher
than that of the SC regions, implying that fewer AT contents have relatively weak hydrogen
bonds. Consequently, evidence exists that IR regions are better preserved than SC regions
(Figures 2 and 6, Table 1) [20,42–45]. The IR region is commonly found duplicated in
most plastid genomes. Due to this arrangement, it is thought that the IR region provides
structural stability to the circularized plastomes [46]. In addition, these repetitions can
aid in limiting gene movement and rearrangement, thus contributing stability. In the
case of transgenes, insertion into the IR regions is necessary to double the copy number
and enhance homoplasmy to strengthen the selection pressure [47]. This is because when
transgenes are inserted into the IR region, they are also inserted into the other copy. Indeed,
homoplasmy, which refers to the integration of foreign genes into all plastid genomes,
and increased levels of polymer transcripts were detected only within the IR region, with
no such observations in LSC transgenic plants [48]. Because of the comparison of the
plastome structure and mVISTA analysis, it was confirmed that the characteristics such
as GC content, genome length, and content of genes were generally similar and well con-
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served within Corylopsis (Figure 2, Tables 1 and S2). Through IR scope analysis, the IR
boundaries of the three plastid genomes created in this study were well conserved, similar
to those of other species. Among the other species, a notable difference was observed in
C. multiflora var. nivea, where the rps19 gene was present at the boundary between the
LSC and Irb. The fate of genes located at the boundaries of each region also depends on
the extension or contraction of specific regions of the plastome, which can be used for the
phylogenetic classification of taxa [49–52]. For example, in the genus Camellia (Theaceae),
variations in the length of the IR regions due to various indels in the plastome have been
observed [51]. The extension or contraction of at least one to seven IR regions has been
observed within Apioideae (Apiaceae), which explains the pattern of genetic evolution in
Apioideae [52]. C. multiflora var. nivea may be considered an evolutionary phenomenon in
Corylopsis, although the plastid genome structure did not show evident differences, as in
the aforementioned taxa. The location of the rps19 gene of C. multiflora var. nivea revealed in
this study can provide the basis for understanding the evolutionary patterns of Corylopsis
in the future.

Synonymous codons encode the same amino acids in many eukaryotes but occur at
different frequencies, which is referred to as codon bias [45,53,54]. Codon bias is determined
by various factors such as base composition, gene length, and amino acid hydrophobicity,
and is involved in regulating gene expressions and increasing translation accuracy and
efficiency [54–58]. This study confirmed that the RSCU values of 29 out of 61 codons
encoding amino acids in Corylopsis were more than one, indicating codon bias (Figure 4 and
Table S3). Among the 29 codons, most had an A/U at the third nucleotide position, which
is considered to be due to the high A/T content found in most plastid genomes [53,59].
Unlike other species, C. coreana had an RSCU value of more than one for UCC and less
than one for UCA among the codons encoding the amino acid serine (Table S3). This
phenomenon of changing codon bias can be explained by complex factors such as genes
and mutations selected during long-term adaptation to the environment and evolution [60].
In particular, C. coreana is an endemic species distributed only in the Republic of Korea,
and it is considered to be a phenomenon that occurred after being isolated in the Republic
of Korea for a long time and undergoing adaptation and evolution.

4.2. Divergence Hotspots of Corylopsis

SSRs are useful molecular markers for distinguishing species and are used to identify
phylogenetic relationships within taxa because of their high degree of polymorphism [61,62].
A total of 73 (C. multiflora var. nivea) to 106 (C. spicata) SSRs were found in the genus
Corylopsis (Figure 5a). Mononucleotide SSRs (78.33%) were the most common, followed by
dinucleotide SSRs (10.05%), tetranucleotide SSRs (6.09%), trinucleotide SSRs (3.27%), and
pentanucleotide SSRs (2.26%) (Figure 5a). SSRs consisting of A and T were the richest: the
ratio of A/T nucleotide was overwhelmingly high in mononucleotide SSRs (72.60–80.19%),
AT/AT in dinucleotide SSRs (7.55–10.59%), and AAAT/ATTT in tetranucleotide SSRs
(1.89–4.11%) (Table S4). In the SSRs of many plants, poly A and poly T occur relatively
more frequently than poly G or poly C, which is consistent with the SSR repetition results
of Corylopsis identified in this study [45,63–65].

Repetitive elements like palindromic, forward, and reverse repeats, as well as com-
plementary sequences, exert significant influence on genetic organization. They serve as
valuable molecular markers for identifying phylogenetic relationships or distinguishing
between species [46,66]. In this study, the repeat sequences of 10 plastid genomes, including
those of Corylopsis, were searched (Figure 5b). In all species, forward and palindromic
repeats accounted for more than 90% of the repeats. One or two reverse repeats were found
in the remaining species, with the exception of one (C. multiflora var. nivea), and comple-
mentary repeats were found in only three species (C. spicata, C. coreana, and C. microcarpa).
The length of most repeats was more than 30 bp and less than 50 bp, which is similar to the
repeat results of Hamamelidaceae species found in a previous study (Table S5 and [3]).
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A phylogenetically useful region can be selected through nucleotide diversity analysis,
which can provide information on divergent hotspots in plastid genomes [20,67]. The
nucleotide diversity (Pi) of the CDS, tRNA, rRNA, introns, and intergenic spacers was
calculated (Figure 6). The Pi value of the IR regions was lower compared to that of the
SC regions, suggesting a higher level of conservation in the IR regions than in the SC
regions [64,67,68]. Most of the regions with high Pi values were non-coding regions such
as intergenic spacers or introns, and the region with the highest Pi value was rpl33_rps18
(Figure 6). This suggests that coding regions exhibit greater conservation compared to
non-coding regions. In the coding region, ndhE exhibited the highest Pi value (Table S6).
These selected regions can be useful molecular markers for phylogeny at the genus level,
such as in DNA barcoding.

4.3. Phylogenetic Relationships within Corylopsis

The plastid genome has features such as a small and simple structure, well-conserved
gene content and arrangement compared to the mitochondrial and nuclear genomes, and
uniparental inheritance, which are considered informative and valuable for understanding
evolutionary biology [69,70]. Several studies have conducted phylogenetic analyses of
Hamamelidaceae using genes. Li et al. [9] identified the phylogeny of the Corylopsis
complex (Corylopsis, Distylium, Eustigma, Fortunearia, and Sinowilsonia) using morphological
features and internal transcribed spacers (ITS). Shi et al. [71] suggested the phylogeny of
Hamamelidaceae based on ITS regions and 5.8 S coding regions of the nuclear genome and
confirmed that the genus Corylopsis forms a monophyletic group with the genus Loropetalum.
Wang et al. [3] used plastid genomes to confirm the phylogenetic relationships of genera
belonging to Hamamelidaceae. However, studies conducted to date have examined the
phylogenetic relationships of Corylopsis and other genera, and no study has been conducted
to identify the phylogenetic relationships within Corylopsis using plastid genomes. This
study outlines the proposed phylogenetic relationships of Corylopsis, utilizing concatenated
protein-coding genes.

Three new plastid genomes of Corylopsis species were produced based on NGS using
Illumina sequencing, and the systematic relationships of Corylopsis were identified based
on the protein-coding genes of the plastid. Similar to previous studies, Hamamelidoideae,
including Corylopsis, were confirmed to be monophyletic, and the genus Loropetalum is
sister to Corylopsis [3,72,73]. Loropetalum is characterized by its colorful and red flowers,
leathery elliptical leaves, and often evergreen habit [74]. In contrast, Corylopsis is known for
its pendulous catkin-like clusters of small, yellowish flowers, serrated deciduous leaves,
and a more upright growth habit [1]. Within the genus Corylopsis, the earliest branched
species was C. multiflora var. nivea, which is a variety of C. multiflora characterized by
glabrous young branches, leaves, peduncles, and short stamens and is endemic to Mt.
Fuji, China (Figure 7) [2,24]. The branched species are C. microcarpa, distributed in China,
and C. coreana, which is endemic to the Republic of Korea [21]. Previously, C. coreana was
considered as C. gotoana var. coreana; however, they are distinguished by the presence or
absence of hair on the lower surface of leaves and the number of flowers per inflorescence.
Because a prominent difference between the two species was observed in the results
of the phylogenetic tree, considering them as independent species is reasonable [21,75].
C. pauciflora, C. spicata, and C. gotoana form a clade, and all share the common feature of
being distributed in Japan. C. pauciflora is distinguished by its notably smaller leaves (less
than 6 cm) compared to other species (approximately 10 cm), and its inflorescence is also
characterized by its short size, consisting only of one to five flowers [1]. Additionally,
C. spicata is morphologically distinguished by its filaments being bright red, whereas those
of other taxa in the genus are typically yellow or white [1]. Four species of Corylopsis
are known to be distributed in Japan, three of which were included in this study. The
adjacent relationships between the three species and the formation of a monophyletic
group suggest that speciation occurred in Japan. Yamanaka et al. [7] also suggested the
possibility that independent speciation may have occurred in areas where Corylopsis species
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in Japan became refugia under the influence of Quaternary climate change [7]. C. velutina,
C. glandulifera, and C. sinensis formed a clade, all of which were distributed in China.
The plastid genome of C. sinensis obtained in the present study formed a clade with that
previously listed in GenBank (MZ590567). Most of the distribution area of Corylopsis is
occupied by China, but five species distributed in China were included in this study. A
phylogenetic study involving the species distributed in China is essential for understanding
the biogeographical evolution of Corylopsis. The correlation between the geographical
distribution and clade formation of phylogenetic trees can usually be estimated using
fossil data such as divergence time and migration route. Kim et al. [22,23] identified the
biogeographical history of the Northern Hemisphere by inferring the migration routes
and divergence times of Melanthiaceae species based on fossil data. Although this study
did not investigate the biogeographical history using fossil data, it is considered that their
evolutionary history and distribution may be related, as clades within Corylopsis are formed
by their distribution.

In this study, 9 of 25 species belonging to the genus Corylopsis were analyzed to
confirm the lineage within Corylopsis and provide information on the new plastid genome.
This is significant in that it is the first study to compare the plastid genomes of species
belonging to the genus Corylopsis and to explore the phylogenetic relationship between
taxa. However, there is a limitation in that there is a node with a low support value, and
the phylogenetic relationship of the entire genus Corylopsis cannot be confirmed. If more
species are added and analyzed, the limitations of this study will be resolved, and the
various pieces of information presented in our results will serve as the foundation for
identifying the phylogenetic history of Hamamelidaceae in the future.

5. Conclusions

For the first time, our study performed a comprehensive comparative analysis based
on the plastid genome of Corylopsis and phylogenetic relationships. We also provided
information on the plastid genomes of the three species within Corylopsis. The Corylopsis
plastome has the quadripartite structure of a typical angiosperm plastid genome, ranging
from 158,996 bp to 159,507 bp. It comprises 79 protein-coding genes, 30 tRNAs, and 4 rRNA
genes. Through various plastome structure analyses, the plastid genome structure of
Corylopsis was similar and well-conserved. Repeat and nucleotide diversity analyses were
performed to search for divergent hotspots that could be used as molecular markers. The
number of SSRs in Corylopsis ranged from 73 to 106, and mononucleotide SSRs accounted
for the largest proportion. More than 90% of the repeats were composed of forward
and palindromic repeats, and most repeats were 30–50 bp in length. A phylogenetically
useful region was identified using nucleotide diversity analysis. The Pi values of the SC
regions were higher than those of the IR regions, and the highest Pi value was rpl33_rps18
intergenic spacer region. Phylogenetic analysis using the protein-coding genes of the plastid
genome confirmed that the genus Corylopsis is a monophyletic group and that its sister is a
genus of Loropetalum. In this study, the phylogenetic relationships within Corylopsis were
demonstrated, which will be helpful for identifying the phylogeny of Hamamelidaceae in
the future.
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